留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东京四照花嫩枝扦插繁殖及生根过程中生理指标的动态变化

袁振安 杜文婷 刘国华 毛霞 洑香香

陈雅文, 韩广轩, 蔡延江. 氮输入影响滨海湿地碳循环过程的模拟研究:进展与展望[J]. 浙江农林大学学报, 2021, 38(5): 883-895. DOI: 10.11833/j.issn.2095-0756.20210118
引用本文: 袁振安, 杜文婷, 刘国华, 等. 东京四照花嫩枝扦插繁殖及生根过程中生理指标的动态变化[J]. 浙江农林大学学报, 2024, 41(3): 624-633. DOI: 10.11833/j.issn.2095-0756.20230457
CHEN Yawen, HAN Guangxuan, CAI Yanjiang. Simulation research on the effects of nitrogen input on carbon cycle process in a coastal wetland: review and prospects[J]. Journal of Zhejiang A&F University, 2021, 38(5): 883-895. DOI: 10.11833/j.issn.2095-0756.20210118
Citation: YUAN Zhen’an, DU Wenting, LIU Guohua, et al. Cutting propagation of softwood and dynamic changes in physiological indicators during the rooting process of Cornus hongdongensis subsp. tonkinensis[J]. Journal of Zhejiang A&F University, 2024, 41(3): 624-633. DOI: 10.11833/j.issn.2095-0756.20230457

东京四照花嫩枝扦插繁殖及生根过程中生理指标的动态变化

DOI: 10.11833/j.issn.2095-0756.20230457
基金项目: 江苏省林业科技创新与推广项目(LYKJ〔2020〕26)
详细信息
    作者简介: 袁振安(ORCID: 0009-0003-8931-4080),从事人工林定向培育研究。E-mail: yuanzhenan@njfu.edu.cn
    通信作者: 洑香香(ORCID: 0000-0002-3338-4886),教授,博士,从事人工林定向培育研究。E-mail: xxfu@njfu.edu.cn
  • 中图分类号: S718.43

Cutting propagation of softwood and dynamic changes in physiological indicators during the rooting process of Cornus hongdongensis subsp. tonkinensis

  • 摘要:   目的  研究植物生长调节剂、扦插基质和生长阶段对东京四照花Cornus hongkongensis subsp. tonkinensis嫩枝扦插生根过程中的形态特征和生理生化特性,为东京四照花的繁殖和生产提供科学依据。  方法  以清水处理为对照,对植物生长调节剂种类[生根粉1号(ABT-1)、萘乙酸(NAA)和吲哚乙酸(IAA)]、质量浓度(100、300和500 mg·L−1)和浸泡时间(30、60和180 min)进行正交设计,采用4种扦插基质[蛭石(S1)、河沙(S2)、V(泥炭土)∶V(蛭石)∶V(珍珠岩)=2∶2∶1(S3)和V(泥炭土)∶V(黄土)=1∶1(S4)],在不同生长阶段(初期、中期和末期)进行嫩枝扦插,统计分析各生根指标,测定生根过程中营养物质质量分数和相关生根酶活性的变化。  结果  ①东京四照花插穗生根类型以皮部生根为主,占总生根数的58.60%。②在正交试验中,300 mg·L−1IAA浸泡30 min处理生根率最高(77.78%)。③在扦插基质中,S3基质中插穗生根率和生根指数均最高(82.22%和19.34)。④在生长阶段试验中,生长中期插穗生根率最高(82.22%)。⑤相较于对照,IAA处理有效促进了插穗体内的养分消耗,提高了氧化酶的活性。⑥相关分析表明:生根率与根原基诱导和愈伤形成期间内的可溶性糖、淀粉和可溶性蛋白呈显著负相关(P<0.05),与过氧化物酶(POD)和超氧化物歧化酶(SOD)呈极显著正相关(P<0.01)。  结论  在生长中期采制的穗条通过300 mg·L−1IAA浸泡30 min,扦插在S3基质中,生根率和生根指数均最高,分别可达82.22%和19.34。图2表7参30
  • 滨海湿地是土壤碳(C)的大型储存库,能够以高于陆地森林生态系统10~100倍的速率持续固定大气二氧化碳(CO2)[1]。尽管全球滨海湿地仅占地球海洋表面的2%,但碳储量却相当可观。据估计,全球滨海湿地每年碳储量约116 Tg,占海洋储碳总量的50%以上[2],这些碳储量和碳通量统称为滨海湿地“蓝碳”。滨海湿地的碳汇速率主要取决于其垂直沉积物的代谢速率和土壤碳汇密度[3],在海平面上升的影响下,这些蓝碳生态系统的土壤不会达到碳饱和[1],是显著区别于内陆生态系统的重要特征。只要土壤的增加量继续与海平面上升保持同步,沉积物的吸收速率就可以保持在一定水平,因此滨海湿地碳汇的寿命相比内陆碳汇的潜力更大,长时期内减缓气候变化能力也更强。目前,滨海湿地作为温室气体排放抵消工程的目标,受到了广泛的关注。然而,定量评估预测全球变化影响滨海湿地生态系统碳汇功能的研究较少,还需进一步分析滨海湿地对全球气候变化与人类干扰的响应机制,为滨海湿地的保护、管理及利用提供参考方向,以达到增加未来碳储存的目的[1, 4]。近代以来,人类活动向生态系统输入了大量的活性氮[5],大气氮富集量已超过工业革命前的2倍[6]。过剩的含氮化合物经由淋洗、径流以及挥发等途径进入江河湖海和大气中,使沿海近岸水体富营养化[7]。在潮汐作用下,富氮水体经由海水入侵进入滨海湿地,对滨海湿地生态系统的碳循环过程产生重要影响[8-10]。已有多项研究证实:氮输入对陆地碳循环过程的影响结果并不一致,由生态系统类型、覆被种类和其他多种环境因素共同决定[11-13]。如何在不同的环境背景下,评估和预测生态系统碳循环过程对氮输入的响应,目前未有定论。基于滨海湿地碳汇功能的重大生态价值,本研究系统阐述了氮输入对滨海湿地生态系统碳循环过程的影响,总结了几种常见的碳循环模型在湿地生态系统应用中的主要研究进展。一方面梳理过去相关研究,提高对氮输入下滨海湿地碳动态变化及碳循环模型领域发展态势的认识;另一方面总结碳循环模型在滨海湿地的应用和不足,为模型改进提供参考方向,有利于更精确地预测滨海湿地碳汇功能的未来发展。

    陆地碳循环是由观察者定义的边界开放系统,该边界与外部环境的碳交换主要通过光合作用进行,为碳的主要输入过程,并具有多种输出通量,如自养和异养呼吸以及溶解的有机形式[14-15],由此可见,碳循环过程往往伴随碳形态的转变。滨海湿地主要由植被和土壤2个碳库组成,对2个碳库及其影响因素的认识是湿地碳循环研究的关键部分[16]。此外,水体中也存在部分碳化合物,碳元素在滨海湿地生态系统中主要存在5种形式,包括:植物生物量固定碳、颗粒有机碳(POC)、可溶性有机碳(DOC)、微生物量固定碳及气态终产物如甲烷(CH4)和CO2[17]。它们之间通过各种途径相互转化,又因为条件的差异而使得转化速率不同,从而形成不同存在形式的积累或消耗,决定了滨海湿地生态系统碳源或碳汇的最终结果。

    陆地植物中固定的碳通常被称为“绿碳”,滨海湿地、海藻床等生态系统中固存的碳则被称为“蓝碳”[1]。滨海湿地碳循环的基本模式与其他陆地生态系统存在一定的相似性。湿地植被通过光合作用吸收大气中的CO2,并合成为有机物,完成湿地的碳汇过程。此时碳被固定在植被中,使滨海湿地成为抑制大气温室效应的有效碳汇。当植物死亡,固定的碳在微生物作用下形成腐殖质,分解产生CO2、CH4等气体释放到大气中,此时湿地又转化为碳源[18]。这2个部分是滨海湿地在垂直方向上进行碳交换的主要过程[19],结果主要取决于土壤中的碳,在一定时间内输入输出量以及储存的时间,其核心是土壤中有机碳的动态转化和平衡过程[20-21]

    滨海湿地作为连接陆地与海洋的纽带,与其他湿地类型最大的差异和最显著的特征是存在规律性的潮汐作用,这使得滨海湿地能够随着潮汐过程进行周期性的淹没和暴露,同时伴随盐分表聚与淋洗的干湿交替过程[19],是控制CO2产生、扩散和排放的重要因素[22-23]。除此以外,陆地与海洋的碳库能够通过潮汐在滨海湿地中进行横向交换,例如DOC、可溶性无机碳(DIC)、POC等,因此滨海湿地的碳循环过程相较于普通的湿地生态系统更为复杂。综上,滨海湿地碳循环过程可分为内循环和外循环2个部分(图1),其中外部循环主要由生物地球化学作用及潮汐作用的机械搬运主导,包括有机碳和无机碳的输入输出过程;内部循环则主要由矿化作用主导[6, 24],包括有机碳与无机碳之间的形态转化[25]

    图 1  滨海湿地大气-植被-水体-土壤间的碳循环关键过程
    Figure 1  Key processe of carbon cycle among atmosphere, vegetation, water and soil in coastal wetlands

    由于上述过程受到多种因素的共同作用,滨海湿地碳库的动态评估存在着不确定性,使湿地既可以表现为碳源也能够充当碳汇,碳源/碳汇的研究方向可总结为主要与湿地年龄、人类活动和气候等条件有关[25]。目前,大部分研究仅集中于短期较小区域尺度内的特征描述[26-27],不一定适用于长期大范围的尺度变化。此外,全球变化对湿地的影响,一方面表现为气候变暖加速土壤腐殖质分解造成的碳释放,使湿地由大气碳汇变为碳源的正反馈循环[28];另一方面还包括氮沉降及近岸水体富营养化等条件的改变,使滨海湿地从增加陆地碳汇的氮限制生态系统[29],可能向增强大气碳汇的负反馈循环方向转变。如何对滨海湿地碳循环过程中碳源、碳汇进行长期预测,以及准确评估计算全球变化条件下湿地碳储存及碳通量的变化,已成为如今亟待解决的问题。

    氮输入通过影响植被-土壤产生和消耗CO2的过程来改变其排放通量,所得结果或促进、或抑制或不显著[12, 30]。研究发现:在较大浓度范围内,氮输入均会促进植物生长[31],提高地上净初级生产力,显著增加植物组织的碳氮含量,从而增加凋落物的产量,并有助于土壤有机质(SOM)的积累。但同时氮添加会增强环境过滤作用,降低植物的氮素利用效率[32],减少微生物量碳和植物组织、土壤和微生物量的碳氮比,甚至威胁陆地植物的群落多样性[33]。在氮限制的滨海湿地生态系统中,湿地植物对氮输入的响应与其所积累的氮比例有关,然而该比例同时具有确定性和随机性过程[34],因此得到的结果并不唯一。此外,这些反应还取决于氮的输入速率,以及不同氮化合物在生态系统中的持续时间[35]

    在植物生理方面,氮输入会改变植物的物候规律,叶片化学计量中的碳氮比是控制该因素的主要表现形式,可以为评估地上和地下系统如何响应全球变化提供有用的策略[36]。植物叶片氮含量与植物的光合作用紧密相关,氮输入会增加叶片氮含量[37],使与其相关的叶绿体和光合二氧化碳固定酶大量合成,同时加快光反应和暗反应速率,最终使植物提前进入成熟期和衰老期[38]。氮输入还会提高植物组织中的氮浓度,使植物呼吸作用显著增强[39],但对植物净光合速率与植物光合速率的影响基本一致,随植被类型的变化可能得出不同的结果[40-41]。不同的氮供应形态和浓度也会对植物光合能力产生不同的影响,如添加铵态氮比硝态氮能够更多地刺激植物光合作用[42]。然而植物自身存在适应环境的机制,可以通过增加蒸腾作用来维持营养平衡,从而适应长期的氮沉降[43]。因此,在探究氮输入对碳循环影响机制的过程中,还应考虑植物、微生物等对维持环境稳态的适应性所表现的体征。

    输入生态系统的活性氮是影响滨海湿地土壤有机碳(SOC)损失的关键因素[44-45]。受氮输入水平、氮形态、初始土壤性质和其他环境参数差异的影响,氮输入可能导致SOC损失前后不一致[46-47]。氮输入对土壤有机质的影响分为直接和间接2个作用,土壤微生物在其中充当重要的媒介。直接作用表现在改变土壤氮素的可利用性,引起土壤微生物群落的变化,最终影响有机质的产量[48]。间接作用则是先提高植被的生产力,使得凋落物性质发生变化[49],基质的可利用性发生改变[50],最终通过影响土壤微生物间接影响有机质的累积。根据养分挖掘理论与化学计量学理论,氮有效性对SOC存在“激发效应”(priming effect)[51],即增加凋落物的输入会促进土壤有机质的分解,当养分氮处于低有效性时,由养分挖掘理论主导,此时微生物生物量处于k生存策略的正激发,生物能量来源于SOM的分解;当养分氮处于高有效性时,由化学计量学理论主导,微生物生物量处于r生存策略的正激发,主要利用新添加的底物进行生长繁殖[52]

    滨海湿地属于氮限制的生态系统,多项研究证明:氮输入会加速滨海湿地SOC分解并刺激CO2排放[9, 53],然而该结果受到多个因素的共同作用,例如生态系统类型、覆被种类、水位高度、温度等。低氮输入水平会刺激SOC分解,该促进作用可能与土壤养分、植被、土壤碳储量和土壤环境的氮相关变化有关[13]。而在高氮输入水平下,SOC分解则会受到抑制[54-55],使土壤碳的有效性降低[56]。长期和短期的氮输入研究结果也存在差异,两者均会促进土壤养分的整体增加,从而潜在地加速SOM分解。但与短期相比,长期氮输入的生态系统中,总SOC或矿物有机碳(MAOC)的含量可能不会发生变化,而是改变SOC的化学成分,如减少烃基氧等不稳定官能团的百分比,这可能是由于不稳定有机质的分解以及根沉积物输入增强引起的[57]

    滨海生态系统内部和系统间的碳循环是全球碳循环和碳收支的主要组成部分[58]。据统计,每年有超过19 Pg的悬浮物在滨海系统间进行交换,其中包括0.3 Pg DOC和0.2 Pg POC[59]。大多数陆源性POC随地表径流散布到海洋中,而存在于近地表土壤水及地下水中的可溶性有机质(DOM),则通过海洋与陆地间的水文连通进行交换,这种交换也称为滨海湿地的碳横向输出。滨海湿地在碳的横向输出过程中起关键作用,在强降雨和冲刷作用下,滨海湿地流失DOM的量达到森林地下有机碳年产量的1/3[60],并为河口提供约35%的总有机碳(TOC)[61]。横向的碳通量是湿地净生态系统碳平衡收支(NECB)中的重要术语[62-63],也是NECB中属于湿地碳损失过程中具有较高重要性和不确定性的组成部分。碳横向输出包括地下水流通和潮汐交换2种途径,虽然地下水DIC浓度高于潮汐水体,但潮汐水体交换速率大于地下水排水速率,使得潮汐作用下碳输出速率大于地下水碳输出速率。最终地下水横向DIC和DOC通量均比潮汐横向通量低1个数量级,因此对整体横向碳输出而言,潮汐的输出占主导地位[64]

    当湿地被潮汐淹没时,呼吸作用产生的大部分CO2以DIC的形式溶解,与总初级生产力(GPP)产生或从植物生物量中浸出的DOC同时进行横向输出。当含氮化合物增加了地上生物量(AGB),并且潮汐水中含有丰富的沉积物时,氮输入会增加该地区外源碳的积累[65]和海拔高度[66]。在氮输入的内陆湿地中,由于垂直排放而损失的碳和横向碳通量能够由外来碳沉积物的增加所抵消[67],因此氮输入对系统内部NECB的影响很小。但是,在滨海湿地的边缘,由于垂直排放和横向输出,碳输入量不足以抵消碳的损失,氮输入将大幅增加滨海系统边缘碳的净损失。因此,如果仅在湿地内部进行相同的研究,就将大大低估氮输入对湿地碳积累的负面影响。氮输入通过增加代谢率来增加横向DIC和DOC的出口,这表明增加对滨海湿地生态系统的氮输入将增加碳向相邻水域的横向输出。同时,在水生环境中除了水平运输外,表层沉积物的垂直再悬浮现象也普遍存在[68]。当电流和波浪引起的底部切应力超过底部沉积物的侵蚀阈值时,就会发生沉积物的潜在迁移[69]。在重悬过程中,重悬的物质包括有机碳及其通过细菌和原生动物产生的降解产物,可能加重水体富营养化[70]

    陆地生态系统模型的建立主要基于量(abundance)、群(coupling)、流(flow)、场(field)的概念,分别表示数量、有机整体、交换流动及各种作用力[71]。在模型中,陆地碳循环通常被概念化为一组库或池,如叶、木、根和土壤,通过生态过程以不同的形式如气态、溶解态、固态进行碳的储存和交换[72]。早期的碳循环模型通常以不连续的时间段(如天或年)对系统状态进行更新,并且仅更新单独某一池的碳库,而其他模型则基于具有可变时间间隔的一般或偏微分方程组来实现更新规律。生物地球化学模型对物质循环和元素运动轨迹的追踪表现出较高的吻合度和实用性,真正实现了对整个生态系统过程的模拟。为了实现对生态系统的所有过程参量更全面的模拟,生物地球化学模型一般以小时、日或月为步长,对SOC、植物生物量、土壤含水量、CO2浓度等状态变量进行积分,得到长时间尺度的模拟结果。同时该模型还可结合大面积高频采样数据,实现对生态系统空间上的多指标模拟,从而增大模拟的尺度范围,通过积分最终得到区域尺度上的生态系统状态的估计[73]

    为了准确捕获氮对地球系统模型中陆地碳汇的影响,需要评估模型对氮限制和生态系统氮输入的响应。一方面可以通过评估固定量的氮输入对植物-土壤碳库中碳储量变化的影响,另一方面也可追踪氮输入生态系统后,通过氮损失途径减少的氮量及轨迹[74]。目前,氮循环已被整合到多个全球陆地模型中,各模型按照不同的方式表示碳氮耦合过程[75-76]。例如,当土壤中氮的有效性无法满足植物生长所需氮含量时,这些模型均可模拟氮限制下植物的生长过程,但植物生长对氮需求的表现会有所不同[75-76]。同时,按照模型的建立方法和建立过程,碳循环模型可分为经验、参数和过程模型3个大类。经验模型是严格由数据确定,基于经验推导出的统计关系,包括气候和遥感相关模型[77]。它的局限性在于不涉及潜在机制的知识,仅在与其相关的数据范围内最准确。参数模型利用光合有效辐射及与其相关的调控因素,实现植被生产力的估算,因此也称为光能利用效率模型[78],目前与遥感结合的应用较为广泛[79]。过程模型则是通过生态生理过程以机械方式模拟生态系统的功能,通常需要考虑各个过程的机制以及多个因素的共同作用,能够运用于长时间、大尺度的模拟[80],包括简单过程模型、过程耦合模型和遥感-过程耦合模型。此外,模型中是否含有随机成分,例如某些参数的值随时间或个体是否变化,决定了相同初始条件和时间段对应的结果是否相同,因此也分为确定性模型和随机性模型[15]

    碳循环有非常丰富的建模历史,目前已经提出了各种具有不同复杂程度和侧重方向的模型[81-82]。利用模型了解和确定生态系统的主要特征和机制,并对人类活动改变生态系统中碳循环的方式(如化石燃料燃烧、施肥和开发等)进行评估,再借助于真实的观测数据验证模型的拟合度[83]。代表大气与陆地生物圈之间碳交换的模型包括多个过程和机制,其复杂性在过去几十年中不断增加,主要表现在模型过程中的细节被不断增加和完善。由于各模型所代表的过程、应用范围以及运算方式各有不同,因此不同模型之间难以比较,只能以模型输出数值的准确度来评估模型的性能[82],而不能直接在模型中实现概念和数学的评价及比较。

    滨海湿地碳循环过程主要由生物和非生物因素共同驱动,常见为基于点位的测量。而在较大空间尺度的研究中,则通常使用替代技术(如涡度协方差技术等)对长时间、大尺度的数据进行补充[84]。然而全球数据存在高度异质性,包括采样时间、试验持续时间和植被类型变化等,这些都进一步增加了滨海湿地碳交换估算的不确定性。由于滨海湿地生态系统的复杂性,经验和参数模型相比过程模型所受限制更多,因为过程模型还可通过增加相应模块建立子模型,达到对特定生态系统进行拟合的目的。同时,为了研究氮输入对滨海湿地生态系统的影响,碳循环模型中除了包含各碳库之间的相互交换,还应该包括水文、碳氮耦合过程的模块。目前在研究过程模型的领域中,满足以上要求且应用较为广泛的有DNDC(过程模型)、PEATBOG(过程模型)、TECO(过程模型)、Biome-BGC(过程模型)、AVIM(过程耦合模型)、TEM(遥感-过程耦合模型)和CENTURY(过程模型)等几种模型,或可应用于氮输入影响滨海湿地生态系统碳循环过程的模拟(表1)。

    表 1  碳循环模型的开发及其在氮输入影响中的应用
    Table 1  Development and application in wetland of carbon cycle models
    模型名称模型类型模型概述建立年份时间步长适用范围应用案例
    Biome-BGC[85]过程模型(生物地球化学模型)模拟生态系统中植被、凋落物、土壤碳、氮、水的储量和通量,模拟木本植物、C3/C4草本植物的碳、氮、水的循环过程与交互影响19881 d常绿/落叶、针叶/阔叶林、C3/C4草本植物和灌木林,点位、区域和全球尺度增加了地下水、苔藓植被、土壤营养物质分解、土壤水分压力指数等作用机理的描述。应用于加拿大森林湿地、红壤丘陵区湿地、千烟洲人工湿地、中国南海湿地红树林等湿地生态系统净初级生产力(NPP)、生物量和土壤碳积累的模拟研究[86-89]
    CENTURY[90]过程模型(生物地球化学模型)基于土壤的结构功能,模拟碳、氮和磷的生物地球化学循环过程,同时结合气温、降水量等气候驱动因子,模拟生态系统生产力198830 d森林、草原生态系统通过调整厌氧参数,用于泥炭湿地碳动态模拟[91]
    DNDC[92]过程模型(生物地球化学模型)增加了苔藓及草本植物的生长参数,开发了地下水位动态变化、厌氧条件下土壤生物地球化学过程等算法[93]19921 d森林、农田、草地、湿地生态系统,点位和区域尺度最初建立用于描述农业生态系统,现可应用于水稻田、湿地、泥炭地等生态系统的碳氮循环研究[94-97]
    AVIM[98]过程耦合模型(大气-植被耦合模型)陆面物理-植被生理生态的有机耦合,包含植被-土壤-大气间热量和水分的交换以及植物光合-呼吸等CO2的交换,实现了大气和包括根圈在内的植物圈之间的动态相互作用19951 h森林、草地、农田、冰川、湿地、湖泊等生态系统添加土壤碳氮动态模块[99],再与其他模块相结合,已应用于研究湿地覆被类型对模拟结果的影响[100]
    TECO[101]过程模型(生物地球化学模型)具有与目前大多数生物地球化学模型相似的碳池结构和参数。经过改进和完善,可用于模拟陆地生态系统中的碳、氮和水文循环2008冠层光合作用和土壤水分动态子模型:1 h;植物生长和土壤碳转移子模型:1 d陆地生态系统调节植物和生态系统对CO2升高、变暖和降水变化的交互响应的关键过程,已应用于Duke森林应对CO2升高的固碳过程的若干研究中[102-103]以及SPRUCE泥炭地的碳动力和土壤动力学的研究中[104]
    PEATBOG[105]过程模型(生物地球化学模型)强调了土壤固、水、气相与植被之间的物质流动,土壤组分的高空间分辨率,对碳、氮通量的化学计量控制,以及对植被和土壤中碳、氮反应活性的持续概念化20131 d泥炭地碳氮耦合循环的模拟已应用于研究长期施氮对泥炭沼泽碳循环的影响分析,并模拟预测了未来80 a间各碳组分的动态趋势,以确定氮肥的潜在影响和影响模型行为的主要因素[106]
    下载: 导出CSV 
    | 显示表格

    滨海湿地显著区别于其他湿地的特征是周期性的潮汐作用,整个湿地在淹水-暴露中形成干湿交替的生境,土壤环境改变,最终影响湿地碳交换过程[19, 107]。同时,潮汐作用也使得富营养化的近岸水体将大量活性氮输入系统中。与单个影响因素的作用相比,2个过程的共同作用可能对湿地碳变化的影响结果有所不同。然而,已有碳循环模型对周期性潮汐水文过程的关注不足。碳循环机制取决于当前研究对碳循环过程认识的程度,一些机制性的问题依然利用经验模型解决,例如微生物分解碳速率、植物-土壤碳分配等。且碳循环模型简化了各碳库之间的交互关系,模拟相对静态的过程时效果较好,但无法解释和表达动态的过程,例如不同氮素种类或浓度对优势物种、微生物的选择等。碳动态预测要求考虑土壤、水文和植被等之间的相互作用,却很少有同时存在这些作用的且适用于湿地生态系统的综合型碳模型。虽然一些模型(如DNDC和BIOME-BGC模型)在改进过程中增加了描述湿地生态系统机理的模块[86, 108],然而,湿地生态系统碳循环过程较为复杂,兼有草本和木本植物,包括沼生植物、湿生植物和水生植物等,化学组分也存在较大差异,形成多种不同类型的湿地,改进后的模型适应性仍有待论证。例如,改良的Biome-BGC模型仍然无法模拟长期遭受洪水侵袭的真正湿地,因为它不会追踪有机土壤形成、地下水位变化、土壤氧化还原电位或厌氧过程[86]

    评估氮输入对碳储量的影响,可以通过测量固定量的氮输入下植物-土壤碳库的变化,还可追踪氮进入系统后通过氮损失途径减少的氮量及轨迹[109]。因此,氮与碳循环之间的相互作用还需进一步完善。例如在氮输入过程中,土壤碳储量的增加并不等同于植物凋落物产量的增加,还与分解速率的降低相关[110-111]。这种增加可以通过植物-土壤-微生物反馈的变化来解释,即激发效应是增加还是减少生态系统碳储量,取决于加速分解造成的土壤碳损失,以及与氮矿化增加促进的植被碳吸收之间的平衡[112]。此外,先前的建模研究证明微生物能够改善土壤碳储量预测[113],精确地估算植物和微生物生物量及其对无机氮的酶亲和力,可以更好地捕获生态系统中氮的轨迹[114]。部分模型具有隐含的微生物过程,这些过程构成了氮进入土壤有机质的主要途径[115],但模型没有明确微生物对氮的吸收和转化过程,在植物、土壤和氮素损失途径中的氮分配方面尚有不足。

    目前,在提高模型预测能力方面研究依然进展缓慢,对初始条件差异的极端敏感性,以及对系统状态描述的不完备,从根本上限制了未来预测的精确度。建模领域已经采用了多种不同的方法来改善陆地碳模型,但仍未显著减少模型预测之间的差异[109]。常见的方法是将更多的已知过程纳入影响碳循环的过程,以使模型尽可能逼真。但是,包含的过程越多,模型就越复杂且难以处理。其他方法如模型比较,虽然可以有效揭示模型预测之间差异的程度[116-117],但通常对于其起源只提供了有限的解释。但迄今为止,基准分析能提供针对标准数据集的模型性能评估[118],仅限于短时间内发生的过程(例如数天至数年)[119]。数据同化可将简单模型或模型组件直接约束于观测值[120],作为1种集成多源空间数据,它能够高效利用多种数据,但不适用于系统性的复杂模型[121]

    滨海湿地生态系统处于陆地与海洋之间,是能量和物质加工和转化的热点,也是生产力、碳储存/分解的热点。近岸水体富营养化引起的氮输入,将改变滨海湿地植物-土壤-大气碳分配的碳循环关键过程和碳汇功能,然而这些影响存在不确定性。相比于其他的生态系统,滨海湿地植被、土壤、水体之间的交互作用更为复杂,碳交换包括垂直和横向2个过程,因此碳循环建模需要考虑更多的因素,模拟过程中仍存在以下问题,有待进一步发展和完善:①需加强对潮汐水文过程模块的开发。虽然当前尚无将湿地水文、生物地球化学和植被相结合的综合方法,但存在有用的“构建模块”,从一组选定的源模型中组合这些关键因素可能是编译此类通用模型的可行且有效的方法[122]。②碳氮耦合机制有待进一步完善。改进植物和土壤中氮素命运的模型显示:利用植物-土壤-微生物反馈过程,能够更准确地反映土壤碳对氮输入的响应[112]。同时,增加参数或生态过程可能会增加模型预测的不确定性,为限制这种增加的不确定性,可以使用基于过程的、更加稳健且有代表性的数据集来设计和评估新的模型表现[123-124]。③提高模型模拟精度。较小规模的试验可在处理和响应变量评估中提供更高的精度[125],而较大规模的试验,诸如升温、淹水、氮输入等处理对整个生态系统规模的影响试验,在提供了更高真实性[126]的同时,也增加了模拟精度的复杂性。理想状态是将响应归因于一个整体变化的驱动因素,但试验处理与混杂的环境驱动因素(例如土壤水分、盐度、pH和氧化还原状态)可以同时控制生态系统过程,并调节全球变化驱动因素的影响。在这些不确定性下模拟不同尺度的变化,需要加强不同环境条件下,对应系统中植被、土壤等参数的研究,实现标准化测定,减少参数本地化带来的模拟误差。可尝试将多模型过程进行耦合,提高模型模拟的准确性,形成更完善的环境反馈机制。引入多时相、多传感器的遥感数据及其产品,也是在区域乃至全球尺度进行碳循环模拟的主要方向之一。同时还可以利用数据同化的方法,尽可能减少和控制数据本身及模型模拟过程中所产生的误差,提高模型的可信度和准确性。

  • 图  1  东京四照花嫩枝扦插生根类型

    Figure  1  Rooting type of softwood cutting on C. hongdongensis subsp. tonkinensis

    图  2  东京四照花嫩枝插穗生根过程中生理指标的变化

    Figure  2  Changes of physiological index during rooting process of softwood cutting on C. hongdongensis subsp. tonkinensis

    表  1  植物生长调节剂处理L9(34)正交试验设计

    Table  1.   Orthogonal test design for hormone treatment L9 (34)

    处理因素水平处理因素水平
    ABCABC
    ck  000A2B2C3223
    A1B1C1111A2B3C1231
    A1B2C2122A3B1C3313
    A1B3C3133A3B2C1321
    A2B1C2212A3B3C2332
      说明:A1~3分别是生根粉1号(ABT-1)、萘乙酸 (NAA) 和吲哚乙酸 (IAA);B1~3分别是100、300 和 500 mg·L−1;C1~3分别是浸泡30、60和180 min。
    下载: 导出CSV

    表  2  各因素对东京四照花扦插生根指标的方差分析

    Table  2.   Variance analysis of different factors on rooting indexes of softwood cutting on C. hongdongensis supsp. tonkinensis

    指标方差来源平方和均方FP指标方差来源平方和均方FP
    生根率  A 1 513.702 756.851 4.735 0.021 C 3.384 1.692 0.808 0.458
    B 1 097.004 548.502 3.432 0.052
    C 1 207.954 603.977 3.779 0.041平均根长 A 0.736 0.368 0.275 0.762
    B 0.148 0.074 0.054 0.947
    不定根数 A 0.178 0.089 0.032 0.968 C 1.844 0.922 0.713 0.500
    B 4.038 2.019 0.776 0.472
    C 28.877 14.438 9.209 0.001生根指数 A 39.233 19.616 0.823 0.453
    B 26.276 13.138 0.551 0.585
    最长根长 A 0.114 0.072 0.032 0.968 C 400.006 200.003 8.391 0.002
    B 0.473 0.236 0.107 0.899
      说明:表中各项指标自由度均为2。A. 调节剂种类;B. 调节剂质量浓度;C. 浸泡时间。
    下载: 导出CSV

    表  3  植物生长调节剂对东京四照花嫩枝扦插生根性状的影响

    Table  3.   Effects of hormone treatment on rooting traits of softwood cutting on C. hongdongensis subsp. tonkinensis

    处理生根率/%不定根数/条最长根长/cm平均根长/cm生根指数
    ck  45.56±8.32 b4.28±0.96 bc8.40±1.31 a5.49±0.17 a10.46±1.95 c
    A1B1C175.56±11.33 a3.76±0.61 c8.02±2.09 a5.71±1.41 a15.75±3.71 abc
    A1B2C252.00±13.49 b6.89±2.01 a8.06±1.16 a5.99±0.53 a20.03±3.49 ab
    A1B3C346.56±16.64 b3.61±0.80 c7.50±1.63 a5.68±2.07 a8.76±3.02 c
    A2B1C255.56±8.32 ab5.21±0.72 abc8.80±0.44 a6.25±0.62 a17.79±2.32 abc
    A2B2C341.11±11.33 b4.98±0.18 abc7.49±0.46 a5.54±0.54 a11.46±3.83 bc
    A2B3C143.33±8.16 b3.84±0.37 bc7.64±0.47 a5.92±0.64 a10.00±2.98 c
    A3B1C361.11±3.14 ab3.78±1.66 c7.60±2.30 a5.00±1.31 a10.94±4.74 c
    A3B2C177.78±4.16 a3.67±0.85 c8.16±0.85 a5.64±0.48 a15.78±2.68 abc
    A3B3C255.56±9.56 ab6.22±0.87 ab8.34±1.14 a5.90±0.62 a21.32±7.37 a
      说明:同列不同小写字母表示差异显著(P<0.05)。各处理所表示具体含义见表1。
    下载: 导出CSV

    表  4  正交试验各因素对东京四照花扦插生根指标的极差分析

    Table  4.   Range analysis of various factors in orthogonal test on rooting traits of softwood cutting on C. hongdongensis subsp. tonkinensis

    因素生根率/%不定根数/条最长根长/cm
    k1k2k3Rk1k2k3Rk1k2k3R
    调节剂种类(A) 58.04 46.67 64.81 18.14 4.75 4.68 4.56 0.19 7.86 7.98 8.03 0.17
    调节剂质量浓度(B) 64.07 56.96 48.48 15.59 4.25 5.18 4.56 0.93 8.33 7.90 7.82 0.51
    浸泡时间(C) 65.55 54.37 49.59 15.96 3.73 6.11 4.12 2.38 7.94 8.47 7.53 0.94
    下载: 导出CSV
    因素水平平均根长/cm生根指数
    k1k2k3Rk1k2k3R
    调节剂种类(A) 5.79 5.90 5.51 0.39 14.85 13.08 16.01 2.93
    调节剂质量浓度(B) 5.65 5.72 5.83 0.18 14.83 15.76 13.16 2.60
    浸泡时间(C) 5.76 6.05 5.41 0.64 13.84 19.71 10.39 9.32
      说明:k1k2k3为各因素3水平对应各试验结果之和的平均值,R表示极差。
    下载: 导出CSV

    表  5  扦插基质对东京四照花嫩枝扦插生根的影响

    Table  5.   Effect of substrates on rooting traits of softwood cutting on C. hongdongensis subsp. tonkinensis

    基质种类生根率/%不定根数/条最长根长/cm平均根长/cm生根指数
    S174.41±9.52 a6.43±0.42 a5.29±0.36 a3.36±0.18 a16.01±1.81 ab
    S251.12±3.10 ab4.38±1.04 b6.14±1.18 a4.46±0.82 a10.86±5.27 bc
    S382.22±4.16 a4.87±0.31 ab7.18±1.34 a4.89±0.88 a19.34±2.55 a
    S444.44±6.85 b3.33±0.97 b6.18±1.53 a3.89±0.93 a5.56±2.09 c
      说明:同列不同小写字母表示差异显著(P<0.05)。4种基质分别为蛭石(S1)、河沙(S2)、V(泥炭土)∶V(蛭石)∶V(珍珠岩)=2∶2∶1(S3)和V(泥炭土)∶V(黄土)=1∶1 (S4)。
    下载: 导出CSV

    表  6  生长阶段对东京四照花嫩枝扦插生根的影响

    Table  6.   Effects of growth phase on rooting traits of softwood cutting on C. hongdongensis subsp. tonkinensis

    生长阶段生根率/%不定根数/条最长根长/cm平均根长/cm生根指数
    初期77.78±4.16 a3.67±0.85 ab8.16±0.85 a5.64±0.48 a15.78±2.68 a
    中期82.22±4.16 a4.87±0.31 a7.18±1.34 a4.89±0.88 ab19.34±2.55 a
    末期55.56±8.32 b3.30±0.36 b4.53±0.70 b3.09±0.86 b5.63±1.81 b
      说明:同列不同小写字母表示差异显著(P<0.05)。
    下载: 导出CSV

    表  7  生根指标与生理指标之间的相关性分析

    Table  7.   Correlation analysis between rooting index and physiological index

    指标生根率生根指数可溶性糖淀粉可溶性蛋白PPO活性POD活性
    生根指数 0.830*
    可溶性糖 −0.918** −0.823*
    淀粉 −0.861* −0.820* 0.911*
    可溶性蛋白 −0.896* −0.850* 0.909* 0.844*
    PPO活性 0.619 0.384 −0.389 −0.359 −0.214
    POD活性 0.928** 0.889* −0.953** −0.903* −0.988** 0.298
    SOD活性 0.947** 0.729 −0.932** −0.879* −0.940** 0.390 0.948**
      说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)。
    下载: 导出CSV
  • [1] 陈梦倩, 范李节, 王小德. 香港四照花花芽分化的形态学观察[J]. 植物科学学报, 2018, 36(4): 501 − 507.

    CHEN Mengqian, FAN Lijie, WANG Xiaode. Morphological observation of flower bud differentiation of Dendrobenthamia hongkongensis ( Hemsl. ) Hutch. [J]. Plant Science Journal, 2018, 36(4): 501 − 507.
    [2] 韩维栋. 四照花类群种质资源及其开发利用[J]. 中国野生植物资源, 1993(1): 37 − 40.

    HAN Weidong. Cornus spp. germplasm resources and their development and utilization [J]. Chinese Wild Plant Resources, 1993(1): 37 − 40.
    [3] 孙大伟, 杨玲, 毛霞, 等. 外源CaCl2缓解东京四照花幼苗盐胁迫的生理机制[J]. 西北植物学报, 2023, 43(3): 441 − 449.

    SUN Dawei, YANG Ling, MAO Xia, et al. Physiological mechanism of CaCl2 application relieving salt-stressed seedlings of Cornus hongkongensis subsp. tonkinensis [J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(3): 441 − 449.
    [4] 崔毅婵, 林雪茜, 洑香香, 等. 不同四照花观赏价值的综合评价[J]. 植物资源与环境学报, 2022, 31(6): 43 − 51.

    CUI Yichan, LIN Xueqian, FU Xiangxiang, et al. Comprehensive evaluation on ornamental values of different Cornus spp. [J]. Journal of Plant Resources and Environment, 2022, 31(6): 43 − 51.
    [5] YUAN Jiaqiu, SUN Dawei, LU Qiang, et al. Responses of physiology, photosynthesis, and related genes to saline stress in Cornus hongkongensis subsp. tonkinensis (WP Fang) QY Xiang[J/OL]. Plants, 2022, 11(7): 940[2023-09-01]. doi: 10.3390/plants11070940.
    [6] 马青江, 孙操稳, 洑香香, 等. 东亚四照花群体中国潜在适生区预测研究[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 135 − 140.

    MA Qingjiang, SUN Caowen, FU Xiangxiang, et al. Identification of potential distribution region for East Asian dogwoods (Cornus) in China [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2019, 43(5): 135 − 140.
    [7] LU Qiang, YANG Ling, FU Xiangxiang, et al. Calcium ion richness in Cornus hongkongensis subsp. elegans (W. P. Fang et Y. T. Hsieh) Q. Y. Xiang could enhance its salinity tolerance[J/OL]. Forests, 2021, 12(11): 1522[2023-09-01]. doi: 10.3390/f12111522.
    [8] 孙大伟, 袁佳秋, 蔡梅, 等. 东京四照花盐胁迫响应下实时荧光定量PCR内参基因的筛选与验证[J]. 农业生物技术学报, 2023, 31(5): 1088 − 1099.

    SUN Dawei, YUAN Jiaqiu, CAI Mei, et al. Screening and verification of reference genes for real-time fluorescence quantitative PCR in Cornus hongkongensis subsp. tonkinensis under salt stress [J]. Journal of Agricultural Biotechnology, 2023, 31(5): 1088 − 1099.
    [9] INOUE S, ILOGU C, SOBZE J M. Effects of indole-3-butyric acid and age of stem cuttings on root morphology, growth, and survival of Cornus sericea [J]. Journal of Forestry Research, 2023, 34(2): 433 − 440.
    [10] 钱家连, 李迎超, 许慧慧, 等. 不同年龄栓皮栎嫩枝扦插生根及解剖学分析和酶活性变化[J]. 浙江农林大学学报, 2023, 40(1): 107 − 114.

    QIAN Jialian, LI Yingchao, XU Huihui, et al. Rooting, anatomical analysis and changes of enzyme activity of softwood cuttings of Quercus variabilis at different ages [J]. Journal of Zhejiang A&F University, 2023, 40(1): 107 − 114.
    [11] LÜ Gengxin, QING Jun, DU Hongyan, et al. Comparing rooting ability and physiological changes of two Eucommia ulmoides improved varieties[J/OL]. Forests, 2021, 12(9): 1267[2023-09-01]. doi: 10.3390/f12091267.
    [12] 朱晓宇, 童婉婉, 赵楚, 等. 冬青‘长叶阿尔塔’扦插生根及解剖学研究[J]. 浙江农林大学学报, 2022, 39(2): 347 − 355.

    ZHU Xiaoyu, TONG Wanwan, ZHAO Chu, et al. Root formation and anatomical structure of Ilex × altaclerensis‘Belgica Aurea’stem cuttings [J]. Journal of Zhejiang A&F University, 2022, 39(2): 347 − 355.
    [13] NASCIMENTO B, SÁ A C S, MORAES C, et al. Rooting cuttings of Ilex paraguariensis native to southern Brazil according to mother tree genotype, rooting environment and IBA use[J/OL]. Scientia Forestalis, 2020, 48(128): 3087[2023-09-01]. doi: 10.18671/scifor.v48n128.24.
    [14] CHEN Wangzun, HE Libing, TIAN Shiyi, et al. Factors involved in the success of Castanea henryi stem cuttings in different cutting mediums and cutting selection periods [J]. Journal of Forestry Research, 2021, 32(4): 1627 − 1639.
    [15] 周幼成, 钟秋平, 李清平, 等. 千年桐半木质化春梢扦插繁殖及生根机理研究[J]. 中南林业科技大学学报, 2020, 40(8): 25 − 36.

    ZHOU Youcheng, ZHONG Qiuping, LI Qingping, et al. Study on cutting propagation and rooting mechanism of semilignified spring shoots of Vernicia montana [J]. Journal of Central South University of Forestry &Technology, 2020, 40(8): 25 − 36.
    [16] MENG Xinya, WANG Zheng, HE Songlin, et al. Endogenous hormone levels and activities of IAA-modifying enzymes during adventitious rooting of tree peony cuttings and grafted scions [J]. Horticulture,Environment,and Biotechnology, 2019, 60(2): 187 − 197.
    [17] CHENG Qiangqiang, JI Dejia, GUO Xiaoyan, et al. Endogenous metabolic content of the cutting positions and ndole-3-butyric acid influence rooting of Toona ciliata var. pubescens stem cuttings [J]. Southern Forests:a Journal of Forest Science, 2021, 83(4): 284 − 293.
    [18] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 142 − 219.

    GAO Junfeng. Experimental Guidance for Plant Physiology[M]. Beijing: Higher Education Press, 2006: 142 − 219.
    [19] 刘昊, 宋晓波, 周乃富, 等. 吲哚丁酸对核桃嫩枝扦插生根及内源激素变化的影响[J]. 浙江农林大学学报, 2017, 34(6): 1038 − 1043.

    LIU Hao, SONG Xiaobo, ZHOU Naifu, et al. Adventitious root formation with IBA and endogenous hormones dynamics in walnut soft-cuttings [J]. Journal of Zhejiang A&F University, 2017, 34(6): 1038 − 1043.
    [20] 胡涛, 曹钰, 张鸽香. 美国流苏嫩枝扦插及生根内源激素含量的变化[J]. 西北林学院学报, 2019, 34(2): 109 − 115.

    HU Tao, CAO Yu, ZHANG Gexiang. Softwood cutting of Chionanthus virginicus and changes of endogenous hormone content during rooting period [J]. Journal of Northwest Forestry University, 2019, 34(2): 109 − 115.
    [21] SABATINO L, D’ANNA F, LAPICHINO G. Cutting type and IBA treatment duration affect Teucrium fruticans adventitious root quality [J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 42(2): 478 − 481.
    [22] 胡涛, 曹钰, 张鸽香. 基质和植物生长调节剂对美国流苏硬枝扦插生根的影响[J]. 浙江农林大学学报, 2019, 36(3): 622 − 628.

    HU Tao, CAO Yu, ZHANG Gexiang. Rooting of Chionanthus virginicus hardwood cuttings with media and plant growth regulator [J]. Journal of Zhejiang A&F University, 2019, 36(3): 622 − 628.
    [23] CHEN Wangzun, HE Libing, TIAN Shiyi, et al. Factors involved in the success of Castanea henryi stem cuttings in different cutting mediums and cutting selection periods [J]. Journal of Forestry Research, 2020, 32(4): 1627 − 2639.
    [24] 魏黔春, 江泽平, 刘建锋, 等. 侧柏古树扦插试验及插穗营养物质变化[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 63 − 71.

    WEI Qianchun, JIANG Zeping, LIU Jianfeng, et al. Effects of several factors on rooting of cutting propagation of ancient Platycladus orientalias and the changes of nutritive material [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(1): 63 − 71.
    [25] KIM E J, JIN S Y, JUNG H S, et al. Comparison of propagation methods and cutting collection time focusing on transplant growth, fruit quality, and yield in strawberry (Fragaria×ananassa Duch. ) [J]. Horticultural Science and Technology, 2023, 41(1): 1 − 10.
    [26] 赵爽, 刘志高, 冯彬, 等. 山木通扦插繁殖及生根机制[J]. 浙江农林大学学报, 2017, 34(5): 955 − 962.

    ZHAO Shuang, LIU Zhigao, FENG Bin, et al. Cutting propagation technology and rooting of Clematis finetiana [J]. Journal of Zhejiang A&F University, 2017, 34(5): 955 − 962.
    [27] 吕庚鑫, 孟益德, 庆军, 等. ‘华仲6号’杜仲嫩枝扦插生根的解剖及生理变化[J]. 林业科学, 2022, 58(2): 113 − 124.

    LÜ Gengxin, MENG Yide, QING Jun, et al. Changes of anatomical structure and physiology during softwood cutting rooting of Eucommia ulmoides ‘Huazhong No. 6’ [J]. Scientia Silvae Sinicae, 2022, 58(2): 113 − 124.
    [28] 王改萍, 王晓聪, 章雷, 等. 楸树扦插过程中插穗内含物变化分析[J]. 浙江农林大学学报, 2021, 38(2): 296 − 303.

    WANG Gaiping, WANG Xiaocong, ZHANG Lei, et al. Cutting test of Catalpa bungei and change analysis of cutting contents [J]. Journal of Zhejiang A&F University, 2021, 38(2): 296 − 303.
    [29] QIN Ruofan, ZHAO Qingrong, GU Chenrui, et al. Analysis of oxidase activity and transcriptomic changes related to cutting propagation of hybrid larch[J/OL]. Scientific Reports, 2023, 13(1): 1354[2023-09-01]. doi: 10.1038/s41598-023-27779-x.
    [30] YANG Wanxia, ZHUANG Jiaqi, DING Siyu, et al. Study on cutting cultivation technology and rooting mechanism of Cyclocarya paliurus [J]. Ecological Chemistry and Engineering S, 2022, 29(3): 379 − 389.
  • [1] 汪小荣, 邱红, 张启香, 吴家胜, 娄和强.  雌雄香榧嫩枝扦插生根及响应干旱的生理差异 . 浙江农林大学学报, 2024, 41(3): 478-485. doi: 10.11833/j.issn.2095-0756.20230471
    [2] 漆梦雯, 沈毅, 羊桂英, 余婷, 李吴晗, 周琪欢, 谢晓俊, 朱娅宁, 莫建初.  金属离子对黑翅土白蚁消化代谢的影响 . 浙江农林大学学报, 2024, 41(1): 154-160. doi: 10.11833/j.issn.2095-0756.20230219
    [3] 章磊, 徐祎萌, 白美霞, 周燕, 秦华, 徐秋芳, 陈俊辉.  生物质炭配施有机物料对红壤碳组分及酶生态化学计量特征的影响 . 浙江农林大学学报, 2024, 41(3): 506-516. doi: 10.11833/j.issn.2095-0756.20230468
    [4] 向玉勇, 张妍, 陶翠玲.  温度对金银花尺蠖幼虫、蛹和成虫4种酶活性的影响 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240471
    [5] 王瑞萍, 杨兴, 高玉蓉, 陆扣萍, 何丽芝, 吴家森, 王海龙.  锰改性生物质炭对砷铅在大蒜中积累及土壤酶活性的影响 . 浙江农林大学学报, 2024, 41(5): 1024-1036. doi: 10.11833/j.issn.2095-0756.20230584
    [6] 马行聪, 金文豪, 屠嘉莹, 盛卫星, 陈俊辉, 秦华.  不同优势菌根类型转变对土壤团聚体组成及性状的影响 . 浙江农林大学学报, 2023, 40(6): 1149-1157. doi: 10.11833/j.issn.2095-0756.20230376
    [7] 钱家连, 李迎超, 许慧慧, 王茜, 秦爱丽, 任俊杰, 王利兵, 于海燕.  不同年龄栓皮栎嫩枝扦插生根及解剖学分析和酶活性变化 . 浙江农林大学学报, 2023, 40(1): 107-114. doi: 10.11833/j.issn.2095-0756.20220143
    [8] 王桂芳, 索金伟, 王哲, 成豪, 胡渊渊, 张可伟, 吴家胜.  香榧种实膨大过程中蔗糖代谢及其基因表达 . 浙江农林大学学报, 2022, 39(1): 1-12. doi: 10.11833/j.issn.2095-0756.20210593
    [9] 谢林峰, 凌晓晓, 黄圣妍, 高浩展, 吴家森, 陈俊辉, 黄坚钦, 秦华.  临安区山核桃林地土壤水解酶活性空间分布特征及土壤肥力评价 . 浙江农林大学学报, 2022, 39(3): 625-634. doi: 10.11833/j.issn.2095-0756.20210417
    [10] 陈文博, 王旭东, 石思博, 季诗域, 叶正钱, 任泽涛, 刘璋.  长期菌渣化肥配施对稻田土壤酶活性的影响及交互效应 . 浙江农林大学学报, 2021, 38(1): 21-30. doi: 10.11833/j.issn.2095-0756.20200139
    [11] 胡涛, 曹钰, 张鸽香.  基质和植物生长调节剂对美国流苏硬枝扦插生根的影响 . 浙江农林大学学报, 2019, 36(3): 622-628. doi: 10.11833/j.issn.2095-0756.2019.03.025
    [12] 陈梦倩, 范李节, 王小德.  香港四照花外植体的抗褐化处理与诱导培养 . 浙江农林大学学报, 2018, 35(4): 778-784. doi: 10.11833/j.issn.2095-0756.2018.04.025
    [13] 赵艺, 徐华潮, 马艳, 史黎央.  虫酰肼和灭幼脲对锈色粒肩天牛氧化酶和解毒酶活性的影响 . 浙江农林大学学报, 2018, 35(1): 174-177. doi: 10.11833/j.issn.2095-0756.2018.01.023
    [14] 金侯定, 喻卫武, 曾燕如, 项美云, 戴文圣, 党婉誉.  香榧Torreya grandis ‘Merrillii’的扦插繁殖 . 浙江农林大学学报, 2017, 34(1): 185-191. doi: 10.11833/j.issn.2095-0756.2017.01.025
    [15] 张新宇, 董玉峰, 刘佩迎, 刘秀梅, 朱红, 王华田.  磁化处理对绒毛白蜡嫩枝扦插生根的影响 . 浙江农林大学学报, 2017, 34(5): 949-954. doi: 10.11833/j.issn.2095-0756.2017.05.024
    [16] 刘昊, 宋晓波, 周乃富, 马庆国, 裴东.  吲哚丁酸对核桃嫩枝扦插生根及内源激素变化的影响 . 浙江农林大学学报, 2017, 34(6): 1038-1043. doi: 10.11833/j.issn.2095-0756.2017.06.010
    [17] 姜培坤, 徐秋芳, 杨芳.  雷竹土壤水溶性有机碳及其与重金属的关系 . 浙江农林大学学报, 2003, 20(1): 8-11.
    [18] 张纪卯, 陈文荣, 陈能德, 何志斌, 陈巧女, 郑文.  峦大杉扦插生根及生长 . 浙江农林大学学报, 2001, 18(2): 139-143.
    [19] 陈登雄, 蔡邦平, 董建文, 陈木林.  使君子的扦插繁殖技术 . 浙江农林大学学报, 2000, 17(4): 384-388.
    [20] 钱莲芳, 黎章矩, 池方河, 倪丽芬, 王文潮.  银杏硬枝扦插与器官发生 . 浙江农林大学学报, 1993, 10(2): 125-132.
  • 期刊类型引用(5)

    1. 杨中元,娄厦,陈仕哲,Irina Fedorova Viktorovna,Dorzhievna Radnaeva Larisa,Elena Nikitina. 长江口滨海湿地有机碳循环过程及影响因素研究进展. 同济大学学报(自然科学版). 2024(02): 303-312 . 百度学术
    2. 杨杰. 外源氮和硅添加对毛竹植硅体碳的影响. 浙江农林大学学报. 2024(02): 369-378 . 本站查看
    3. 阿拉木斯,张秋良,张欣,菅亚男,刘智东,王新宇,王彦军. 外源氮输入对寒温带兴安落叶松林土壤CO_2通量的影响. 内蒙古农业大学学报(自然科学版). 2024(03): 31-38 . 百度学术
    4. 朱圆黎,肖国良. 外源氮输入对湿地碳汇功能的影响效应. 江苏林业科技. 2024(06): 39-44 . 百度学术
    5. 刘攀,陆梅,李聪,吕晶花,杨志东,赵旭燕,陈志明. 纳帕海典型草甸群落土壤有机碳储量及碳组分变化特征. 浙江农林大学学报. 2023(02): 274-284 . 本站查看

    其他类型引用(2)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230457

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/3/624

图(2) / 表(8)
计量
  • 文章访问数:  446
  • HTML全文浏览量:  36
  • PDF下载量:  12
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-09-07
  • 修回日期:  2023-12-22
  • 录用日期:  2024-01-19
  • 网络出版日期:  2024-05-22
  • 刊出日期:  2024-05-22

东京四照花嫩枝扦插繁殖及生根过程中生理指标的动态变化

doi: 10.11833/j.issn.2095-0756.20230457
    基金项目:  江苏省林业科技创新与推广项目(LYKJ〔2020〕26)
    作者简介:

    袁振安(ORCID: 0009-0003-8931-4080),从事人工林定向培育研究。E-mail: yuanzhenan@njfu.edu.cn

    通信作者: 洑香香(ORCID: 0000-0002-3338-4886),教授,博士,从事人工林定向培育研究。E-mail: xxfu@njfu.edu.cn
  • 中图分类号: S718.43

摘要:   目的  研究植物生长调节剂、扦插基质和生长阶段对东京四照花Cornus hongkongensis subsp. tonkinensis嫩枝扦插生根过程中的形态特征和生理生化特性,为东京四照花的繁殖和生产提供科学依据。  方法  以清水处理为对照,对植物生长调节剂种类[生根粉1号(ABT-1)、萘乙酸(NAA)和吲哚乙酸(IAA)]、质量浓度(100、300和500 mg·L−1)和浸泡时间(30、60和180 min)进行正交设计,采用4种扦插基质[蛭石(S1)、河沙(S2)、V(泥炭土)∶V(蛭石)∶V(珍珠岩)=2∶2∶1(S3)和V(泥炭土)∶V(黄土)=1∶1(S4)],在不同生长阶段(初期、中期和末期)进行嫩枝扦插,统计分析各生根指标,测定生根过程中营养物质质量分数和相关生根酶活性的变化。  结果  ①东京四照花插穗生根类型以皮部生根为主,占总生根数的58.60%。②在正交试验中,300 mg·L−1IAA浸泡30 min处理生根率最高(77.78%)。③在扦插基质中,S3基质中插穗生根率和生根指数均最高(82.22%和19.34)。④在生长阶段试验中,生长中期插穗生根率最高(82.22%)。⑤相较于对照,IAA处理有效促进了插穗体内的养分消耗,提高了氧化酶的活性。⑥相关分析表明:生根率与根原基诱导和愈伤形成期间内的可溶性糖、淀粉和可溶性蛋白呈显著负相关(P<0.05),与过氧化物酶(POD)和超氧化物歧化酶(SOD)呈极显著正相关(P<0.01)。  结论  在生长中期采制的穗条通过300 mg·L−1IAA浸泡30 min,扦插在S3基质中,生根率和生根指数均最高,分别可达82.22%和19.34。图2表7参30

English Abstract

陈雅文, 韩广轩, 蔡延江. 氮输入影响滨海湿地碳循环过程的模拟研究:进展与展望[J]. 浙江农林大学学报, 2021, 38(5): 883-895. DOI: 10.11833/j.issn.2095-0756.20210118
引用本文: 袁振安, 杜文婷, 刘国华, 等. 东京四照花嫩枝扦插繁殖及生根过程中生理指标的动态变化[J]. 浙江农林大学学报, 2024, 41(3): 624-633. DOI: 10.11833/j.issn.2095-0756.20230457
CHEN Yawen, HAN Guangxuan, CAI Yanjiang. Simulation research on the effects of nitrogen input on carbon cycle process in a coastal wetland: review and prospects[J]. Journal of Zhejiang A&F University, 2021, 38(5): 883-895. DOI: 10.11833/j.issn.2095-0756.20210118
Citation: YUAN Zhen’an, DU Wenting, LIU Guohua, et al. Cutting propagation of softwood and dynamic changes in physiological indicators during the rooting process of Cornus hongdongensis subsp. tonkinensis[J]. Journal of Zhejiang A&F University, 2024, 41(3): 624-633. DOI: 10.11833/j.issn.2095-0756.20230457
  • 四照花Cornus spp.为山茱萸科Cornaceae四照花属Cornus常绿或落叶小乔木或灌木,花序外有2对黄白色花瓣状大型苞片[1]。四照花主要包括东亚和北美2个大类群[2]。由于北美类群具有极高的观赏价值,已被大量引种栽培和推广应用,但成活率不高、抗病性弱[3]。因此,对东亚类群的资源开发和引种栽培显得尤为重要。其中,作为东亚类群的东京四照花Cornus hongkongensis subsp. tonkinensis因分布广、适应性强和独特观赏价值而备受关注[46];其种内不仅变异丰富,而且具有耐盐、耐高温等抗性[78]。东京四照花也称西南四照花,为常绿小乔木或灌木,主要分布于中国、日本和越南等东亚地区,在中国主要分布于贵州、四川、广西及云南等地,常发现于海拔900~2300 m的森林中。目前,东京四照花种群数量有限,扩大繁殖加快其推广和应用已显得尤为重要。然而东京四照花扦插育苗中存在扦插生根困难、成活率低等较多问题。

    树木插穗生根不仅受内在因素影响,如树种种类、插穗年龄和位置效应、插穗的养分状况[912]等,还受到扦插基质、环境因素和生长阶段[1315]等外在因素的影响。插穗的酶活性、营养物质与生根密切相关,如过氧化物酶(POD)和超氧化物歧化酶(SOD)具有清除超氧自由基的作用,从而增强插穗对逆境的抵抗能力[16],且POD与不定根的诱导和生长密切相关[17];多酚氧化酶(PPO)通过催化酚类物质与吲哚乙酸(IAA)形成IAA-酚酸复合物,从而促进根原基的诱导和不定根的形成[18]。鉴于此,本研究以4年生东京四照花母树的半木质化嫩枝为插穗材料,测定不同处理插穗的生根率、生根数量和根长等变化,观察不同时期插穗茎段营养物质质量分数和酶活性变化,旨在建立东京四照花繁殖体系,并探究生根的生理机制。

    • 扦插样地设在江苏农林职业技术学院内(31°14′~33°38′N,118°23′~119°24′E),该区属北亚热带中部气候区,扦插池室温控制在35~38 ℃,空气相对湿度保持在80%~85%。

    • 插穗采自于江苏农林职业技术学院试验地的4年生东京四照花实生苗。采集健康饱满的枝条,选择带有2对芽的插穗,剪制为直径0.35~0.55 cm、长度8.00~12.00 cm的枝条;插穗上切口平剪,下切口斜剪成45°~50°的斜面,上下切口离芽距离均2.00~3.00 cm;保留插穗上部1~2片叶,叶片保留1/3~1/2大小。

    • 包括调节剂种类(A)、调节剂质量浓度(B)及浸泡时间(C) 3个因素,每个因素设3个水平,采用正交L9(34)试验设计;以清水处理为对照(ck),共10个处理(表1)。2021年7月12日进行扦插;扦插基质配比为V(泥炭土)∶V(蛭石)∶V(珍珠岩)=2∶2∶1。

      表 1  植物生长调节剂处理L9(34)正交试验设计

      Table 1.  Orthogonal test design for hormone treatment L9 (34)

      处理因素水平处理因素水平
      ABCABC
      ck  000A2B2C3223
      A1B1C1111A2B3C1231
      A1B2C2122A3B1C3313
      A1B3C3133A3B2C1321
      A2B1C2212A3B3C2332
        说明:A1~3分别是生根粉1号(ABT-1)、萘乙酸 (NAA) 和吲哚乙酸 (IAA);B1~3分别是100、300 和 500 mg·L−1;C1~3分别是浸泡30、60和180 min。
    • 共设置4种扦插基质,分别为:蛭石(S1)、河沙(S2)、V(泥炭土)∶V(蛭石):V(珍珠岩)=2∶2∶1(S3)和V(泥炭土)∶V(黄土)=1∶1(S4)。于2021年8月15日进行试验,插穗用A3B2C1处理。

    • 于2021年选取生长初期(7月12日)、生长中期(8月15日)、生长末期(9月1日) 3个生长阶段,以S3为扦插基质,插穗用A3B2C1处理。

      上述3个试验均以当年半木质化枝条为扦插材料,每处理3次重复,每重复30根插穗。

    • 以当年生半木质化枝条为扦插材料,于2021年7月12日选用S3为扦插基质,插穗用A3B2C1处理,以清水处理为对照(ck)。每重复150根插穗,重复3次。根据预试验观察到的插穗的动态变化,将生根过程分为5个时期:扦插前(0 d)、芽萌动阶段(10 d)、插穗基部膨大阶段(20 d)、不定根发生阶段(30 d)、不定根大量发生阶段(40 d)。每个阶段从各重复中取15根插穗,剥取插穗基部1~3 cm处韧皮部材料,保存在−80 ℃冰箱中用于生理指标测定。

    • 扦插株行距为10 cm×15 cm,深度为插穗长度的1/3~1/2。扦插后浇透水,并覆盖透光率为50%的遮光网,每2周用600倍液多菌灵喷洒消毒,及时清除杂草。采用自动喷雾系统保持适宜的基质含水量和空气湿度。

    • 扦插60 d后统计生根率(%)、不定根数(条);测量不定根长(cm),计算平均根长(cm)和生根指数,生根指数=生根率×平均根数×平均根长。

    • 采用蒽酮-硫酸比色法测定可溶性糖和淀粉,采用G-250考马斯亮蓝法测定可溶性蛋白;采用愈创木酚法测定POD活性,采用邻苯二酚法测定PPO活性,采用氮蓝四唑(NBT)法测定SOD活性[19]

    • 利用Excel 2017和SPSS 19.0统计分析数据,并进行差异显著性分析和Duncan多重比较。

    • 根据插穗的外部形态观察(图1),东京四照花嫩枝插穗的愈伤组织部位和皮部均可以产生不定根,其中以皮部生根类型为主,占生根数的58.6%;混合生根类型次之,占生根数的30.1%;愈伤生根比例最少,仅为11.3%。

      图  1  东京四照花嫩枝扦插生根类型

      Figure 1.  Rooting type of softwood cutting on C. hongdongensis subsp. tonkinensis

    • 方差分析(表2)表明:植物生长调节剂种类和浸泡时间对生根率的影响都达到了显著水平(P<0.05);相比较而言,植物生长调节剂种类对生根率的影响大于浸泡时间,而植物生长调节剂质量浓度对生根率无显著影响。浸泡时间对不定根数的影响差异极显著(P<0.01),而植物生长调节剂种类和质量浓度对不定根数的影响差异不显著。浸泡时间对生根指数的影响差异极显著(P<0.01),而植物生长调节剂种类和质量浓度对生根指数的影响差异不显著。尽管植物生长调节剂种类、质量浓度和浸泡时间对最长根长和平均根长有一定影响,但差异不显著。

      表 2  各因素对东京四照花扦插生根指标的方差分析

      Table 2.  Variance analysis of different factors on rooting indexes of softwood cutting on C. hongdongensis supsp. tonkinensis

      指标方差来源平方和均方FP指标方差来源平方和均方FP
      生根率  A 1 513.702 756.851 4.735 0.021 C 3.384 1.692 0.808 0.458
      B 1 097.004 548.502 3.432 0.052
      C 1 207.954 603.977 3.779 0.041平均根长 A 0.736 0.368 0.275 0.762
      B 0.148 0.074 0.054 0.947
      不定根数 A 0.178 0.089 0.032 0.968 C 1.844 0.922 0.713 0.500
      B 4.038 2.019 0.776 0.472
      C 28.877 14.438 9.209 0.001生根指数 A 39.233 19.616 0.823 0.453
      B 26.276 13.138 0.551 0.585
      最长根长 A 0.114 0.072 0.032 0.968 C 400.006 200.003 8.391 0.002
      B 0.473 0.236 0.107 0.899
        说明:表中各项指标自由度均为2。A. 调节剂种类;B. 调节剂质量浓度;C. 浸泡时间。

      表3可以看出:A3B2C1处理的生根率最高,达77.78%,而A2B2C3处理的生根率最低,仅为41.11%;从不定根数来看,A1B2C2处理最高,达6.89条,而A1B3C3处理最低,仅有3.61条;生根指数方面,A3B3C2处理最高,达21.32,而A1B3C3处理最低,仅有8.76。植物生长调节剂对最长根长和平均根长影响差异不显著;最长根长的变异范围为7.49~8.80 cm,平均根长的变异范围为5.00~6.25 cm。

      表 3  植物生长调节剂对东京四照花嫩枝扦插生根性状的影响

      Table 3.  Effects of hormone treatment on rooting traits of softwood cutting on C. hongdongensis subsp. tonkinensis

      处理生根率/%不定根数/条最长根长/cm平均根长/cm生根指数
      ck  45.56±8.32 b4.28±0.96 bc8.40±1.31 a5.49±0.17 a10.46±1.95 c
      A1B1C175.56±11.33 a3.76±0.61 c8.02±2.09 a5.71±1.41 a15.75±3.71 abc
      A1B2C252.00±13.49 b6.89±2.01 a8.06±1.16 a5.99±0.53 a20.03±3.49 ab
      A1B3C346.56±16.64 b3.61±0.80 c7.50±1.63 a5.68±2.07 a8.76±3.02 c
      A2B1C255.56±8.32 ab5.21±0.72 abc8.80±0.44 a6.25±0.62 a17.79±2.32 abc
      A2B2C341.11±11.33 b4.98±0.18 abc7.49±0.46 a5.54±0.54 a11.46±3.83 bc
      A2B3C143.33±8.16 b3.84±0.37 bc7.64±0.47 a5.92±0.64 a10.00±2.98 c
      A3B1C361.11±3.14 ab3.78±1.66 c7.60±2.30 a5.00±1.31 a10.94±4.74 c
      A3B2C177.78±4.16 a3.67±0.85 c8.16±0.85 a5.64±0.48 a15.78±2.68 abc
      A3B3C255.56±9.56 ab6.22±0.87 ab8.34±1.14 a5.90±0.62 a21.32±7.37 a
        说明:同列不同小写字母表示差异显著(P<0.05)。各处理所表示具体含义见表1。
    • 表4可知:各因素对生根率的影响从大到小依次为植物生长调节剂种类、浸泡时间、植物生长调节剂质量浓度;对于不定根数和最长根长的影响从大到小依次为浸泡时间、植物生长调节剂质量浓度、植物生长调节剂种类;对于平均根长和生根指数的影响从大到小依次为浸泡时间、植物生长调节剂种类、植物生长调节剂质量浓度。由此可见,植物生长调节剂种类对生根率的影响最大,对于不定根数、最长根长、平均根长、生根指数来说,浸泡时间的影响则更为突出。

      表 4  正交试验各因素对东京四照花扦插生根指标的极差分析

      Table 4.  Range analysis of various factors in orthogonal test on rooting traits of softwood cutting on C. hongdongensis subsp. tonkinensis

      因素生根率/%不定根数/条最长根长/cm
      k1k2k3Rk1k2k3Rk1k2k3R
      调节剂种类(A) 58.04 46.67 64.81 18.14 4.75 4.68 4.56 0.19 7.86 7.98 8.03 0.17
      调节剂质量浓度(B) 64.07 56.96 48.48 15.59 4.25 5.18 4.56 0.93 8.33 7.90 7.82 0.51
      浸泡时间(C) 65.55 54.37 49.59 15.96 3.73 6.11 4.12 2.38 7.94 8.47 7.53 0.94
      因素水平平均根长/cm生根指数
      k1k2k3Rk1k2k3R
      调节剂种类(A) 5.79 5.90 5.51 0.39 14.85 13.08 16.01 2.93
      调节剂质量浓度(B) 5.65 5.72 5.83 0.18 14.83 15.76 13.16 2.60
      浸泡时间(C) 5.76 6.05 5.41 0.64 13.84 19.71 10.39 9.32
        说明:k1k2k3为各因素3水平对应各试验结果之和的平均值,R表示极差。

      影响生根率的最优组合为A3B1C1 (100 mg·L−1IAA浸泡30 min);影响不定根数的最优组合为A1B2C2 (300 mg·L−1ABT-1浸泡60 min);影响最长根长的最优组合为A3B1C2 (100 mg·L−1IAA浸泡60 min);影响平均根长的最优组合为A2B3C2 (500 mg·L−1NAA浸泡60 min);影响生根指数的最优组合为A3B2C2 (300 mg·L−1IAA浸泡60 min)。

    • 表5所示:扦插基质对嫩枝扦插生根率影响差异显著(P<0.05)。其中,混合基质S3的生根率最高,达82.22%:其次为单一基质S1,生根率为74.41%;最低的是混合基质S4,生根率仅为44.44%。基质对不定根数的影响差异显著(P<0.05),单一基质S1的不定根数最多,达6.43条;其次是混合基质S3,不定根数为4.87条;混合基质S4的不定根数最少,仅有3.33条。相应的,扦插基质对生根指数的影响差异显著(P<0.05),混合基质S3的生根指数最高,达19.34;其次是单一基质S1,生根指数为16.01;最低的是混合基质S4,仅为5.56。扦插基质对生根插穗的最长根长和平均根长影响差异不显著。

      表 5  扦插基质对东京四照花嫩枝扦插生根的影响

      Table 5.  Effect of substrates on rooting traits of softwood cutting on C. hongdongensis subsp. tonkinensis

      基质种类生根率/%不定根数/条最长根长/cm平均根长/cm生根指数
      S174.41±9.52 a6.43±0.42 a5.29±0.36 a3.36±0.18 a16.01±1.81 ab
      S251.12±3.10 ab4.38±1.04 b6.14±1.18 a4.46±0.82 a10.86±5.27 bc
      S382.22±4.16 a4.87±0.31 ab7.18±1.34 a4.89±0.88 a19.34±2.55 a
      S444.44±6.85 b3.33±0.97 b6.18±1.53 a3.89±0.93 a5.56±2.09 c
        说明:同列不同小写字母表示差异显著(P<0.05)。4种基质分别为蛭石(S1)、河沙(S2)、V(泥炭土)∶V(蛭石)∶V(珍珠岩)=2∶2∶1(S3)和V(泥炭土)∶V(黄土)=1∶1 (S4)。
    • 表6所示:生长阶段对嫩枝扦插生根率影响差异显著(P<0.05)。其中,生长中期扦插的生根率最高,为82.22%;其次是生长初期扦插的生根率(77.78%);生长末期的生根率最低,仅为55.56%。生长阶段对不定根数影响差异显著(P<0.05), 其中生长中期生根数最多(4.87条),其次是生长初期(3.67条),而生长末期不定根数最少,为3.30条。生长阶段对根长的影响显著(P<0.05),生长初期扦插生根的最长根长(8.16 cm)和平均根长(5.64 cm)最大;其次是生长中期,分别为7.18和4.89 cm;而生长末期的最长根长(4.53 cm)和平均根长(3.09 cm)都最低。生长阶段对生根指数的影响差异显著(P<0.05),其中生根指数最高的是生长中期(19.34);其次是生长初期(15.78);而生长末期的生根指数最低,仅有5.63。

      表 6  生长阶段对东京四照花嫩枝扦插生根的影响

      Table 6.  Effects of growth phase on rooting traits of softwood cutting on C. hongdongensis subsp. tonkinensis

      生长阶段生根率/%不定根数/条最长根长/cm平均根长/cm生根指数
      初期77.78±4.16 a3.67±0.85 ab8.16±0.85 a5.64±0.48 a15.78±2.68 a
      中期82.22±4.16 a4.87±0.31 a7.18±1.34 a4.89±0.88 ab19.34±2.55 a
      末期55.56±8.32 b3.30±0.36 b4.53±0.70 b3.09±0.86 b5.63±1.81 b
        说明:同列不同小写字母表示差异显著(P<0.05)。
    • 如2A所示:对照组和处理组插穗的可溶性糖均呈“V”字型的变化趋势。0~20 d时可溶性糖急剧下降,此期间插穗经过萌芽、愈伤组织形成,插穗基部代谢活跃,消耗了大量的营养物质;在20~40 d时,淀粉水解补充可溶性糖,叶片光合产物运输养分,可溶性糖缓慢上升。处理组可溶性糖的变化幅度大于对照组,特别在20 d时,处理组可溶性糖显著低于对照组(P<0.05),说明IAA处理加快了愈伤组织和不定根的形成,从而消耗了更多的养分;后期则由于根系较早形成,从而促进了光合产物的积累。

    • 图2B所示:淀粉的变化趋势与可溶性糖一致,均表现出先降低后上升的趋势,但时间稍有滞后。0~30 d,插穗淀粉均在逐渐下降,且在30 d时达到谷值。前20 d已有大量的可溶性糖及部分淀粉降解产生的可溶性糖用于根原基的形成与分化,但无功能性根系,需继续降解淀粉;30~40 d,具备根系插穗的光合产物能提供生长所需并合成淀粉,导致淀粉上升。经过IAA处理的插穗淀粉变化趋势大于对照组,特别在30 d时,对照组对淀粉的消耗小于植物生长调节剂,说明对照组生根量少且所需养分少。

      图  2  东京四照花嫩枝插穗生根过程中生理指标的变化

      Figure 2.  Changes of physiological index during rooting process of softwood cutting on C. hongdongensis subsp. tonkinensis

    • 图2C所示:0~30 d,对照和处理组的可溶性蛋白逐步下降,为根系形成过程中的细胞增殖、DNA复制提供物质条件;30~40 d,处理组已形成的根系开始合成可溶性蛋白并加以积累,而对照组可溶性蛋白持续下降,说明对照组生根较慢,不定根的形成仍然需要消耗可溶性蛋白。经过IAA处理,插穗的可溶性蛋白在生根前始终低于对照组,说明植物生长调节剂通过加快利用可溶性蛋白促进插穗生根。

    • 对照组和处理组插穗的POD活性均呈现“M”型变化趋势,均在10和30 d出现高峰(图2D)。0~10 d,插穗离体处于逆境胁迫,POD活性大幅上升以消除产生的自由基,避免插穗受害;10~20 d,POD活性下降,使体内IAA质量浓度升高,有利于皮部膨大处开裂,从而形成愈伤组织及根原基诱导;20~30 d时根原基诱导完成,此时POD活性上升,进而氧化过多的IAA,促进了根系的伸长与生长;30~40 d,由于插穗形成完整根系成为独立植株,致使植株抵抗能力增强,POD活性又开始降低。相比较而言,处理组在愈伤膨大期(10~20 d)的POD活性显著大于对照组(P<0.05),说明IAA处理提高了插穗的抗逆能力。

    • 对照组和处理组插穗的SOD活性均呈先升后降的变化趋势(图2E)。0~20 d,SOD活性逐渐上升,消除了插穗因离体而产生的大量自由基,降低自由基对植物细胞的伤害;20~40 d,处理组SOD活性开始下降,说明处理组插穗逐渐恢复完整植株的功能,对不利环境的抵抗能力逐渐增强,体内自由基降低,SOD活性逐渐降低。而对照组SOD活性的峰值比处理组晚了约10 d,说明对照组插穗根系形成时间晚于处理组。处理组SOD活性在生根前都高于对照组,表明IAA处理能提高SOD活性,清除插穗体内的自由基来提高抗逆性,从而有利于生根。

    • 对照组和处理组插穗的PPO活性均呈先降低后升高再降低的变化趋势,但处理组插穗的PPO活性变化趋势更加明显(图2F)。0~10 d,通过使插穗发生褐变,PPO活性降低,避免插穗感染;10~30 d,PPO活性显著上升(P<0.05),此时PPO通过催化苯酚氧化生成高活性的邻醌类化合物,促进生根;30~40 d,PPO活性呈现下降趋势,此时根系进入伸长和生长。由此可见,PPO不仅反映了插穗自身的防御能力和褐化过程,还可能与愈伤组织的形成及不定根的形成密切相关。

    • 表7可见:生根率与生根指数呈显著正相关(P<0.05);生根率与淀粉和可溶性蛋白呈显著负相关(P<0.05),与可溶性糖呈极显著负相关(P<0.01);生根率与POD和SOD活性呈极显著正相关(P<0.01)。此外,各生理指标之间也表现出一定的相关性,淀粉与可溶性糖呈显著正相关(P<0.01),两者与POD和SOD活性呈显著负相关(P<0.05);可溶性蛋白与POD和SOD活性呈极显著负相关(P<0.01);POD与SOD活性呈极显著正相关(P<0.01)。结合前期分析,本研究认为插穗在20和30 d内养分含量越低(即消耗越大),更多的养分则用于根原基诱导和愈伤组织形成,生根率越高;在测定的3种酶活性中,POD和SOD活性与生根率呈极显著正相关(P<0.01),说明东京四照花扦插生根过程中消除自由基是影响生根的重要因子。

      表 7  生根指标与生理指标之间的相关性分析

      Table 7.  Correlation analysis between rooting index and physiological index

      指标生根率生根指数可溶性糖淀粉可溶性蛋白PPO活性POD活性
      生根指数 0.830*
      可溶性糖 −0.918** −0.823*
      淀粉 −0.861* −0.820* 0.911*
      可溶性蛋白 −0.896* −0.850* 0.909* 0.844*
      PPO活性 0.619 0.384 −0.389 −0.359 −0.214
      POD活性 0.928** 0.889* −0.953** −0.903* −0.988** 0.298
      SOD活性 0.947** 0.729 −0.932** −0.879* −0.940** 0.390 0.948**
        说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)。
    • 植物生长调节剂通过调节插穗生根过程中内源激素水平和氧化酶的活性,刺激根原基的启动,有助于提高插穗的生根率,但不同的植物生长调节剂对树种生根的影响不同[19]。胡涛等[20]研究发现:吲哚丁酸(IBA)处理的美国流苏Chionanthus virginicus,其插穗生根率要显著高于IAA和NAA处理。此外,植物生长调节剂的质量浓度和浸泡时间也显著影响插穗生根。SABATINO等[21]研究发现:银香科科Teucrium frutican插穗在IBA中浸泡5 min的生根率最高,而浸泡7 min的不定根数最多。本研究结果证明了这一点,合理的选择植物生长调节剂可以有效提高东京四照花插穗的生根率。

      扦插基质由于理化性质的差异,导致其在保温性、保湿性、透气性、透水性等方面有所不同[22]。研究表明:混合基质的生根效果优于单一基质的生根效果[23]。本研究也得到了相似的观点,插穗在S3混合基质中的生根率和根长显著高于其他处理,说明泥炭土、蛭石和珍珠岩的混合基质土壤结构疏松、透气状态和营养状况良好,有利于插穗的生根与生长,也与东京四照花不耐水湿的特性有关。

      处于不同生长发育阶段的插穗由于内源激素水平、生根相关酶的活性和养分储备存在差异,从而影响插穗的不定根形成[24]。KIM等[25]发现:在5月采集的草莓Fragaia×ananassa插穗生根成活率最高,并随着插穗的成熟,生根率逐渐降低。本研究发现:东京四照花在生长中期扦插生根率最高,为82.22%;此前的穗条木质化程度不够且养分储备不足,此后的穗条内可能产生了过多的抑制类物质,以上情况均影响了根系的产生。

    • 本研究发现:东京四照花插穗在生根前,可溶性糖和淀粉均呈现“先下降、后上升”的趋势,这是由于刚扦插时会消耗插穗体内部分可溶性糖和淀粉以提供生根所需养分;随着根系形成及光合能力的提升,促进了可溶性糖和淀粉的合成和转化[26]。在生根过程中,可溶性蛋白呈持续下降趋势,一方面提供插穗生根所需的能量,另一方面以蛋白酶类的形式参与调控生根生理生化。

      POD与SOD不仅参与植物的氧化胁迫反应,而且在植物体内的多种生理生化反应中发挥重要的作用[27]。本研究中,POD与SOD在插穗扦插后上升,有助于清除插穗体内的自由基,提高插穗的抗逆性。此外,POD还通过调节IAA水平来影响插穗愈伤组织的形成和不定根的诱导与生长,相似的结果在楸树Catalpa bungei[28]扦插生根研究中也有报道。PPO通过褐变插穗,避免其切口感染,同时催化IAA形成的IAA-酚酸复合物有助于插穗生根[29]。本研究发现:在插穗生根过程中,PPO活性在前期升高,在不定根发育时期出现峰值,说明PPO有效促进了插穗根系的生长,这与YANG等[30]的研究结果一致。

    • 采用质量浓度为300 mg·L−1的IAA溶液浸泡东京四照花生长中期(8月中旬)的半木质化插穗30 min,扦插在V(泥炭土)∶V(蛭石)∶V(珍珠岩)=2∶2∶1的基质中,生根率和生根指数分别高达82.22%和19.34;生根类型主要以皮部生根为主。IAA处理可以加快插穗可溶性糖、淀粉和可溶性蛋白的代谢速度,并提高POD、SOD和PPO的活性以促进生根。

参考文献 (30)

目录

/

返回文章
返回