留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属离子对黑翅土白蚁消化代谢的影响

漆梦雯 沈毅 羊桂英 余婷 李吴晗 周琪欢 谢晓俊 朱娅宁 莫建初

吴见, 彭道黎. 多伦县土地利用遥感信息提取技术[J]. 浙江农林大学学报, 2010, 27(3): 417-423. DOI: 10.11833/j.issn.2095-0756.2010.03.016
引用本文: 漆梦雯, 沈毅, 羊桂英, 等. 金属离子对黑翅土白蚁消化代谢的影响[J]. 浙江农林大学学报, 2024, 41(1): 154-160. DOI: 10.11833/j.issn.2095-0756.20230219
WU Jian, PENG Dao-li. Technology of land use remote sensing information extraction in Duolun County[J]. Journal of Zhejiang A&F University, 2010, 27(3): 417-423. DOI: 10.11833/j.issn.2095-0756.2010.03.016
Citation: QI Mengwen, SHEN Yi, YANG Guiying, et al. Effects of metal ions on digestion and metabolism of Odontotermes formosanus[J]. Journal of Zhejiang A&F University, 2024, 41(1): 154-160. DOI: 10.11833/j.issn.2095-0756.20230219

金属离子对黑翅土白蚁消化代谢的影响

DOI: 10.11833/j.issn.2095-0756.20230219
基金项目: 国家自然科学基金资助项目(31770686)
详细信息
    作者简介: 漆梦雯(ORCID: 0009-0001-7459-613X),从事白蚁资源利用等研究。E-mail: 1372600080@qq.com
    通信作者: 莫建初 (ORCID: 0000-0001-5066-0734),教授,博士生导师,从事白蚁防治等研究。E-mail: mojianchu@zju.edu.cn
  • 中图分类号: S186

Effects of metal ions on digestion and metabolism of Odontotermes formosanus

  • 摘要:   目的  探究金属离子对黑翅土白蚁Odontotermes formosanus消化代谢过程的影响,挖掘黑翅土白蚁对含有金属离子的厨余垃圾和农林废弃物进行资源化处理的潜在价值。  方法  根据浓度梯度法,将含有不同质量分数Al3+、Ca2+、Fe3+和Mg2+的饵料供给黑翅土白蚁,确定黑翅土白蚁对饵料中金属离子的最大可取食质量分数。采用电感耦合等离子体发射光谱仪(ICP-OES)测定黑翅土白蚁虫体内及其新建菌圃内的对应金属元素质量分数,明确饵料中Al3+、Ca2+、Fe3+和Mg2+对虫体内及新建菌圃内对应金属元素质量分数的影响。采用试剂盒法测定黑翅土白蚁虫体内及其新建菌圃内漆酶和纤维素酶的活性,确定饵料中Al3+、Ca2+、Fe3+和Mg2+对上述酶活性的影响。  结果  黑翅土白蚁对饵料中Al3+、Ca2+和Fe3+的最大可取食质量分数均为1.00 g·kg−1,对饵料中Mg2+的最大可取食质量分数为10.00 g·kg−1。黑翅土白蚁取食含有10.00 g·kg−1 Mg2+的饵料后,其虫体内和菌圃内都发生了Mg的富集;取食含有1.00 g·kg−1 Fe3+的饵料后,Fe仅在菌圃内富集。取食含有1.00 g·kg−1 Al3+的饵料,会显著提高黑翅土白蚁虫体内的漆酶活性(P<0.05);取食含有1.00 g·kg−1 Ca2+的饵料,会显著提高黑翅土白蚁虫体内的漆酶活性(P<0.05),但会显著降低纤维素酶活性(P<0.05);取食含有1.00 g·kg−1 Fe3+的饵料,会显著提高黑翅土白蚁虫体内的漆酶活性和菌圃中的纤维素酶活性(P<0.05),但会显著降低菌圃中的漆酶活性和黑翅土白蚁虫体内的纤维素酶活性(P<0.05);取食含有10.00 g·kg−1 Mg2+的饵料,会显著提高黑翅土白蚁虫体内的纤维素酶活性和菌圃中的漆酶活性(P<0.05),但会显著降低菌圃中的纤维素酶活性(P<0.05)。  结论  黑翅土白蚁可取食分别含有1.00 g·kg−1 Al3+、Ca2+和Fe3+的饵料和含有10.00 g·kg−1 Mg2+的饵料,1.00 g·kg−1 Al3+可以提高黑翅土白蚁和菌圃微生物对木质素的联合降解能力。黑翅土白蚁具有资源化处理厨余垃圾和农林废弃物的应用潜力。图3表1参30
  • 因为城市地面覆盖物多,发热体多,加上密集城市人口生活和生产中产生大量的人为热,造成市中心的空气温度高于郊区空气温度,人们把这种气温分布现象称为“热岛效应”。由于城市的发展,下垫面原有的自然环境,如农田、牧场等发生了根本的变化,人工建筑物高度集中,以水泥、沥青、砖石、陶瓦和金属板等坚硬密实、干燥不透水的建筑材料替代了原来疏松和有植物覆盖的土壤[1]。城市热环境随着经济的发展日益恶化,已阻碍了人居环境品质的提升,是亟待解决的现实问题。绿色植被作为改善人居热环境的基础手段,不仅具有较好的节能效益,还具有明显的经济效益[2]。国内外学者分别从理论与实践研究等角度,在植被对城市热岛效应影响方面开展了大量研究。

    1833年,HOWARD[3]首次描述了“热岛效应”的气候特征,指出伦敦市中心气温比周围乡村高。1958年,MANLEY[4]提出了“城市热岛”(urban heat island,UHI)概念。1982年,OKE[5]将城区气温最大值与郊区气温的差值定义为城市热岛强度。城市热岛效应的早期研究为后续研究提供了重要的概念基础,并为不同观测方式下的定量化研究指明了方向。

    城市热岛的研究离不开数据获取,因此观测方式的选取是热岛效应研究的基础性问题。早期研究主要以地面气象站长期观测记录为基础,在统计与分析之后总结出热岛的时间变化规律。如MORRIS等[6]基于实测气象数据分别对澳大利亚的墨尔本、美国的费尔班克斯进行研究,得出城市热岛强度与云量、风速密切相关,晴朗无风的夜间热岛强度最高。但气象数据是由固定的气象站测取,具有一定的空间局限性,因此,一些学者开始采用流动观测法。OKE等[7]于1975年在加拿大的渥太华市做了全面的系统流动观测,公布了较为完整的原始资料,成为流动观测典范案例。除气象观测法与流动观测法以外,国内外学者还采用卫星遥感技术开展研究。由于地表温度是影响近地气温的关键影响因素,一些学者开始采用遥感卫星信息技术获取地表温度,从地表温度的演化视角开展热岛效应研究。RAO[8]在1972年第1次提出应用TIROS-1卫星遥感影像的热波段反演地表温度,从而辨别城市地域,并用这种方法观测了太平洋中部海岸城市的地表温度类型。周淑贞等[9]使用气象卫星对热场和下垫面结构的关系进行研究,在此基础上建立了相应的回归方程。覃志豪等[10]使用Landsat TM6波段研究地面温度反演,提出了能够反演真实温度的单窗算法。

    不同观测方式下的热岛效应研究均发现:下垫面组成是影响热岛强度的重要因素,而植被是起着关键作用的一种下垫面类型。早期的研究方法主要以实测为主。CA等[11]通过研究日本东京城区某公园草地中午的降温效应发现:绿地的降温效果和绿地面积有一定关系,公园内气温比周边外围气温低约2.0 ℃。随着高分辨率遥感影像技术的发展以及反演方法的不断成熟,基于遥感影像技术的研究越来越多,如CHEN等[12]应用Landsat TM和ETM+影像反演地表温度发现,归一化植被指数(NDVI)与地表温度(LST)在一定范围内呈负相关关系。除了现场实测及遥感探测等研究方法外,数值模拟法逐渐成为重要的研究手段之一。ENVI-met模拟法是数值模拟法的典型代表,它被广泛应用于绿地降温效应研究,如ZHANG等[13]通过ENVI-met模拟研究武汉市植被对住宅热环境的影响发现,植被对热环境影响与树的排列、叶面积指数、冠宽和树高有关。

    陆地生态系统是一个植被—土壤—气候相互作用的复杂大系统,内部各子系统之间及与大气和土壤之间存在复杂的相互作用和反馈机制。SCHULZE等[14]提出了植被生态系统能量交换关系:植被生态系统的冠层入射通过冠层反射、土壤热通量、冠层和土壤蒸散、显热交换等方式实现与外界能量交换,并以光合作用方式固化大气二氧化碳来储存部分能量。

    植被冠层与外界的能量交换是以叶片的光学作用为基础的,叶片光学作用包括吸收和透过率光谱。SMITH[15]在1986年提出了叶片光学特性与能量平衡示意图,并指出在光合有效辐射波段植物吸收了90%以上的入射能量,以获得更高的光合速率和生产力。叶片吸收的光能一部分以长波辐射的方式释放[16-17],一部分以热传导的显热方式释放[18],大部分能量以蒸腾作用的方式释放并降低叶片温度[19],只有少部分能量以有机物方式固定下来[20]。植被通过光合作用及蒸腾作用实现了与空气的热能量交换。除此以外,在夏季,叶片温度普遍低于周围地物表面温度,乔木树冠对周围地物发射长波冷辐射,这将进一步降低植被邻近墙面、地面温度,并在一定程度上降低植被附近的气温[21];在冬季,乔木可以通过树冠和树干产生阻力来减少空气对流[22-23],起到保温的作用。通过植被的“冷岛”作用来影响建筑的“热岛”效应,从而营造舒适的人居热环境。

    相对稳定的生物群落的重要特征之一是具有一定的空间结构,群落中各种生物在空间上的配置状况称为植被空间结构。植被空间结构包括垂直结构和水平结构。

    2.2.1   植被垂直结构

    植被垂直结构指植物群落在垂直方向的配置状态,其最显著的特征是成层现象。一般按生长型把植被结构从顶部到底部划分为乔木层、灌木层、草本层和地被层4个基本层次。目前的研究主要集中在2个方面:一是单一层次植被对降温效应影响的研究,二是复合层次植被对降温效应影响的研究。对于前者,单一层次主要指乔木层。目前,国内外学者均采用实测法[24-25]。HSIEH等[26]通过实测建筑周边不同树木温度后发现,降温能力上从大到小依次为樟树Cinnamomum camphora、梧桐Firmiana platanifolia、水杉Metasequoia glyptostroboides。于雅鑫等[27]通过实测12种木兰科Magnoliaceae乔木的蒸腾速率并量化其降温能力指出,由于落叶树种比常绿树种的蒸腾速率高,所以落叶乔木的降温能力比常绿乔木好。植被复合层次是指以乔、灌、草作为常见的3种基本单元对其中的2种及以上的单元组合情况下的植被降温效应进行比较分析,国内以实地测量为主要研究方法,国外则多采用实测与模型相结合的手段进行研究。由于乔木在叶面积指数等方面明显高于灌木、草本,其蒸腾作用与遮光作用的影响最大,因此理论上乔木类对热环境调节能力应最强,不同学者的研究结果也证明了这一点。何介南等[28]、吴志能等[29]在定量研究植被垂直结构对热环境等效影响时,通过实测绿地温度并进行比较分析后发现,在降温效应上从大到小依次为乔木、灌木、草地。SODOUDI等[30]通过实测结合ENVI-met模型模拟以及DUNCAN等[31]通过遥感影像研究不同植被类型的降温程度结果均证实了这一结论。而对于乔-草、乔-灌与乔-灌-草之间的降温效应比较,结论却有差异。雷江丽等[32]认为:乔-草的降温能力大于乔-灌-草,刘娇妹等[33]则认为乔-灌-草优于乔-草,而吴志能等[29]认为乔-灌优于乔-草。

    植被的降温效应研究目前主要集中在白天时段,但植被对周围空气温度的影响是全天的,因此有学者对植被夜间降温能力进行了实测研究。聂危萧等[34]对居住区组团中心绿地植被温度实测分析发现,日间乔-灌的降温效率相对更高,而夜间则是灌草的降温效果更强。造成这种降温效应昼夜差异的原因是植被在白天与夜晚的降温机理不同所致。在晴热的白天,植被一方面通过光合与蒸腾作用实现与周围空气的热量互换,同时通过长短波辐射遮蔽降低了周围地物的表面温度,并进一步降低邻近空气温度;而在没有太阳的夜晚,城市下垫面地物的表面热量通过长波辐射的方式转移至天空,这种热量传输的快慢受天空角系数的影响[35],对于具有乔木或灌木的环境,地面及墙面将先与植被发生长波辐射换热,阻挡了下垫面与天空的长波辐射,这种“被子”效应使树冠下的热量发生滞留。因此,对3种基本植被垂直结构单元而言,夜间的降温会产生乔木<灌木<草本的结果。目前,植被的降温效应研究主要集中在夏季典型日,而缺少全年时段的评价与分析,尤其是冬季等极端不利天气条件下的研究。因此,研究不同季节气候条件下植被对城市热岛效应调节作用机制亟待开展。

    2.2.2   植被水平结构

    在研究植被水平结构的城市热岛效应时,首先需解决的问题是如何快速而准确地获取某地的植被水平结构信息。目前,大多数学者采用遥感影像提取技术解决这一问题[36],也有学者采用实测与ENVI-met相结合的手段来进行研究[37]。雷江丽等[32]、贾刘强等[38]分别以Landsat ETM+遥感影像为数据源,提取了绿地斑块的面积、周长、形状指数等信息,房力川等[39]则通过Landsat OLI/TIRS单期遥感影像反演了地表温度。上述遥感信息的获取为进一步分析植被水平结构的降温调节能力提供了数据支撑。除了水平结构信息获取问题外,植被水平结构定量描述参数的选取与定义是另一个关键问题。目前,采用的参数主要有斑块形状指数、斑块面积与斑块周长等。但对斑块形状指数的定义目前仍存有分歧,如雷江丽等[32]与袁振等[40]认为:形状指数是斑块的周长面积比,而贾刘强等[38]则将形状指数定义为斑块周长除以同面积圆的周长。在水平结构信息参数定义的基础上,学者们大多利用统计回归分析法,进一步探讨植被水平结构对城市热岛效应的影响规律。在斑块面积与周长等对城市局地气温的调节方面,学者们所得结论较为一致,即绿地斑块面积、周长越大,其降温效应越好,但形状指数的降温效应研究却存在较大分歧。贾刘强等[38]、JAGANMOHAN等[41]认为:形状指数越大,绿地斑块降温效应越好,即呈正相关关系,李海峰等[42]则指出:形状指数与其降温效果间并无显著的相关性,而FEYISA等[43]却发现:绿地斑块的降温效应与形状指数呈负相关关系。

    除上述定量研究外,有学者也关注到了绿地斑块面积与降温关系的阈值效应问题。袁振等[40]认为:绿地斑块面积为0.055 km2时,对周边的降温效果较好;贾刘强等[38]指出:绿地斑块面积超过1.5 hm2时,对周边气温的影响范围和降温程度随着面积增大的速度而迅速减小。由此可见,绿地斑块面积对降温效应的影响存在阈值效应,即绿地面积过小,植被覆盖度就小,绿地斑块不能很好的发挥降温作用;面积过大,绿地斑块的降温效应在达到某一临界值后便会趋于平缓。另外,绿地斑块对与周边环境的降温影响也有一定范围。晏海[44]通过实测总面积680 hm2的北京奥林匹克森林公园及公园周边环境气温发现,随着距公园边界距离的增加,气温呈逐渐升高趋势,公园对其两侧的城市环境都有一定的降温效应,这种降温效应可延伸到距公园边界1 km以外的区域。另外,不同绿地类型的热岛缓解效应的比较研究也是热点之一。绿地斑块根据不同作用分为不同类型,有公园绿地、居住区绿地、街旁绿地、其他绿地等。在降温效应方面,房力川等[39]指出:降温效应从大到小依次为其他绿地、公园绿地、居住区绿地、街旁绿地。目前,对于绿地斑块与降温效应的研究很多,但研究的结果却各有不同。这些差异表明,对于绿地斑块降温效应的理论研究还有欠缺,需进一步挖掘探讨。

    植被垂直结构与水平结构着眼于植被群体效应,这一群体效应是多个个体效应的叠加。植物个体主要通过冠层叶片吸收和反射太阳辐射及叶片本身的蒸腾作用来降低周围气温。因此,植被冠层结构对缓解城市热岛效应有着重要作用。植被冠层结构参数对城市热岛效应的影响规律是近年来的研究热点,冠层参数主要包括叶面积指数、冠幅、郁闭度及绿量等。

    2.3.1   叶面积指数

    叶面积指数(LAI)指单位土地面积上的植物叶片总面积占土地面积的倍数。叶面积指数的测量方法通常分为直接法和间接法。直接法包括破坏性取样法、异速生长方程法、斜点样方法和凋落物法;间接法包括顶视法和底视法[45]。大部分相关研究都采用底视法,即借助光学仪器自下而上测量,目前最常用的仪器为植物冠层分析仪[45]。在上述测量方法的基础上,大部分学者认为:植物群落的降温效果与叶面积指数呈正相关关系,即有随叶面积指数的减小而降低的趋势[46-47]。秦仲等[48]对北京市14个植物群落进行了降温效果测定发现,植被降温效应与叶面积指数虽呈正相关关系,但并不显著,并指出产生这一结果的原因是植物蒸腾耗热、降低辐射平衡和削减乱流热交换量等方面的综合影响。唐泽等[49]通过对长春市18个公园样地进行实测分析后进一步指出,叶面积指数与降温强度呈非线性正相关关系。除分析叶面积指数与降温效应的相关关系外,很多学者也对其降温效应最佳阈值区间进行探讨。唐泽等[49]通过样方调查测定长春市植物群落对周围气温的影响发现,森林样地的植被叶面积指数最佳降温阈值区间为0.23~2.30;张波等[50]通过对太原市城市绿地斑块的降温效应研究发现:叶面积指数发挥降温效应的阈值为2.1~4.5。两者的阈值区间存在差异是因为他们研究对象不同。唐泽等的研究对象是森林,植被类别为单一的乔木。而张波等研究的则是面积不小于1 hm2的绿地,包括了乔、灌、草等多种植被,这种复合型的植被结构对叶面积指数最佳降温阈值区间也产生了较大影响。

    2.3.2   冠幅

    冠幅指树木的南北和东西方向宽度的平均值。树冠可以有效遮挡太阳辐射,冠幅越大,林隙、裸露地面就越少,因此,大部分太阳辐射被上层的叶片遮挡、吸收和反射,只有少部分能到达地面,而且冠幅盖度越大,蒸腾作用的量也就越大,能更有效地降低周围气温。不少学者的实测结果也证明了这一点。秦仲等[48]、黄良美等[51]、王纪来[52]、赵晓龙等[53]分别对北京市植物群落、南宁市植物群落、重庆市植物群落、哈尔滨市行道树的冠幅及周围气温进行实测。虽然研究的城市、对象并不相同,但他们都发现树木冠幅与植物降温效应呈显著正相关关系,因此,植物冠幅对降温效应的正影响并无地域差别。另外,王纪来[52]还认为:植物冠层的形状和厚度是影响植物群落降温效应的重要因素。相较于交错叠加的植物群落冠层,独立的植物冠幅对植物群落降温效应的影响是有限的。当植物冠层交错叠加时,林隙减少,透过林隙落到地面上的太阳辐射就会减少,空间冠层结构内水分和热量乱流交换强,土壤及植被蒸散出的水汽不易扩散,使得植物群落发挥降温效应的能力更强。

    2.3.3   郁闭度

    郁闭度指森林中乔木树冠在阳光直射下,在地面的总投影面积与此林地总面积的比值,它反映了林地的密度。郁闭度的测量方法主要有目测法与实测法。实测法又分样线法、样点法、树冠投影法、遥感图像判读法等[54]。植物通过叶片蒸腾作用来增加空气中的水分含量,并进行热量交换,从而降低空气温度。郁闭度值较大的绿地,植物蒸腾作用较强,对绿地周围的干热情况具有较好的缓解作用,QIN等[55]和XIAO等[56]通过实测植物群落郁闭度与降温效应的关系证明了这一结论。另外,有学者对北京市的植被群落结构的降温效应实测分析发现,郁闭度对降温效应的影响存在最佳阈值区间,如朱春阳等[57]认为:植物群落郁闭度在44%~67%时降温效应显著,大于67%时降温效应显著且趋于稳定;高吉喜等[58]认为:郁闭度的最佳阈值为50%~85%,高于85%则降温效应不再显著提高。两者均采用实测法,但两位学者最终得出的阈值区间有差异可能是因为朱春阳等研究的道路绿地是在城区内,其一侧是道路,一侧是硬质铺装,因此植被的降温效应更为明显,郁闭度的最优阈值区间也会相对较低。

    2.3.4   绿量

    绿量(LVV)指所有生长中的植物茎叶所占据的空间体积,即绿化三维量。目前,对绿量的研究主要有2个方面。一是对绿量获取方法的探讨,二是对绿量与植被降温效应之间关系的研究。对于前者,主要有2种测量方法,一种是通过遥感技术获取。随着遥感技术的发展,可以利用其对林相相对一致的林地绿量进行估计[59]。这种方法存在一定的弊端,因为遥感技术对于冠层结构和植物种类辨析上存在一定困难,而且由于绿量是三维空间参数,单纯依靠遥感技术无法满足三维绿量的准确测定要求,因此这种方法一般用在较大尺度的绿量研究上。另一种方法是实测法。实地测量植物种类的叶面积、胸径、冠下高等样本数据,通过模拟方程计算主要树种绿量,然后根据计算结果估算群落总体绿量[60]。这种方法相对更精确,但工作量较大,比较适合小尺度的绿量研究。对于后者,目前的研究结论较为一致,如吴志能等[29]、高吉喜等[58]、李英汉等[59]、吴菲等[61]分别对重庆的公园,北京的公园、典型绿地,深圳的居住小区等进行了实测分析,发现绿化三维量与植物的降温效应之间有显著的正相关关系。由此可见,绿量对降温效应的正相关影响并不因地域、绿地类型的差异而有区别。在以后的研究中可以加强对绿量获取方法的探讨,寻找既能方便测量、结果又精确的方法。

    地面与空气的热量交换是近地气温升降的直接原因,也是影响热岛效应的重要原因。以地温为桥梁,借助植被遥感指数,可分析植被对城市热岛效应的影响。目前,常用植被遥感指数包含归一化植被指数(NDVI)、修正土壤植被指数(MSAVI)及减化比值植被指数(RSR)等。

    2.4.1   归一化植被指数(NDVI)

    在遥感影像中,常用近红外波段的反射值与红光波段的反射值之差来表示归一化植被指数(NDVI)。目前,卫星热红外遥感信息源主要有NOAA气象卫星的第4波段(10.5~11.3 μm)和第5波段(11.5~12.5 μm)、Landsat TM或ETM+的第6波段(10.4~12.5 μm)、FY系列气象卫星数据、中巴资源卫星IRMSS数据及MODIS数据等[62]。研究中最常用的是Landsat TM或ETM+影像数据。使用Landsat TM/ETM +反演地表温度的常用方法有4种:分别为单窗算法、单通道算法、分裂窗算法及辐射方程传导法[63],其中单窗算法最为常用。冯晓刚等[64]以Landsat TM和ETM+热红外数据为基础,采用单窗算法反演地表温度发现,归一化植被指数(NDVI)与地温(LST)呈显著负相关关系。NDVI与LST呈负相关关系已被多数学者认同[65-66],但两者之间存在何种函数关系还有争议。潘竟虎等[67]和王伟等[68]认为:两者之间呈显著线性负相关,而张波等[50]认为两者之间呈反“S”形曲线关系。

    另外,有学者对NDVI作为定量描述城市热岛效应的指标提出质疑,因为植被受季节影响,NDVI只适用于研究春、夏季城市地表热岛效应[69],于是有学者开始寻找其他指标来研究城市热岛效应。例如,归一化建筑指数(NDBI)与归一化水汽指数(NDMI)与地温的相关性优于NDVI[69-70]。NDBI与4个季节的地表温度都存在显著线性正相关关系,而且LST与NDBI线性关系的斜率和截距都能很好指示不同季节城市热岛的强度[71]。NDMI与地表温度呈显著负相关关系,而且NDMI与地表温度的相关性也比NDVI强[72]。NDBI与NDMI可以更好地反映不同季节城市热岛效应的强度、空间格局及其随时间的变化,可在地表温度随季节变化的研究中作为一个附加指标对NDVI进行补充,是定量研究城市热岛效应的有效指标。

    2.4.2   其他植被指数

    与归一化植被指数相比,植被覆盖度(FV)、修正土壤植被指数(MSAVI)、比值植被指数(RVI)、绿度植被指数(GVI)及减化比值植被指数(RSR)的研究相对较少。在这5种植被指数中,植被覆盖度受关注的程度最高。许民等[73]对武威地区的地表温度反演研究中得出,FV每上升0.1,LST下降约3.5 ℃;张晓莉等[74]利用西宁市Landsat遥感影像反演地表温度分析发现,FV每增加0.1,LST下降约1.2 ℃。另外,有学者对减化比值植被指数进行了定量研究。王伟等[68]发现:RSR的有效阈值为0~3.2,当RSR小于3.2时,地表温度随植被覆盖度增加而锐减,当RSR大于3.2时,植被覆盖度继续增加,地表温度却趋于恒定,呈现植被降温效应“饱和”现象。虽然,目前对归一化植被指数的研究最为广泛,但研究发现,它与地表温度的相关性却并不是最理想的。马伟等[75]通过对北京市植被指数对地表温度定量关系研究中发现:NDVI、FV、MSAVI、GVI及RVI均与LST呈负相关关系,其中,FV的相关系数最大,RVI最小;而魏宝成等[63]在研究呼和浩特市不同植被指数与地表温度的定量遥感关系时发现,RVI最高,NDVI次之,FV最小。这些研究表明:地表温度与植被遥感指数之间的关系还需进一步探讨,关于其他植被指数与地表温度之间关系的定量研究亟待开展。

    由于计算机与遥感技术的不断发展,在植被对城市热岛效应的影响方面,研究方法与手段都在不断更新与完善,研究的视角与区域尺度也在不断拓展。但综合目前的研究仍存在以下问题:①在大尺度视角下应用遥感技术对植被的热岛效应缓解机理研究集中于降温幅度与植被群落结构、叶面积指数和三维绿量间的相关性方面,此类定性结论虽能在宏观上引导城市规划设计师对热环境营造的关注,但距离指导实际工作尚有很大提升空间。②中小尺度研究基本以城区夏季乔木为主,鲜有考虑常绿乔灌木夏、冬两季的总影响,以及落叶乔灌木季相变化的影响,且描述植被冠体特征的参数偏少,在全面揭示不同种类乔灌木冠体的热辐射影响方面尚有欠缺,需进一步考虑乔灌木的季相变化,以及不同季节日照条件的变化,并补充常用的乔灌木的冠体特征参数,以全面分析植被对建筑热辐射的影响规律。

    考虑目前存在的问题,结合相关技术的发展趋势,未来的研究可在以下几个方面展开:①在时间尺度上,进一步考虑乔灌木的季相变化,如常绿与落叶植被等冠体特征参数在不同季节日照变化条件下对建筑群组热环境的影响研究。②在空间尺度上,进一步加强基于传热学原理,研究全季典型日气候条件、不同乔灌木种类、不同种植方式下、墙植距离、墙植方位、建筑方位等参数变化对建筑群组热环境的影响。

  • 图  1  黑翅土白蚁对不同质量分数金属离子处理饵料的取食率

    Figure  1  Bait consumption rate of O. formosanus treated with different mass fraction of metal ions

    图  2  饵料饲喂后黑翅土白蚁虫体内金属元素Al、Ca、Fe和Mg质量分数

    Figure  2  Mass fraction of metal elements Al, Ca, Fe and Mg in the body of O. formosanus after feeding with baits

    图  3  饵料饲喂后新建菌圃内金属元素Al、Ca、Fe和Mg质量分数

    Figure  3  Mass fraction of metal elements Al, Ca, Fe and Mg in new-built fungus combs after feeding with baits

    表  1  黑翅土白蚁虫体内及新建菌圃内漆酶和纤维素酶活性

    Table  1.   Activities of laccase and cellulase in the body of O. formosanus and in new-built fungus combs

    处理漆酶活性/(nmol·g−1·min−1)纤维素酶活性/(μg·g−1·min−1)
    虫体菌圃虫体菌圃
    ck 2.84±0.66 c 227.79±18.67 b 1129.21±111.55 b 923.25±31.04 b
    Al 15.65±2.48 a 151.11±17.25 bc 1253.91±54.33 b 932.67±36.95 b
    Ca 9.81±0.44 b 146.36±40.72 bc 682.67±70.10 c 907.02±34.90 b
    Fe 7.38±1.30 b 62.91±7.74 c 615.41±83.35 c 1098.77±108.31 a
    Mg 1.90±0.64 c 419.65±18.62 a 1600.71±13.19 a 745.40±32.09 c
      说明:Al指含有1.00 g·kg−1 Al3+饵料;Ca指含有1.00 g·kg−1 Ca2+饵料;Fe指含有1.00 g·kg−1 Fe3+饵料;Mg指含有10.00 g·kg−1 Mg2+饵料。不同小写字母表示不同处理间差异显著(P<0.05)。
    下载: 导出CSV
  • [1] 刘雪松, 沈骏, 刘雪莲. 厨余垃圾资源化利用技术研究进展[J]. 现代化工, 2023, 43(4): 23 − 26, 31.

    LIU Xuesong, SHEN Jun, LIU Xuelian. Research progress of kitchen waste resource utilization technology [J]. Modern Chemical Industry, 2023, 43(4): 23 − 26, 31.
    [2] 李欢, 周颖君, 刘建国, 等. 我国厨余垃圾处理模式的综合比较和优化策略[J]. 环境工程学报, 2021, 15(7): 2398 − 2408.

    LI Huan, ZHOU Yingjun, LIU Jianguo, et al. Comprehensive comparison and optimal strategies of food waste treatment modes [J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2398 − 2408.
    [3] FU Shanfei, WANG Donghui, XIE Zhong, et al. Producing insect protein from food waste digestate via black soldier fly larvae cultivation: a promising choice for digestate disposal [J/OL]. Science of the Total Environment, 2022, 830: 154654[2023-03-20]. doi:10.1016/j.scitotenv.2022.154654.
    [4] JAGTAP S, GARCIA-GARCIA G, DUONG L, et al. Codesign of food system and circular economy approaches for the development of livestock feeds from insect larvae [J/OL]. Foods, 2021, 10(8): 1701[2023-03-20]. doi: 10.3390/foods10081701.
    [5] 张连俊. 黄粉虫和黑水虻联合转化厨余垃圾及虫沙应用初探[D]. 乌鲁木齐: 新疆农业大学, 2021.

    ZHANG Lianjun. A Preliminary Study on the Application of Combined Conversion of Food Waste and Worm Sand by Tenebrio Molitor and Hermetia illucens [D]. Urumqi: Xinjiang Agricultural University, 2021.
    [6] YIN Jingkai, GONG Xiaoyan, SUN Lina, et al. Study on the transformation of nutrients in kitchen waste by black soldier fly [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 154 − 159.
    [7] CHEN Meiling, LING Yuanzhi, HUANG Ruqiang, et al. Optimization of feeding conditions of Tenebrio molitor Linnaeus larvae in food wastes treatment using response surface methodology [J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2455 − 2461.
    [8] ILMASARI D, KAMYAB H, YUZIR A, et al. A review of the biological treatment of leachate: available technologies and future requirements for the circular economy implementation [J/OL]. Biochemical Engineering Journal, 2022, 187: 108605[2023-03-20]. doi:10.1016/j.bej.2022.108605.
    [9] DANG Meirong, CHAI Junrui, XU Zengguang, et al. Soil water characteristic curve test and saturated-unsaturated seepage analysis in Jiangcungou municipal solid waste landfill, China [J/OL]. Engineering Geology, 2020, 264: 105374[2023-03-20]. doi: 10.1016/j.enggeo.2019.105374.
    [10] GU Binxian, JIANG Suqin, WANG Haikun, et al. Characterization, quantification and management of China’s municipal solid waste in spatiotemporal distributions: a review [J]. Waste Management, 2017, 61: 67 − 77.
    [11] 蒋宇彤, 张硕, 林子佳, 等. 白蚁消化系统转化和降解木质纤维素酶研究进展[J]. 微生物学报, 2020, 60(12): 2635 − 2649.

    JIANG Yutong, ZHANG Shuo, LIN Zijia, et al. Advances in lignocellulose-degrading enzymes from termites and symbiotic microbes [J]. Acta Microbiologica Sinica, 2020, 60(12): 2635 − 2649.
    [12] TOKUDA G, TSUBOI Y, KIHARA K, et al. Metabolomic profiling of C-13-labelled cellulose digestion in a lower termite: insights into gut symbiont function [J/OL]. Proceedings of the Royal Society B-Biological Sciences, 2014, 281(1789): 2014090[2023-03-20]. doi: 10.1098/rspb.2014.0990.
    [13] DENLOYE A A, ABDULSALAM L, BAKRE S, et al. Heavy metals in some termites species and their nests in Ojo, Lagos, Nigeria [J]. Animal Research International, 2015, 12(2): 2178 − 2183.
    [14] BALLOR N R, LEADBETTER J R. Analysis of extensive [FeFe] hydrogenase gene diversity within the gut microbiota of insects representing five families of dictyoptera [J]. Microbial Ecology, 2012, 63(3): 586 − 595.
    [15] ARANTES V, JELLISON J, GOODELL B. Peculiarities of brown-rot fungi and biochemical fenton reaction with regard to their potential as a model for bioprocessing biomass [J]. Applied Microbiology and Biotechnology, 2012, 94(2): 323 − 338.
    [16] LI Hongjie, SUN Jianzhong, ZHAO Jianming, et al. Physicochemical conditions and metal ion profiles in the gut of the fungus-growing termite Odontotermes formosanus [J]. Journal of Insect Physiology, 2012, 58(10): 1368 − 1375.
    [17] LIU Ning, YAN Xing, ZHANG Meiling, et al. Microbiome of fungus-growing termites: a new reservoir for lignocellulase genes [J]. Applied and Environmental Microbiology, 2011, 77(1): 48 − 56.
    [18] VU A T, NGUYEN N C, LEADBETTER J R. Iron reduction in the metal-rich guts of wood-feeding termites [J]. Geobiology, 2004, 2(4): 239 − 247.
    [19] LI Hongjie, YELLE D J, LI Chang, et al. Lignocellulose pretreatment in a fungus-cultivating termite [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114: 4709 − 4714.
    [20] TOYAMA-KATO Y, YOSHIDA K, FUJIMORI E, et al. Analysis of metal elements of hydrangea sepals at various growing stages by ICP-AES [J]. Biochemical Engineering Journal, 2003, 14(3): 237 − 241.
    [21] NETSHIFHEFHE S R, KUNJEKU E C, DUNCAN F D. Human uses and indigenous knowledge of edible termites in Vhembe District, Limpopo Province, South Africa [J/OL]. South African Journal of Science, 2018, 114(1/2): 2017-0145[2023-03-20]. doi: 10.17159/sajs.2018/20170145.
    [22] NHI N T N, KHANG D T, DUNG T N. Termitomyces mushroom extracts and its biological activities [J/OL]. Food Science and Technology, 2022, 42: e125921[2023-03-20]. doi: 10.1590/fst.125921.
    [23] 朱娅宁, 羊桂英, 周琪欢, 等. 黑翅土白蚁菌圃微生物对蚁巢伞生长的影响[J]. 浙江农林大学学报, 2022, 39(3): 598 − 606.

    ZHU Yaning, YANG Guiying, ZHOU Qihuan, et al. Impact of microorganisms of Odontotermes formosanus fungus-combs on the growth of Termitomyces heimii [J]. Journal of Zhejiang A&F University, 2022, 39(3): 598 − 606.
    [24] POULSEN M, HU Haofu, LI Cai, et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): 14500 − 14505.
    [25] NI Jinfeng, TOKUDA G. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota [J]. Biotechnology Advances, 2013, 31(6): 838 − 850.
    [26] 沈毅, 漆梦雯, 羊桂英, 等. 黑翅土白蚁共生真菌对水稻秸秆生物降解研究[J]. 浙江农林大学学报, 2023, 40(6): 1224 − 1231.

    SHEN Yi, QI Mengwen, YANG Guiying, et al. Biodegradation of rice straw by symbiotic fungi of Odontotermes formosanus [J]. Journal of Zhejiang A&F University, 2023, 40(6): 1224 − 1231.
    [27] 李国富, 栗君, 卢磊, 等. 解淀粉芽孢杆菌LC03的分离及其芽孢漆酶性质研究[J]. 北京林业大学学报, 2013, 35(3): 116 − 121.

    LI Guofu, LI Jun, LU Lei, et al. Isolation of laccase-producing strain Bacillus amyloliquefaciens LC03 and characterization of its spore laccase [J]. Journal of Beijing Forestry University, 2013, 35(3): 116 − 121.
    [28] 肖冬来, 张迪, 林衍铨, 等. 金属离子对香菇纤维素酶、漆酶和木质素过氧化物酶活性的影响[J]. 中国食用菌, 2018, 37(3): 56 − 58.

    XIAO Donglai, ZHANG Di, LIN Yanquan, et al. Effects of metal ions on the carboxymethyl cellulase, laccase and lignin peroxidase activities of Lentinula edodes [J]. Edible Fungi of China, 2018, 37(3): 56 − 58.
    [29] 王国红, 耿俊丽, 黄祥财. 9种金属离子对黄粉虫纤维素酶活性及其生长发育的影响[J]. 福建师范大学学报(自然科学版), 2009, 25(3): 101 − 104, 118.

    WANG Guohong, GENG Junli, HUANG Xiangcai. Effects of 9 kinds of metal Ions on cellulase activity of Tenebrio molitor L. and the growth of larvae [J]. Journal of Fujian Normal University (Natural Science Edition), 2009, 25(3): 101 − 104, 118.
    [30] 安刚, 陶毅明, 龙敏南, 等. 金属离子对白蚁纤维素酶活力的影响[J]. 厦门大学学报(自然科学版), 2008, 47(增刊2): 107 − 109.

    AN Gang, TAO Yiming, LONG Minnan, et al. Effects of metal ion on the activity of cellulase in termites [J]. Journal of Xiamen University (Natural Science), 2008, 47(suppl 2): 107 − 109.
  • [1] 袁振安, 杜文婷, 刘国华, 毛霞, 洑香香.  东京四照花嫩枝扦插繁殖及生根过程中生理指标的动态变化 . 浙江农林大学学报, 2024, 41(3): 624-633. doi: 10.11833/j.issn.2095-0756.20230457
    [2] 章磊, 徐祎萌, 白美霞, 周燕, 秦华, 徐秋芳, 陈俊辉.  生物质炭配施有机物料对红壤碳组分及酶生态化学计量特征的影响 . 浙江农林大学学报, 2024, 41(3): 506-516. doi: 10.11833/j.issn.2095-0756.20230468
    [3] 向玉勇, 张妍, 陶翠玲.  温度对金银花尺蠖幼虫、蛹和成虫4种酶活性的影响 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240471
    [4] 王瑞萍, 杨兴, 高玉蓉, 陆扣萍, 何丽芝, 吴家森, 王海龙.  锰改性生物质炭对砷铅在大蒜中积累及土壤酶活性的影响 . 浙江农林大学学报, 2024, 41(5): 1024-1036. doi: 10.11833/j.issn.2095-0756.20230584
    [5] 马行聪, 金文豪, 屠嘉莹, 盛卫星, 陈俊辉, 秦华.  不同优势菌根类型转变对土壤团聚体组成及性状的影响 . 浙江农林大学学报, 2023, 40(6): 1149-1157. doi: 10.11833/j.issn.2095-0756.20230376
    [6] 钱家连, 李迎超, 许慧慧, 王茜, 秦爱丽, 任俊杰, 王利兵, 于海燕.  不同年龄栓皮栎嫩枝扦插生根及解剖学分析和酶活性变化 . 浙江农林大学学报, 2023, 40(1): 107-114. doi: 10.11833/j.issn.2095-0756.20220143
    [7] 沈毅, 漆梦雯, 羊桂英, 周琪欢, 余婷, 李吴晗, 莫建初.  黑翅土白蚁共生真菌对水稻秸秆生物降解研究 . 浙江农林大学学报, 2023, 40(6): 1224-1231. doi: 10.11833/j.issn.2095-0756.20230140
    [8] 任依, 姜培坤, 鲁长根, 邵建均, 周雪娥, 陈俊辉.  炭基肥与有机肥替代部分化肥对青紫泥水稻土微生物丰度及酶活性的影响 . 浙江农林大学学报, 2022, 39(4): 860-868. doi: 10.11833/j.issn.2095-0756.20210619
    [9] 王桂芳, 索金伟, 王哲, 成豪, 胡渊渊, 张可伟, 吴家胜.  香榧种实膨大过程中蔗糖代谢及其基因表达 . 浙江农林大学学报, 2022, 39(1): 1-12. doi: 10.11833/j.issn.2095-0756.20210593
    [10] 朱娅宁, 羊桂英, 周琪欢, 谢晓俊, 漆梦雯, 沈毅, 莫建初.  黑翅土白蚁菌圃微生物对蚁巢伞生长的影响 . 浙江农林大学学报, 2022, 39(3): 598-606. doi: 10.11833/j.issn.2095-0756.20210478
    [11] 谢林峰, 凌晓晓, 黄圣妍, 高浩展, 吴家森, 陈俊辉, 黄坚钦, 秦华.  临安区山核桃林地土壤水解酶活性空间分布特征及土壤肥力评价 . 浙江农林大学学报, 2022, 39(3): 625-634. doi: 10.11833/j.issn.2095-0756.20210417
    [12] 张吉玲, 陈钢, 曹光球, 林思祖, 郑宏, 李勇.  机械损伤及埋土深度对杉木萌蘖及抗氧化酶活性的影响 . 浙江农林大学学报, 2021, 38(2): 304-310. doi: 10.11833/j.issn.2095-0756.20200323
    [13] 陈文博, 王旭东, 石思博, 季诗域, 叶正钱, 任泽涛, 刘璋.  长期菌渣化肥配施对稻田土壤酶活性的影响及交互效应 . 浙江农林大学学报, 2021, 38(1): 21-30. doi: 10.11833/j.issn.2095-0756.20200139
    [14] 赵艺, 徐华潮, 马艳, 史黎央.  虫酰肼和灭幼脲对锈色粒肩天牛氧化酶和解毒酶活性的影响 . 浙江农林大学学报, 2018, 35(1): 174-177. doi: 10.11833/j.issn.2095-0756.2018.01.023
    [15] 高兴军, 郭明, 李兵, 郭建忠, 李铭慧.  二价金属离子与牛血清白蛋白的相互作用 . 浙江农林大学学报, 2013, 30(5): 777-783. doi: 10.11833/j.issn.2095-0756.2013.05.022
    [16] 徐兴涛, 郭明, 吴志武, 李铭慧, 高兴军, 钱慈.  土大黄苷与牛血清白蛋白结合反应机制及 金属离子的介导作用 . 浙江农林大学学报, 2011, 28(3): 349-358. doi: 10.11833/j.issn.2095-0756.2011.03.002
    [17] 毛胜凤, 孙芳利, 段新芳, 文桂峰.  壳聚糖金属盐抑菌效果研究 . 浙江农林大学学报, 2006, 23(1): 89-93.
    [18] 唐裕芳, 张妙玲, 冯波, 陈权, 刘新乐, 邓孝平.  茶多酚的抑菌活性研究 . 浙江农林大学学报, 2005, 22(5): 553-557.
    [19] 姜培坤, 徐秋芳, 杨芳.  雷竹土壤水溶性有机碳及其与重金属的关系 . 浙江农林大学学报, 2003, 20(1): 8-11.
    [20] 姜培坤, 俞益武, 张立钦, 许小婉.  雷竹林地土壤酶活性研究 . 浙江农林大学学报, 2000, 17(2): 132-136.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230219

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/1/154

图(3) / 表(1)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  73
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-06-08
  • 录用日期:  2023-06-12
  • 网络出版日期:  2024-01-19
  • 刊出日期:  2024-02-20

金属离子对黑翅土白蚁消化代谢的影响

doi: 10.11833/j.issn.2095-0756.20230219
    基金项目:  国家自然科学基金资助项目(31770686)
    作者简介:

    漆梦雯(ORCID: 0009-0001-7459-613X),从事白蚁资源利用等研究。E-mail: 1372600080@qq.com

    通信作者: 莫建初 (ORCID: 0000-0001-5066-0734),教授,博士生导师,从事白蚁防治等研究。E-mail: mojianchu@zju.edu.cn
  • 中图分类号: S186

摘要:   目的  探究金属离子对黑翅土白蚁Odontotermes formosanus消化代谢过程的影响,挖掘黑翅土白蚁对含有金属离子的厨余垃圾和农林废弃物进行资源化处理的潜在价值。  方法  根据浓度梯度法,将含有不同质量分数Al3+、Ca2+、Fe3+和Mg2+的饵料供给黑翅土白蚁,确定黑翅土白蚁对饵料中金属离子的最大可取食质量分数。采用电感耦合等离子体发射光谱仪(ICP-OES)测定黑翅土白蚁虫体内及其新建菌圃内的对应金属元素质量分数,明确饵料中Al3+、Ca2+、Fe3+和Mg2+对虫体内及新建菌圃内对应金属元素质量分数的影响。采用试剂盒法测定黑翅土白蚁虫体内及其新建菌圃内漆酶和纤维素酶的活性,确定饵料中Al3+、Ca2+、Fe3+和Mg2+对上述酶活性的影响。  结果  黑翅土白蚁对饵料中Al3+、Ca2+和Fe3+的最大可取食质量分数均为1.00 g·kg−1,对饵料中Mg2+的最大可取食质量分数为10.00 g·kg−1。黑翅土白蚁取食含有10.00 g·kg−1 Mg2+的饵料后,其虫体内和菌圃内都发生了Mg的富集;取食含有1.00 g·kg−1 Fe3+的饵料后,Fe仅在菌圃内富集。取食含有1.00 g·kg−1 Al3+的饵料,会显著提高黑翅土白蚁虫体内的漆酶活性(P<0.05);取食含有1.00 g·kg−1 Ca2+的饵料,会显著提高黑翅土白蚁虫体内的漆酶活性(P<0.05),但会显著降低纤维素酶活性(P<0.05);取食含有1.00 g·kg−1 Fe3+的饵料,会显著提高黑翅土白蚁虫体内的漆酶活性和菌圃中的纤维素酶活性(P<0.05),但会显著降低菌圃中的漆酶活性和黑翅土白蚁虫体内的纤维素酶活性(P<0.05);取食含有10.00 g·kg−1 Mg2+的饵料,会显著提高黑翅土白蚁虫体内的纤维素酶活性和菌圃中的漆酶活性(P<0.05),但会显著降低菌圃中的纤维素酶活性(P<0.05)。  结论  黑翅土白蚁可取食分别含有1.00 g·kg−1 Al3+、Ca2+和Fe3+的饵料和含有10.00 g·kg−1 Mg2+的饵料,1.00 g·kg−1 Al3+可以提高黑翅土白蚁和菌圃微生物对木质素的联合降解能力。黑翅土白蚁具有资源化处理厨余垃圾和农林废弃物的应用潜力。图3表1参30

English Abstract

吴见, 彭道黎. 多伦县土地利用遥感信息提取技术[J]. 浙江农林大学学报, 2010, 27(3): 417-423. DOI: 10.11833/j.issn.2095-0756.2010.03.016
引用本文: 漆梦雯, 沈毅, 羊桂英, 等. 金属离子对黑翅土白蚁消化代谢的影响[J]. 浙江农林大学学报, 2024, 41(1): 154-160. DOI: 10.11833/j.issn.2095-0756.20230219
WU Jian, PENG Dao-li. Technology of land use remote sensing information extraction in Duolun County[J]. Journal of Zhejiang A&F University, 2010, 27(3): 417-423. DOI: 10.11833/j.issn.2095-0756.2010.03.016
Citation: QI Mengwen, SHEN Yi, YANG Guiying, et al. Effects of metal ions on digestion and metabolism of Odontotermes formosanus[J]. Journal of Zhejiang A&F University, 2024, 41(1): 154-160. DOI: 10.11833/j.issn.2095-0756.20230219
  • 中国每天产生约5万t厨余垃圾,占城市生活垃圾的40%~60%[1]。现有的厨余垃圾处理模式中,饲料化的环境效应最好且成本效益高[2]。利用资源昆虫进行垃圾处理是目前厨余垃圾资源化利用的研究热点,拟黑多刺蚁Polyrhachis vicina幼蚁、黑水虻Hermetia illucens、黄粉虫Tenebrio molitor等昆虫均可以作为资源昆虫处理垃圾[35]。黑水虻可有效分解厨余垃圾并将其转化为油脂和蛋白质等高价值生物质[6],黄粉虫幼虫对厨余垃圾的利用率可达38.88%[7]。厨余垃圾含有一定量的金属元素,一般较难对其进行有效处理[810]。有研究表明:白蚁与微生物的共同作用,可使木质纤维素材料得到高效的利用[11],据统计,白蚁1 a可以消耗30~70亿t木质纤维素[12]。白蚁还可以通过取食腐烂的有机物和木材,富集重金属[13]。在培菌白蚁肠道和菌圃中存在不同质量分数的金属离子,这些金属离子可能对肠道共生微生物和木质纤维素降解酶的活力有一定影响[1416]。白蚁肠道系统中许多种酶需要与某些金属离子相结合,来实现其催化活性,这些酶的催化活性在许多生物过程中起到至关重要的作用,例如产氢过程、呼吸过程和碳水化合物水解过程等[1718]

    黑翅土白蚁Odontotermes formosanus对林木、绿化、堤坝等具有严重危害性,但同时也是一种重要的资源昆虫,在自然环境下,它可以高效降解木质纤维素[19]。黑翅土白蚁是否具有处理厨余垃圾的潜力目前尚不明确。本研究拟探究食物中含有的Al3+、Ca2+、Fe3+和Mg2+对黑翅土白蚁消化代谢的影响,为生产上仿生利用黑翅土白蚁来处理农林废弃物和厨余垃圾提供了新的思路。

    • 供试黑翅土白蚁蚁巢采自福建省三明市大田县,带回室内在26 ℃避光条件下饥饿3 d后供处理。供试饵料为桂花Osmanthus fragrans枯枝木屑,采自浙江大学紫金港校区校友林,在80 ℃烘箱内烘48 h,研磨过20目筛;在100 ℃烘箱内烘24 h后备用。无水三氯化铝、无水氯化钙、无水三氯化铁和无水硫酸镁均为分析纯,购自沪试国药集团化学试剂有限公司。漆酶(laccase)和纤维素酶(cellulase)试剂盒购自苏州梦犀生物医药科技有限公司。

    • 将无水三氯化铝用去离子水稀释至100.00、10.00、1.00、0.10、0.01 g·L−1 5个质量浓度,以去离子水为对照(ck)。每个处理取10.00 mL,分别与10 g木屑混合均匀,静置24 h后置于80 ℃烘箱中烘干48 h,得到含有Al3+质量分数分别为100.00、10.00、1.00、0.10、0.01 g·kg−1的5组Al3+饵料处理组和ck饵料。将饵料分别装入1.50 mL离心管中并压实,用电子天平称量获得饵料质量。取3个直径一致的蚁巢,在每个蚁巢中同时放入6组饵料。15 d后取出离心管,80 ℃烘干至恒量,去除泥土后称量剩余饵料质量,计算取食率,取平均值。与对照组无显著差异的Al3+最大质量分数为黑翅土白蚁对该金属离子的最大可取食质量分数。其他3种金属离子的最大可取食质量分数测定同上。分别以含最大可取食质量分数的Al3+、Ca2+、Fe3+、Mg2+饵料饲喂黑翅土白蚁,共4个处理组,以去离子水处理的饵料为对照(ck),设3次重复,持续饲喂30 d。

    • 参考LI等[16]的方法。在蚁巢中随机挑选10只体长为0.45±0.05 mm 的低龄工蚁置于PTFE烧杯中,加入5.00 mL浓硝酸后,用封口膜密封,依次于80 ℃加热盘上加热1.0 h,160 ℃加热1.5 h,蒸发约0.50 mL。用孔径为0.22 μm的水系滤膜过滤,取0.75 mL滤液用去离子水定容至25.00 mL,得到体积分数约3%的浓硝酸稀释液。每个处理重复3次,使用电感耦合等离子发射光谱仪测定金属元素。

    • 参考TOYAMA-KATO等[20]的方法。称取0.1 g上层菌圃于PTFE烧杯中,加入1.00 mL浓硝酸后,用封口膜进行密封。置于60 ℃加热盘上加热4.0 h后向烧杯内加入1.00 mL浓硝酸,再依次在加热盘75 ℃加热0.5 h,130 ℃加热0.5 h,最后200 ℃加热0.5 h。冷却后向烧杯内加入10.00 mL浓硝酸复溶,用孔径为0.22 μm的水系滤膜进行过滤,后续处理同1.2.2。

    • 采用分光光度法对黑翅土白蚁工蚁及新建菌圃中的漆酶和纤维素酶活力进行测定,参照试剂盒说明书进行操作。

    • 数据均为平均值±标准差,使用SPSS 26进行单因素方差分析,采用LSD法进行多重比较。

    • 黑翅土白蚁对含Al3+、Ca2+和Fe3+饵料的最大可取食质量分数均为1.00 g·kg−1,对含Mg2+饵料的最大可取食质量分数为10.00 g·kg−1(图1)。对Al3+、Ca2+ 、Fe3+和Mg2+ 4种金属离子而言,黑翅土白蚁总体上偏好取食质量分数较低的饵料。同时,在供试的4种金属离子中,黑翅土白蚁对Mg2+的接受程度最高。

      图  1  黑翅土白蚁对不同质量分数金属离子处理饵料的取食率

      Figure 1.  Bait consumption rate of O. formosanus treated with different mass fraction of metal ions

    • 取食含有1.00 g·kg−1 Al3+、Ca2+或Fe3+的饵料后,黑翅土白蚁虫体对应的金属元素Al、Ca和Fe质量分数与ck之间无显著差异(图2A~C)。取食含有1.00 g·kg−1Ca2+的饵料后,黑翅土白蚁虫体内Al质量分数最低,与ck差异显著(P<0.05)。由图2D可见:取食含有10.00 g·kg−1Mg2+饵料后,黑翅土白蚁虫体内Mg 质量分数最高,为6.18 mg·g−1,与ck和取食其他3种金属元素的均差异显著(P<0.05)。说明只有取食含有10.00 g·kg−1 Mg2+的饵料,Mg会在黑翅土白蚁体内富集,而其他3种金属元素不会在黑翅土白蚁体内富集。

      图  2  饵料饲喂后黑翅土白蚁虫体内金属元素Al、Ca、Fe和Mg质量分数

      Figure 2.  Mass fraction of metal elements Al, Ca, Fe and Mg in the body of O. formosanus after feeding with baits

    • 取食含有1.00 g·kg−1 Al3+或Ca2+的饵料后,其菌圃内对应的金属元素Al和Ca质量分数与ck之间无显著差异(图3A~B)。取食含有1.00 g·kg−1 Fe3+或含有10.00 g·kg−1Mg2+的饵料后,菌圃内对应的Fe质量分数为1.29 mg·g−1,Mg为2.52 mg·g−1,均显著高于ck (P<0.05)(图3C~D)。其中取食含有10.00 g·kg−1Mg2+饵料后菌圃内的Al质量分数较ck显著提高(P<0.05),取食含有1.00 g·kg−1 Al3+、Ca2+、Fe3+的饵料后,菌圃中Mg质量分数较ck显著降低(P<0.05)。说明取食含金属离子的饵料对黑翅土白蚁新建菌圃内相应金属元素质量分数有一定影响。就本研究而言,黑翅土白蚁取食含有1.00 g·kg−1 Fe3+或含有10.00 g·kg−1·Mg2+饵料后,对应的金属元素Fe和Mg会在菌圃中富集。

      图  3  饵料饲喂后新建菌圃内金属元素Al、Ca、Fe和Mg质量分数

      Figure 3.  Mass fraction of metal elements Al, Ca, Fe and Mg in new-built fungus combs after feeding with baits

    • 表1数据表明:1.00 g·kg−1 Al3+、Ca2+和Fe3+显著促进了黑翅土白蚁虫体内的漆酶活性(P<0.05),说明上述质量分数的3种金属离子可提高白蚁的木质素降解能力;1.00 g·kg−1 Fe3+显著抑制了新建菌圃内的漆酶活性(P<0.05),其酶活性仅为62.91 nmol·g−1·min−1,但被摄入食物中的10.00 g·kg−1 Mg2+显著促进(P<0.05),酶活性达到了419.65 nmol·g−1·min−1,说明Fe在菌圃富集会降低菌圃微生物的木质素降解能力,而Mg正好相反。1.00 g·kg−1 Ca2+和Fe3+显著抑制了黑翅土白蚁虫体内的纤维素酶活性(P<0.05),但10.00 g·kg−1 Mg2+则对该酶起到显著促进作用(P<0.05),说明不同金属离子在白蚁体内可能存在竞争关系,且Mg的富集会提高黑翅土白蚁虫体内的纤维素降解能力。1.00 g·kg−1 Fe3+显著促进了新建菌圃中的纤维素酶活性(P<0.05),其酶活性为1 098.77 μg·g−1·min−1,但10.00 g·kg−1 Mg2+显著抑制了新建菌圃中的纤维素酶活性(P<0.05),其酶活性为745.40 μg·g−1·min−1。说明Fe在菌圃富集会提高菌圃微生物的纤维素降解能力,而Mg在菌圃富集则会降低菌圃微生物的纤维素降解能力。

      表 1  黑翅土白蚁虫体内及新建菌圃内漆酶和纤维素酶活性

      Table 1.  Activities of laccase and cellulase in the body of O. formosanus and in new-built fungus combs

      处理漆酶活性/(nmol·g−1·min−1)纤维素酶活性/(μg·g−1·min−1)
      虫体菌圃虫体菌圃
      ck 2.84±0.66 c 227.79±18.67 b 1129.21±111.55 b 923.25±31.04 b
      Al 15.65±2.48 a 151.11±17.25 bc 1253.91±54.33 b 932.67±36.95 b
      Ca 9.81±0.44 b 146.36±40.72 bc 682.67±70.10 c 907.02±34.90 b
      Fe 7.38±1.30 b 62.91±7.74 c 615.41±83.35 c 1098.77±108.31 a
      Mg 1.90±0.64 c 419.65±18.62 a 1600.71±13.19 a 745.40±32.09 c
        说明:Al指含有1.00 g·kg−1 Al3+饵料;Ca指含有1.00 g·kg−1 Ca2+饵料;Fe指含有1.00 g·kg−1 Fe3+饵料;Mg指含有10.00 g·kg−1 Mg2+饵料。不同小写字母表示不同处理间差异显著(P<0.05)。
    • 白蚁富含蛋白质、维生素和许多必需的矿物质元素[21] ,可以食用;培菌白蚁的共生真菌蚁巢伞,味道鲜美,营养价值高,研究还发现蚁巢伞属真菌具有镇痛抗炎、防癌抗癌、降血脂及抗氧化等药理作用和生物功能活性[22]。在本研究中,取食含有1.00 g·kg−1 Al3+、Ca2+、Fe3+或10.00 g·kg−1 Mg2+的饵料后,黑翅土白蚁仍可进行正常的生理活动并构建菌圃,由此可以看出黑翅土白蚁具有处理含有一定质量分数金属离子的厨余垃圾和农林废弃物的潜力。

      培菌白蚁可以在肠道微生物的帮助下有效分解木质纤维素,菌圃内的细菌[23]可以通过产生包括纤维素酶在内的大量降解木质纤维素的酶,来实现与蚁巢伞协同降解木质纤维素的功能[24]。培菌白蚁的共生蚁巢伞可以产生纤维素酶、果胶质水解酶类、木聚糖酶等,同时也能产生与木质素分解有关的漆酶,培菌白蚁可以利用共生蚁巢伞高效降解木质纤维素[2526]。LI等[27]发现Al3+对解淀粉芽孢杆菌漆酶活性有促进作用,与本研究中1.00 g·kg−1 Al3+能够促进黑翅土白蚁虫体内的漆酶活性结果一致,在饵料中添加1.00 g·kg−1 Al3+有利于提高黑翅土白蚁及其菌圃微生物联合降解木质素的能力,而不会显著影响纤维素降解能力,对黑翅土白蚁的资源性利用具有现实意义。肖东来等[28]研究发现Mg2+对香菇 Lentinuda edodes 羧甲基纤维素酶活性具有激活作用,而WANG等[29]的研究结果表明较高质量分数的Mg2+能够抑制黄粉虫纤维素酶活力。在本研究中,10.00 g·kg−1 Mg2+抑制了菌圃内的纤维素酶活性,却促进了黑翅土白蚁虫体内的纤维素酶活性,一方面是因为同种金属离子对不同来源的同一类酶的影响程度可能不同[30];另一方面,LI等[19]的研究已经证实白蚁和菌圃微生物对木质素的降解具有互补性,推测黑翅土白蚁能够通过自身和菌圃微生物对木质纤维素降解的互补性来抵抗一定质量分数金属离子的负面影响,有关金属离子对木质纤维素降解酶的联合影响有待进一步研究。

    • 本研究确定了黑翅土白蚁对饵料中Al3+、Ca2+和Fe3+的最大可取食质量分数均为1.00 g·kg−1,对饵料中Mg2+的最大可取食质量分数为10.00 g·kg−1。金属元素Mg能够在黑翅土白蚁虫体内和菌圃内富集,不同金属离子对黑翅土白蚁虫体和菌圃内漆酶和纤维素酶活性的影响不同,其中1.00 g·kg−1 Al3+可以提高黑翅土白蚁及其菌圃微生物联合降解木质素的能力。黑翅土白蚁具有对含有金属离子的厨余垃圾和农林废弃物进行资源化处理的应用潜力,今后需要进一步研究混合金属离子对黑翅土白蚁消化代谢的影响,以推动其资源化处理厨余垃圾和农林废弃物的实际应用。

参考文献 (30)

目录

/

返回文章
返回