-
果实的生长发育一般具有较长周期,外形上表现为由小变大,内部伴随着营养物质的积累与代谢[1]。果实大小主要由细胞分裂和细胞膨大2个阶段决定,发育前期主要以细胞分裂为主,而细胞膨大主要是从细胞分裂结束后开始的[1]。不同物种果实的生长发育有着不同的特性。核桃Juglans regia、板栗Castanea mollissima等生长发育随时间变化呈现“S”形的生长曲线[2],桃Amygdalus persica、杏Armeniaca vulgaris等在生长中会有一个缓慢期,生长曲线呈双“S”形[3]。山核桃Carya cathayensis果实5月初开始膨大,6—7月果实快速生长[4]。银杏Ginkgo biloba授粉后40~80 d为快速膨大阶段,纵径和体积增长显著[5]。果实膨大过程涉及一系列生理生化变化[1]。果实内部光合同化物的积累与代谢是果实生长发育的调控中心环节,直接影响果实膨大过程。蔗糖是植物光合同化物的主要积累物质,是重要的能量载体,在果实中积累后会被分解为葡萄糖和果糖[6]。这些小分子还原糖进一步参与糖酵解、三羧酸循环等过程,为果实早期发育和细胞膨大提供能量和碳骨架[7]。同时,蔗糖、葡萄糖、果糖通过区隔积累于液泡中,使果实内部保持较高的膨压,促进水分吸收,从而促进果实细胞膨大[8]。此外,旺盛的蔗糖代谢也有利于果实内部内源激素的积累与分配,提高果实对营养物质的调运能力,使更多的光合同化产物、矿质元素源源不断地流入正在发育的果实细胞,满足果实生长发育的营养需求[8]。果实中的蔗糖主要源于叶片光合同化物的韧皮部输入,运输到库器官后通过其代谢过程被进一步利用[9]。蔗糖代谢过程涉及到多种酶,主要有蔗糖合成酶(sucrose synthase, SS),蔗糖磷酸合成酶(sucrose phosphate synthase, SPS)和蔗糖转化酶(invertase)。这些蔗糖代谢相关酶的活性变化对果实发育过程有着重要影响[10]。研究发现:果实中蔗糖磷酸合成酶活性与蔗糖积累呈正相关关系[11]。GALTIER等[12]在番茄Lycopersicon esculentum中过量表达蔗糖磷酸合成酶基因,转基因番茄中蔗糖磷酸合成酶蛋白含量升高,同时其含糖量也增加。蔗糖水解成己糖后可为果实发育提供能量,参与蔗糖水解的酶主要有蔗糖转化酶和蔗糖合成酶。蔗糖转化酶根据在细胞中的定位不同可以分为细胞壁蔗糖转化酶(cell wall invertase)、液泡蔗糖转化酶(vacuolar invertase)和细胞质蔗糖转化酶(cytoplasmic invertase)[10]。蔗糖转化酶活性高低可以作为衡量果实库活力的重要标志[13]。番茄转化酶活性在果实生长发育的整个阶段都有较高水平,有利于己糖积累[14]。蜜柑Satsuma mandarin果实快速膨大期液泡蔗糖转化酶活性较高[15]。蔗糖合成酶既可以合成蔗糖也可以分解蔗糖。在果实膨大过程中,蔗糖合成酶主要起着分解蔗糖的作用[16]。此外,果实内部蔗糖代谢过程也会受到植物激素、光照和水分等因子的影响。研究发现:吲哚-3-乙酸(indole-3-acetic acid,IAA)能够增强蔗糖运输,促进蔗糖向果肉细胞扩散[17]。葡萄Vitis vinifera果实发育前期,IAA和赤霉素(gibberellins,GAs)促进了果实中蔗糖的输入[18]。外源GA处理通过增强蔗糖转化酶编码基因表达,提高果实蔗糖转化酶活性,促进枇杷Eriobotrya japonica等果实膨大[19]。
香榧Torreya grandis ‘Merrillii’是红豆杉科Taxaceae榧树属Torreya植物,是中国特有的珍稀干果。香榧种仁营养丰富,具有很高的保健、药用和综合开发利用价值[20-22]。然而,人们在长期的生产实践中发现,香榧种实膨大率低,部分香榧林分膨大率不足5%,严重影响香榧的产量和栽培效益,成为限制香榧产业发展的瓶颈。本研究通过分析香榧种实膨大过程中蔗糖积累与代谢规律,探讨内源激素动态变化及其与蔗糖代谢之间的相关性,初步阐明蔗糖及其代谢对香榧种实膨大的影响。同时,筛选鉴定蔗糖代谢关键酶相关基因,分析蔗糖代谢对香榧种实膨大的调控作用。研究结果将为阐明香榧种实发育机制奠定基础,同时为提高种实产量、开展良种选育等提供理论支撑。
-
由图1可知:香榧种实膨大过程可分为3个阶段,分别是种实突破种鳞后的0~30、30~60和60~90 d,其中,种实突破种鳞后的30~60 d是香榧种实质量和体积增大的关键时期。这一阶段种实横径、纵径、单粒质量和体积都明显增大,种仁从半透明状逐渐固化变白,面积占据整个种实的绝大部分(图1A~C)。种实突破种鳞后的60~90 d是香榧种实内部种仁固化的重要阶段。这一阶段形态上,中种皮结构更为明显,种仁进一步固化充实;种实大小(横径、纵径)、单粒质量、体积虽然仍在增大,但趋势缓慢;种实突破种鳞后90 d时,种实大小和质量均与种实突破种鳞后60 d时,相差不大(图1A~C)。然而,香榧种实膨大过程中假种皮和种仁含水率变化有较大差异,假种皮含水率从种实突破种鳞后30~90 d呈缓慢上升至平稳趋势,而种仁含水率则逐渐下降,尤其是种实突破种鳞后60 ~90 d含水率显著(P<0.05)降低(图1D)。
-
香榧种实膨大过程中,蔗糖、葡萄糖、果糖以及淀粉质量分数在假种皮和种仁中变化显著(P<0.05),且假种皮和种仁间各物质质量分数变化趋势不同(图2)。种实突破种鳞后30~90 d,假种皮中蔗糖质量分数从49.70 mg·g−1上升至75.83 mg·g−1,随后又下降至57.14 mg·g−1;种仁中蔗糖质量分数则持续下降,在种实突破种鳞后60~90 d下降明显,从82.89 mg·g−1下降至55.82 mg·g−1(图2A)。随着香榧种实的膨大,葡萄糖和果糖质量分数在假种皮中同样先上升后下降,至种实突破种鳞后90 d时分别为5.90和37.0 mg·g−1;种仁中两者质量分数均显著下降(P<0.05),从种实突破种鳞后60~90 d阶段下降了约50% (图2B~C)。假种皮中淀粉质量分数呈现逐渐下降趋势,从种实突破种鳞后30 d时的462.07 mg·g−1下降到90 d时的254.05 mg·g−1,种仁中淀粉则在种实突破种鳞后90 d时显著积累(P<0.05) (149.72 mg·g−1),为30 d时的1.5倍(图2D)。
图 2 香榧种实膨大期蔗糖(A)、葡萄糖(B)、果糖(C)和淀粉(D)质量分数变化
Figure 2. Changes of sucrose (A), glucose (B), fructose (C) and starch (D) contents in aril and kernel during T. grandis ‘Merrillii’ seed expansion
蔗糖代谢相关酶活性分析发现:香榧种实膨大过程中,蔗糖磷酸合成酶在假种皮中一直呈现上升趋势,酶活性从0.46 μmol·mg−1·min−1升高至1.16 μmol·mg−1·min−1,种仁中蔗糖磷酸合成酶活性则逐渐下降,种实突破种鳞后90 d时的活性仅为种实突破种鳞后30 d时的28.82%(图3A)。参与蔗糖水解的细胞质蔗糖转化酶、液泡蔗糖转化酶和细胞壁蔗糖转化酶随着种实的膨大在假种皮中均呈现上升趋势,酶活性最大值分别为21.91、23.49以及4.93 μmol·mg−1·min−1,而三者在种仁中的活性均有所下降,其中细胞质蔗糖转化酶和液泡蔗糖转化酶活性在种实突破种鳞后30~60 d无显著差异,而从种实突破种鳞后60~90 d显著下降(P<0.05),分别为3.69和4.63 μmol·mg−1·min−1,细胞壁蔗糖转化酶活性则持续下降,至种实突破种鳞后90 d时,活性仅0.97 μmol·mg−1·min−1(图3B~D)。
-
内源激素质量分数变化分析发现:随着香榧种实膨大,假种皮中GA4、GA3、水杨酸(SA)质量分数总体呈现显著积累,并在种实突破种鳞后90 d时达到最高值,分别为种实突破种鳞后30 d时的2、11和8倍,而IAA、脱落酸(ABA)、茉莉酸(JA)和茉莉酸异亮氨酸(JA-ILE)质量分数则显著降低(P<0.05)(表1)。此外,乙烯前体物质—1-氨基-环丙烷羧酸(ACC)和多种细胞分裂素(DHZ、tZR、IP等)质量分数也显著下降(P<0.05)。种仁中,GA3、SA、ABA也随着种实膨大逐渐积累,其中ABA质量分数为922.31 ng·g−1。而GA4、IAA、JA、JA-ILE和绝大多数细胞分裂素[DHZ、tZR、IP、反式玉米素(tZ)]质量分数则显著降低(P<0.05) (表1)。
表 1 香榧种实膨大期内源激素质量分数变化分析
Table 1. Analysis of endogenous hormone contents in aril and kernel during T. grandis ‘Merrillii’ seed expansion
植物激素 种实突破种鳞后不同时间激素水平 /(ng·g−1) 30 60 90 d 假种皮 种仁 假种皮 种仁 假种皮 种仁 生长素 (IAA) 149.81±4.75 c 467.88±30.98 a 23.68±0.25 d 215.04±3.24 b 12.59±0.40 d 3.65±0.03 d 赤霉素 (GA4) 1.03±0.03 b 0.30±0.03 cd 0.89±0.31 bc 0.22±0.03 d 2.12±0.37 a 0.17±0.03 d 赤霉素 (GA3) 1.06±0.11 cd 0.09±0.01 e 2.56±0.17 b 1.43±0.03 c 12.08±0.53 a 0.42±0.04 ed 脱落酸 (ABA) 875.62±29.96 ab 763.09±76.84 bc 712.75±15.28 c 907.91±50.30 a 207.71±6.13 d 922.31±42.40 a 水杨酸 (SA) 11.88±0.57 c 10.70±0.52 c 8.93±0.33 c 8.68±0.17 c 96.05±3.32 a 43.66±0.83 b 茉莉酸 (JA) 155.52±4.45 a 4.39±0.59 bc 9.05±0.50 b 0.53±0.10 c 8.39±0.71 b 0.14±0.01 c 茉莉酸异亮氨酸 (JA-ILE) 254.36±7.94 a 6.93±0.60 bc 15.46±1.03 b 0.59±0.01 d 4.57±0.40 d 0.36±0.02 d 1-氨基-环丙烷羧酸 (ACC) 7.92±0.19 a 0.75±0.22 b 2.26±0.16 c 0.38±0.05 d 0.47±0.03 d 4.66±0.36 b 双氢玉米素 (DHZ) 1.16±0.09 a 0.71±0.05 b 0.71±0.02 b 0.32±0.03 c 0.41±0.02 c 0.46±0.02 c 反式玉米素核苷(tZR) 0.44±0.05 a 0.03±0.00 c 0.17±0.00 b 0.02±0.00 c 0.12±0.01 b 0.04±0.00 c 异戊烯基腺嘌呤(IP) 0.21±0.02 a 0.05±0.01 c 0.13±0.01 b 0.02±0.00 d 0.14±0.01 b 0.02±0.00 d 反式玉米素(tZ) 0.18±0.01 a 0.03±0.01 c 0.06±0.00 b 0.02±0.00 c 0.03±0.00 c 0.02±0.00 c 说明:不同字母表示不同组织、不同膨大阶段间存在显著差异(P<0.05) -
相关性分析发现:假种皮中葡萄糖、果糖、淀粉质量分数以及蔗糖代谢相关酶与种实大小密切相关,其中葡萄糖、果糖质量分数与种实横、纵径,单粒质量和含水率呈正相关关系,与淀粉质量分数则呈负相关关系;蔗糖转化酶和蔗糖磷酸合成酶均与种实大小正相关(图4A)。同时,假种皮中蔗糖、葡萄糖、果糖质量分数与细胞质蔗糖转化酶、液泡蔗糖转化酶及细胞壁蔗糖转化酶活性变化呈正相关,而淀粉质量分数与葡萄糖、果糖质量分数,细胞质蔗糖转化酶、液泡蔗糖转化酶、细胞壁蔗糖转化酶及蔗糖磷酸合成酶活性均呈负相关关系(图4A)。与激素质量分数相关性分析发现:大多数激素(GA3、IAA、JA、ACC、DHZ、TZR等)与蔗糖、葡萄糖、果糖质量分数以及各种糖代谢酶活性呈负相关,与种实大小也表现出负相关关系(图4A)。
图 4 香榧种实膨大期假种皮(A)和种仁(B)中各生长指标、糖质量分数、酶活性和激素质量分数间相关性分析
Figure 4. Correlation analysis of growth index, sugar content, enzyme activity and hormone content in aril (A) and kernel tissues (B) during T. grandis ‘Merrillii’ seed expansion
随着香榧种实膨大,种仁中蔗糖、葡萄糖、果糖与淀粉质量分数呈负相关关系,与细胞质蔗糖转化酶、液泡蔗糖转化酶、细胞壁蔗糖转化酶和蔗糖磷酸合成酶活性呈正相关关系,同时淀粉质量分数与香榧种实单粒质量和体积也呈正相关关系(图4B)。与激素的相关性分析发现:GA4和IAA质量分数与蔗糖、葡萄糖、果糖质量分数和4种蔗糖代谢酶活性呈正相关,而与淀粉质量分数呈负相关(图4B)。此外,多种激素质量分数与种仁含水量呈正相关,SA与种实单粒质量和体积也呈正相关关系(图4B)。
-
为了深入分析香榧种实膨大过程中,蔗糖代谢、淀粉代谢以及激素信号途径相关基因表达情况及其相互调控与种实的膨大关系等,本研究对各膨大阶段的香榧种实进行转录组测序。转录组分析发现:与种实突破种鳞后30 d相比,在种实突破种鳞后60 d时共鉴定到12 346个差异表达基因,其中,5 456个上调表达,6 884个下调表达。与种实突破种鳞后30 d相比,种实突破种鳞后90 d时共鉴定到22 668个差异表达基因,包括10 569个上调表达基因和12 099个下调表达基因(图5A)。KEGG代谢途径富集分析发现:在前20个被显著富集的代谢途径中,淀粉和蔗糖代谢、激素信号转导等途径均被显著富集(图5B)。
图 5 香榧种实膨大期差异表达基因(A)及KEGG代谢途径富集(B)分析
Figure 5. Analysis of differential expression genes (A) and KEGG pathway enrichment (B) during T.grandis ‘Merrillii’ seed expansion
进一步差异表达基因分析发现:36个单基因簇参与香榧种实中蔗糖的转运、合成和水解过程;16个单基因簇参与淀粉的合成与分解过程(图6A)。其中,蔗糖合成酶编码基因随着香榧种实膨大表达量逐渐降低(图6B);蔗糖结合蛋白(sucrose-binding protein,SBP)和蔗糖转运蛋白(sucrose transport protein,SUT)呈明显上调表达趋势,但参与蔗糖及葡萄糖和果糖运输的糖转运蛋白(sugar transporter sweet,Sweet)基因呈下调表达(图6B)。此外,参与蔗糖水解的细胞壁蔗糖转化酶、细胞质蔗糖转化酶和液泡蔗糖转化酶其编码基因随着香榧种实膨大既有上调又有下调情况。参与淀粉合成的可溶性淀粉合成酶[soluble starch synthase (SSS)]、颗粒结合型淀粉合成酶[granule-bound starch synthase (GBSS)]、淀粉分支酶[starch branching enzyme (SBE)]和异淀粉酶[isoamylase (ISA)]基因表达量均随着香榧种实膨大而呈现上调表达趋势(图6B);参与淀粉水解的α-淀粉酶(alpha-amylase,AMY)和β-淀粉酶(beta-amytase,BAM)香榧种实膨大过程中则分别上调表达和下调表达。
Sucrose metabolism and gene expression during seed expansion of Torreya grandis ‘Merrillii’
-
摘要:
目的 研究香榧Torreya grandis ‘Merrillii’种实膨大过程中蔗糖及其产生的己糖在假种皮和种仁中积累与分配规律,初步阐明蔗糖变化对香榧种实库活力的影响,深入探讨蔗糖代谢关键酶活性及其基因表达模式对香榧种实膨大的影响。 方法 以香榧种实膨大不同阶段的种仁和假种皮为研究材料,测定蔗糖、葡萄糖、果糖及淀粉质量分数,蔗糖代谢相关酶活性,激素质量分数以及蔗糖代谢相关酶编码基因的表达量变化。 结果 随着香榧种实膨大,假种皮中的蔗糖、葡萄糖、果糖先上升后下降,淀粉质量分数不断下降,至种实突破种鳞后90 d时下降至254.05 mg·g−1。种仁中蔗糖质量分数则持续下降,至种实突破种鳞后90 d时下降了61.24%;淀粉逐渐积累,由种实突破种鳞后30 d时的105.29 mg·g−1增加至90 d时的149.72 mg·g−1;蔗糖磷酸合成酶在假种皮中活性上升,而在种仁中活性下降,至种实突破种鳞后90 d时约降低了28.82%;蔗糖转化酶活性在香榧假种皮中也显著上升(P<0.05),种实突破种鳞后90 d时细胞质蔗糖转化酶和液泡蔗糖转化酶分别上升至21.52和23.49 μmol·mg−1·min−1。基因表达分析发现:参与蔗糖及还原糖运输的基因在种实膨大过程中显著上调表达(P<0.05),参与蔗糖水解的基因部分转录本也随着种实膨大显著上调(P<0.05)。种仁中参与淀粉合成的基因在种实膨大后期均显著上调表达(P<0.05)。相关性分析发现:假种皮和种仁中多种激素均与葡萄糖、果糖、蔗糖以及淀粉质量分数和酶活性间呈现一定的相关关系。 结论 膨大前期香榧假种皮中的蔗糖以积累为主,种实膨大后期蔗糖和淀粉以分解为主。种仁中蔗糖则一直以分解为主。假种皮和种仁之间,以及种仁内部存在活跃的碳水化合物运输和代谢过程。负责蔗糖水解的酶主要是蔗糖转化酶,细胞质蔗糖转化酶和液泡蔗糖转化酶起到重要作用。图6表1参42 Abstract:Objective This study is designed to investigate the accumulation and distribution of sucrose and hexose in aril and kernel tissue during seed expansion of Torreya grandis ‘Merrillii’, clarify the effect of sucrose metabolism on the sink vitality of seeds, and explore the effects of key enzyme activity of sucrose metabolism and gene expression patterns on seed expansion. Method The kernel and aril at different stages of T. grandis ‘Merrillii’ seed expansion were used as research materials. The contents of sucrose, glucose, fructose and starch, the activity of enzymes related to sucrose metabolism, the contents of hormones and changes in the expression of genes encoding enzymes related to sucrose metabolism were measured. Result With the expansion of T. grandis ‘Merrillii’ seeds, the contents of sucrose, glucose and fructose in the aril first increased and then decreased, while the starch content decreased continuously to 254.05 mg·g−1 at 90 d after seed protrusion. Sucrose content in seed kernel decreased by 61.24% at 90 d after seed protrusion, and starch content gradually increased from 105.29 mg·g−1 at 30 d after seed protrusion to 149.72 mg·g−1 at 90 d after seed protrusion. The activity of sucrose phosphate synthase increased in seed aril, but decreased in seed kernel by 28.82% at 90 d after seed protrusion. The activity of sucrose invertase also increased significantly (P<0.05) in seed aril. At 90 d after seed protrusion, cytoplasmic invertase and vacuolar invertase increased to 21.52 and 23.49 μmol·mg−1·min−1. Gene expression analysis showed that genes involved in sucrose and hexose transport were significantly up-regulated (P<0.05) during seed expansion, and several transcripts of genes involved in sucrose hydrolysis were also significantly up-regulated (P<0.05). The genes involved in starch synthesis in seed kernel were significantly up-regulated (P<0.05) at the later stage of seed expansion. Correlation analysis showed there was a certain correlation between various hormones in aril and kernel and the contents of glucose, fructose, sucrose, starch and enzyme activity. Conclusion The accumulation of sucrose in the aril tissue mainly occurs during the early stage of seed expansion, while the hydrolysis of sucrose and starch occurs in the later stage of seed expansion. Sucrose in seed kernel is mainly decomposed. There are active carbohydrate transport and metabolism between seed aril and kernel, as well as within kernel. Sucrose invertase is the key enzyme responsible for sucrose hydrolysis, and cytoplasmic invertase and vacuolar invertase play an important role. [Ch, 6 fig. 1 tab. 42 ref.] -
Key words:
- Torreya grandis ‘Merrillii’ /
- seed expansion /
- sucrose metabolism /
- enzyme activity /
- gene expression
-
表 1 香榧种实膨大期内源激素质量分数变化分析
Table 1. Analysis of endogenous hormone contents in aril and kernel during T. grandis ‘Merrillii’ seed expansion
植物激素 种实突破种鳞后不同时间激素水平 /(ng·g−1) 30 60 90 d 假种皮 种仁 假种皮 种仁 假种皮 种仁 生长素 (IAA) 149.81±4.75 c 467.88±30.98 a 23.68±0.25 d 215.04±3.24 b 12.59±0.40 d 3.65±0.03 d 赤霉素 (GA4) 1.03±0.03 b 0.30±0.03 cd 0.89±0.31 bc 0.22±0.03 d 2.12±0.37 a 0.17±0.03 d 赤霉素 (GA3) 1.06±0.11 cd 0.09±0.01 e 2.56±0.17 b 1.43±0.03 c 12.08±0.53 a 0.42±0.04 ed 脱落酸 (ABA) 875.62±29.96 ab 763.09±76.84 bc 712.75±15.28 c 907.91±50.30 a 207.71±6.13 d 922.31±42.40 a 水杨酸 (SA) 11.88±0.57 c 10.70±0.52 c 8.93±0.33 c 8.68±0.17 c 96.05±3.32 a 43.66±0.83 b 茉莉酸 (JA) 155.52±4.45 a 4.39±0.59 bc 9.05±0.50 b 0.53±0.10 c 8.39±0.71 b 0.14±0.01 c 茉莉酸异亮氨酸 (JA-ILE) 254.36±7.94 a 6.93±0.60 bc 15.46±1.03 b 0.59±0.01 d 4.57±0.40 d 0.36±0.02 d 1-氨基-环丙烷羧酸 (ACC) 7.92±0.19 a 0.75±0.22 b 2.26±0.16 c 0.38±0.05 d 0.47±0.03 d 4.66±0.36 b 双氢玉米素 (DHZ) 1.16±0.09 a 0.71±0.05 b 0.71±0.02 b 0.32±0.03 c 0.41±0.02 c 0.46±0.02 c 反式玉米素核苷(tZR) 0.44±0.05 a 0.03±0.00 c 0.17±0.00 b 0.02±0.00 c 0.12±0.01 b 0.04±0.00 c 异戊烯基腺嘌呤(IP) 0.21±0.02 a 0.05±0.01 c 0.13±0.01 b 0.02±0.00 d 0.14±0.01 b 0.02±0.00 d 反式玉米素(tZ) 0.18±0.01 a 0.03±0.01 c 0.06±0.00 b 0.02±0.00 c 0.03±0.00 c 0.02±0.00 c 说明:不同字母表示不同组织、不同膨大阶段间存在显著差异(P<0.05) -
[1] SEYMOUR G B, ØSTERGAARD L, CHAPMAN N H, et al. Fruit development and ripening [J]. Ann Rev Plant Biol, 2013, 64: 219 − 241. [2] 张怀龙, 赵俊芳, 张兆欣, 等. 核桃果实发育动态规律研究[J]. 北方园艺, 2012(5): 38 − 39. ZHANG Huailong, ZHAO Junfang, ZHANG Zhaoxin, et al. Research on growth dynamic law of walnut fruit [J]. Northern Hortic, 2012(5): 38 − 39. [3] 韩明玉, 田玉命, 张慧梅, 等. 秦光油桃果实生长曲线和落果波相的观察[J]. 西北植物学报, 2001, 21(6): 1249 − 1253. HAN Mingyu, TIAN Yuming, ZHANG Huimei, et al. Observation of the fruit growth curve of nectarine ‘Qinguang’ [J]. Acta Bot Boreal-Occident Sin, 2001, 21(6): 1249 − 1253. [4] 解红恩, 黄有军, 薛霞铭, 等. 山核桃果实生长发育规律[J]. 浙江林学院学报, 2008, 25(4): 527 − 531. XIE Hong’en, HUANG Youjun, XUE Xiaming, et al. Growth and development of the Carya cathayensis nut [J]. J Zhejiang For Coll, 2008, 25(4): 527 − 531. [5] 王建, 王九龄, 辛学兵. 银杏种子生长特性及其生理变化的研究[J]. 应用生态学报, 2000, 11(4): 507 − 512. WANG Jian, WANG Jiuling, XIN Xuebin. Seed growth characteristics of Ginkgo biloba and its physiological change [J]. Chin J Appl Ecol, 2000, 11(4): 507 − 512. [6] KOMOR E. Source physiology and assimilate transport: the interaction of sucrose metabolism, starch storage and phloem export in source leaves and the effects on sugar status in phloem [J]. Funct Plant Biol, 2000, 27(6): 497 − 505. [7] KOCH K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development [J]. Curr Opin Plant Biol, 2004, 7(3): 235 − 246. [8] CHIOU T J, BUSH D R. Molecular cloning, immunochemical localization to the vacuole, and expression in transgenic yeast and tobacco of a putative sugar transporter from sugar beet [J]. Plant Physiol, 1996, 110(2): 511 − 520. [9] WHITTAKER A, BOTHA F C. Carbon partitioning during sucrose accumulation in sugarcane internodal tissue [J]. Plant Physiol, 1997, 115(4): 1651 − 1659. [10] WAN Hongjian, WU Limin, YANG Yuejian, et al. Evolution of sucrose metabolism: the dichotomy of invertases and beyond [J]. Trends Plant Sci, 2018, 23(2): 163 − 177. [11] HUBBARD N, PHARR D M, HUBER S C. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric [J]. Plant Physiol, 1990, 94(1): 201 − 208. [12] GALTIER N, FOYER C H, MURCHIE E, et al. Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L. ) plants over-expressing sucrose phosphate synthase [J]. J Exp Bot, 1995, 46: 1335 − 1344. [13] 吕英民, 张大鹏. 果实发育过程中糖的积累[J]. 植物生理学报, 2000, 36(3): 258 − 265. LÜ Yingmin, ZANG Dapeng. Accumulation of sugars in developing fruits [J]. Plant Physiol Commun, 2000, 36(3): 258 − 265. [14] KLANN E M, CHETELAT R T, BENNETT A B. Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit [J]. Plant Physiol, 1993, 103(3): 863 − 870. [15] HIRATSUKA S, NAKAYAMA S, TAMURA S, et al. Translocation and accumulation of fruit-fixed photosynthate in Satsuma mandarin [J]. Plant Growth Regul, 2017, 81(2): 277 − 282. [16] KOMATSU A, MORIGUCHI T, KOYAMA K, et al. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships [J]. J Exp Bot, 2002, 53(366): 61 − 71. [17] 尹培培, 包日双, 戴佳锟, 等. 植物激素对植物器官发生影响的研究进展[J]. 江西农业学报, 2012, 24(6): 37 − 41. YIN Peipei, BAO Rishuang, DAI Jiakun, et al. Research advance in impact of phytohormone on plant organogenesis [J]. Acta Agric Jiangxi, 2012, 24(6): 37 − 41. [18] 夏国海, 张大鹏, 贾文锁. IAA、GA和ABA对葡萄果实14C蔗糖输入与代谢的调控[J]. 园艺学报, 2000, 27(1): 6 − 10. XIA Guohai, ZHANG Dapeng, JIA Wensuo. Effects of IAA, GA and ABA on 14C-sucrose import and metabolism in grape berries [J]. Acta Hortic Sin, 2000, 27(1): 6 − 10. [19] KATAOKA K, YASHIRO Y, HABU T, et al. The addition of gibberellic acid to auxin solutions increases sugar accumulation and sink strength in developing auxin-induced parthenocarpic tomato fruits [J]. Sci Hortic, 2009, 123(2): 228 − 233. [20] WU Jiasheng, HUANG Jiandiao, HONG Yiwei, et al. De novo transcriptome sequencing of Torreya grandis reveals gene regulation in sciadonic acid biosynthesis pathway [J]. Ind Crops Prod, 2018, 120: 47 − 60. [21] LOU Heqiang, DING Mingzhu, WU Jiasheng, et al. Full-length transcriptome analysis of the genes involved in tocopherol biosynthesis in Torreya grandis [J]. J Agric Food Chem, 2019, 67(7): 1877 − 1888. [22] SUO Jinwei, TONG Ke, WU Jiasheng, et al. Comparative transcriptome analysis reveals key genes in the regulation of squalene and β-sitosterol biosynthesis in Torreya grandis [J]. Ind Crops Prod, 2019, 131: 182 − 193. [23] ZHAO Jiangzhe, YU Ningning, JU Min, et al. ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice [J]. J Exp Bot, 2019, 70(21): 6277 − 6291. [24] NIELSEN T H, SKJÆRBÆ H C, KARLSEN P. Carbohydrate metabolism during fruit development in sweet pepper (Capsicum annuum) plants [J]. Physiol Plant, 1991, 82(2): 311 − 319. [25] LOWELL C, TOMLINSON P T, KOCH K E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit [J]. Plant Physiol, 1989, 90(4): 1394 − 1402. [26] TANG Guo, STURM A. Antisense repression of sucrose synthase in carrot (Daucus carota L. ) affects growth rather than sucrose partitioning [J]. Plant Mol Biol, 1999, 41(4): 465 − 479. [27] 刘志敏, 赵宏波, 黄有军, 等. ‘香榧’雌配子体发育和原胚形成的组织学观察[J]. 果树学报, 2017, 34(2): 231 − 237. LIU Zimin, ZHAO Hongbo, HUANG Youjun, et al. Histological studies on megagametophyte and embryogeny development in Torreya grandis ‘Merrillii’ [J]. J Fruit Sci, 2017, 34(2): 231 − 237. [28] MACNEILL G, MEHRPOUYAN S, MINOW M A A, et al. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation [J]. J Exp Bot, 2017, 68(16): 4433 − 4453. [29] BORISJUK L, WALENTA S, ROLLETSCHEK H, et al. Spatial analysis of plant metabolism: sucrose imaging within Vicia faba cotyledons reveals specific developmental patterns [J]. Plant J, 2002, 29(4): 521 − 530. [30] 沙建川, 贾志航, 张鑫, 等. 外源脱落酸对富士苹果果实膨大后期光合产物向果实运输的影响[J]. 应用生态学报, 2019, 30(6): 1854 − 1860. SHA Jianchuan, JIA Zhihang, ZHANG Xin, et al. Effects of exogenous ABA on translocation of photosynthate to fruit of Fuji apple during late stage of fruit rapid-swelling Chinese [J]. J Appl Ecol, 2019, 30(6): 1854 − 1860. [31] GEROMEL C, FERREIRA L P, BOTTCHER A, et al. Sucrose metabolism during fruit development in Coffea racemosa [J]. Ann Appl Biol, 2008, 152(2): 179 − 187. [32] ZANOR M I, OSORIO S, NUNES-NESI A, et al. RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility [J]. Plant Physiol, 2009, 150(3): 1204 − 1218. [33] LI Mingjun, FENG Fengjuan, CHENG Lailiang. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development[J/OL]. PLoS One, 2012, 7(3): e33055[2021-06-27]. doi: 10.1371/journal.pone.0033055. [34] LUO Tao, SHUAI Liang, LIAO Lingyan, et al. Soluble acid invertases act as key factors influencing the sucrose/hexose ratio and sugar receding in longan (Dimocarpus longan Lour. ) Pulp [J]. J Agric Food Chem, 2019, 67(1): 352 − 363. [35] TANASE K, SHIRATAKE K, MORI H, et al. Changes in the phosphorylation state of sucrose synthase during development of Japanese pear fruit [J]. Physiol Plant, 2002, 114(1): 21 − 26. [36] YAMADA K, KOJIMA T, BANTOG N, et al. Cloning of two isoforms of soluble acid invertase of Japanese pear and their expression during fruit development [J]. Plant Physiol, 2007, 164(6): 750 − 755. [37] JIA Haifeng, WANG Yuanhua, SUN Mingzhu, et al. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening [J]. New Phytol, 2013, 198(2): 453 − 465. [38] KANAYAMA Y. Sugar metabolism and fruit development in the tomato [J]. Hortic J, 2017, 86(4): 417 − 425. [39] NARDOZZA S, BOLDINGH H L, WOHLERS M W, et al. Exogenous cytokinin application to Actinidia chinensis var. deliciosa ‘Hayward’ fruit promotes fruit expansion through water uptake [J/OL]. Hortic Res, 2017, 4(1): hortres201743[2021-07-01]. doi: 10.1038/hortres.2017.43. [40] LI Xiongwei, LIU Pan, ZHOU Jingyi, et al. Effects of exogenous application of GA4+7 and NAA on sugar accumulation and related gene expression in peach fruits during developing and ripening stages [J]. J Plant Growth Regul, 2021, 40(4): 962 − 973. [41] ALBACETE A, CANTERO-NAVARRO E, BALIBREA M E, et al. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity [J]. J Exp Bot, 2014, 65(20): 6081 − 6095. [42] SU Liyan, BASSA C, AUDRAN C, et al. The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion [J]. Plant Cell Physiol, 2014, 55(11): 1969 − 1976. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210593