留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

世界桉树林土壤微生物研究综述

韦菊娴 王聪 何斌 尤业明 黄雪蔓

杨开业, 巩合德, 李敬, 等. 元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征[J]. 浙江农林大学学报, 2020, 37(5): 849-859. DOI: 10.11833/j.issn.2095-0756.20190647
引用本文: 韦菊娴, 王聪, 何斌, 等. 世界桉树林土壤微生物研究综述[J]. 浙江农林大学学报, 2022, 39(5): 1144-1154. DOI: 10.11833/j.issn.2095-0756.20210701
YANG Kaiye, GONG Hede, LI Jing, et al. Dynamic characteristics of soil respiration of Savanna ecosystem in dry hot valley of Yuanjiang[J]. Journal of Zhejiang A&F University, 2020, 37(5): 849-859. DOI: 10.11833/j.issn.2095-0756.20190647
Citation: WEI Juxian, WANG Cong, HE Bin, et al. Research progress on soil microorganisms in eucalypt forests[J]. Journal of Zhejiang A&F University, 2022, 39(5): 1144-1154. DOI: 10.11833/j.issn.2095-0756.20210701

世界桉树林土壤微生物研究综述

DOI: 10.11833/j.issn.2095-0756.20210701
基金项目: 国家自然科学基金资助项目(31760201,41807097);广西自然科学基金资助项目(2019GXNSFBA245096);广西科技计划项目(AD19245194)
详细信息
    作者简介: 韦菊娴(ORCID: 0000-0002-4645-840X),从事森林培育与地力维持研究。E-mail: 846644767@qq.com
    通信作者: 王聪(ORCID: 0000-0002-5641-9594),讲师,博士,从事土壤养分循环研究。E-mail: wangcuriel@foxmail.com
  • 中图分类号: S714.3

Research progress on soil microorganisms in eucalypt forests

  • 摘要: 土壤微生物主要通过参与养分元素循环和能量流动等过程来影响桉树生长发育,在提高土壤肥力和生产力方面扮演着重要角色。桉树作为世界三大速生树种之一,种类多,抗逆性强,适应性广。由于生态系统的复杂性和土壤微生物学研究技术手段的限制,桉树林土壤微生物多样性和功能的研究较少,当前对桉树林土壤微生物群落特征的研究大多处于初级阶段。本研究系统综述了不同经营方式、林分类型和林分年龄条件下桉树林土壤微生物群落特征的变化规律及研究进展。与桉树天然林相比,桉树人工林土壤微生物数量一般较少。与桉树人工纯林相比,桉树混交林能提高土壤微生物数量、多样性和活性。桉树林土壤微生物数量一般随林龄的增长而增加,而外生菌根真菌与内生菌根真菌多样性随林龄的增长而下降。分析了土壤微生物参与桉树林土壤养分元素循环和重金属污染修复的作用机制,并对桉树林土壤微生物研究和分析方法及其应用进行了展望。可为维持桉树林土壤健康、促进林业绿色可持续发展提供科学指导。表1参94
  • 土壤呼吸又被称为土壤二氧化碳(CO2)排放通量,是土壤中的碳以CO2形式从土壤向大气圈流动的结果,是陆地生态系统碳循环中一个重要环节[1]。土壤中的碳储量约1 500 Gt,超过了植被(约560 Gt)和大气含量(约750 Gt)的总和[2]。全球每年因土壤呼吸作用向大气中释放的CO2量约是77 Pg,其量值仅次于全球陆地总初级生产力,是化石燃料燃烧所产生的CO2的10倍[3-4],是碳进入大气系统的主要途径之一[5]。因此,土壤呼吸的一些细小变化都会对大气的CO2浓度产生影响,进而造成全球性的气候变化。土壤呼吸受植被类型、土壤温度、湿度、养分、微生物等因素的交互影响[6-9]。有研究表明:土壤温度和土壤呼吸速率之间存在着明显的指数相关关系[10-11],土壤呼吸对温度变化的敏感性则通常用Q10表示,即温度每升高10 ℃土壤呼吸的变化倍数[12]。土壤湿度对土壤呼吸的影响十分显著,在干旱半干旱地区土壤湿度甚至成为影响土壤呼吸的主要控制因子[13],而在元江干热河谷这种干热的特殊环境下对土壤呼吸特征及其调控因子等方面的研究还尚不明确。热带与亚热带的萨王纳生态系统占据了全球陆地面积的1/6,占据陆地生态系统净初级生产力的30%[14-15],因而,萨王纳生态系统对全球的物质循环、气候变化等方面都至关重要,另外,根据相关研究:萨王纳生态系统是全球温室气体主要的排放源之一[16-18]。在中国,萨王纳系统主要表现为干热河谷的稀树灌草丛生态系统,元江干热河谷就是中国萨王纳生态系统的典型代表,该系统因复杂的地理环境和局部小气候的综合作用形成了独特的干热生境:焚风盛行,年均气温20 ℃以上,降水量小,蒸发量大[19-21]。目前中国对于干热河谷稀树灌草丛生态系统土壤呼吸的相关研究和报道还很鲜见,本研究利用实测数据,探究了干热河谷稀树灌草丛生态系统土壤呼吸的特征和变化规律,及其与土壤温度和土壤湿度的相关关系,计算该生态系统土壤CO2年排放量和Q10。可为国家温室气体清单估算提供基础数据;为进一步预测气候变化对干热河谷稀树灌草丛生态系统土壤呼吸的影响提供参考。

    监测样地位于云南省元江县普漂村的元江国家级自然保护区试验区内,距离元江县城约25 km。样地建在中国科学院西双版纳热带植物园元江干热河谷生态系统研究站1 hm2永久样地旁,海拔570 m,23°28′N,102°10′E,地形相对平坦,土壤类型为燥红壤,0~20 cm土壤有机质质量分数为1.2%,pH 7.3(土水比为1.0∶2.5)。50 a(1965−2014)年平均气温23.8 ℃,最冷月平均气温16.7 ℃,最热月平均气温28.6 ℃,≥10 ℃年积温达8 708.9 ℃;干湿季节分明,干季为11月至翌年4月,雨季为5−10月;50 a年平均降水799.9 mm,其中79.2%的降水集中在雨季[22]。群落林冠高度约6 m,优势种为厚皮树Lannea coromandelica、霸王鞭Euphorbia royleana、老人皮Polyalthia cerasoides、余甘子Phyllanthus emblica;灌丛高度一般在1~3 m,优势种为虾子花Woodfordia fruticosa、云南黄素馨Jasminum mesnyi;草本主要以多年生禾本科Poaceae植物扭黄茅Heteropogon contortus为优势种[23-24]

    考虑该区域植被状况及代表性,在中国科学院西双版纳热带植物园元江干热河谷生态站的取样样地中选取5块10 m×10 m的典型样地,每个典型样地间相距10 m,在每块样地中分别放置3个采样桶,共计15个采样桶。采样桶为圆柱形聚氯乙烯(PVC)桶,桶高为20 cm,直径15 cm,每个小桶配1个底座,底座高5 cm,实验前1个月安置采样桶,采样桶底座压入土中,并长期保留在样地中。桶盖用惰性PVC板制作而成,桶盖上打有3个直径5 mm的圆孔,小孔用来插接进、出气管和电子温度计。测量时用黏胶和橡皮泥将桶盖密封在桶身上。

    土壤呼吸:采用红外CO2分析法,测定土壤呼吸中的CO2成分,测定仪器为Li-820(Li-Cor,美国)。每次测定前24 h,齐地剪去地表植物,去除植被的光合作用和呼吸作用对土壤呼吸的影响[25-27]。测定时间为8:30−11:00,实验前先预热仪器约30 min,测量时收集有效数据2 min。从2014年6月下旬开始测量至2015年6月上旬结束,每月测定2次(上半月下半月各1次,间隔10 d以上),每季度用标气校正Li-820[28]

    环境因子测定:测定土壤呼吸的同时,采用长杆温度计在气室顶部小孔插入测定气室温度,在采样桶周围10 cm内埋设HOBO温度采集器,测定5、10 cm处土壤温度。采用TDR 100土壤水分速测仪测定采样桶周边0~5、0~10 cm土壤体积含水量,简称5、10 cm土壤湿度。

    1.4.1   土壤呼吸计算
    $$ {F=}\frac{{M}}{{{V}}_{{0}}}\frac{{P}}{{{P}}_{{0}}}\frac{{{T}}_{{0}}}{{T}}{H}\frac{{{d}}_{{c}}}{{{d}}_{{t}}}\text{。}$$ (1)

    式(1)中:F为CO2通量(mg·m−2·h−1),M为CO2摩尔质量(g·mol−1),P0T0为理想气体标准状态下的空气压力和气温(分别为1 013.25 hPa和273.15 K),V0为CO2在标准状态下的摩尔体积,即22.41 L·mol−1H为采样箱内气室高度(m),PT为采样时箱内的实际气压(hPa)和气温(℃),dc/dt为桶内CO2浓度随时间变化的回归曲线斜率。年通量计算:把干季、雨季和全年观测的土壤呼吸速率的分别进行平均计算,分别作为观测期内干季、雨季和全年的日平均值,根据干季、雨季的天数计算得到干季、雨季和全年通量。

    1.4.2   拟合计算

    土壤温度和土壤呼吸的关系采用指数方程进行拟合[29]

    $$ {R}_{\rm{S}}{=}{{a}}_{{1}}{\rm{exp}}\;({b_{1}{T}})\text{。} $$ (2)

    Q10计算方程为:

    $$ {{Q}}_{{10}}{=}{\rm{exp}}{(}{10}{{b}}_{{1}}{)}\text{。} $$ (3)

    土壤湿度和土壤呼吸的关系采用二次曲线进行拟合[30]

    $$ {R}_{\rm{S}}{=}{{a}}_{{2}}{{W}}^{{2}}{+}{{b}}_{{2}}{W+}{{c}}_{{1}}\text{。} $$ (4)

    土壤温度和湿度和土壤呼吸的关系采用指数与二次耦合方程拟合[30]

    $$ {R}_{\rm{S}}{=}{{a}}_{{3}}\left({d}{{W}}^{{2}}{+}{k}{W+}{{c}}_{{2}}{}\right){\rm{exp}}\;({b_{3}{T}})\text{。} $$ (5)

    式(2)~(5)中:RS为土壤呼吸速率(μmol·m−2·s−1),T为 5、10 cm处土壤温度(℃),W为5、10 cm土壤湿度(%),a1a2a3b1b2b3c1c2dk为拟合常数。

    全年计算方法:实验开始于2014年6月22日,结束于2015年6月16日,因此为了与历史气象数据以及元江干季和雨季配合,本研究设定6月22日为起始日,次年6月21日为结束日,11月1日为干季起始日,次年4月30日为干季结束日,雨季为全年去除干季的部分。本研究历史气候数据都是依照这个方法进行计算。

    1.4.3   全球萨王纳生态系统土壤呼吸平均值计算

    参考文献[7, 17-18, 31-54],得出全球萨王纳生态系统土壤呼吸平均值,与本研究结果进行比较。

    1.4.4   数据处理

    使用SigmaPlot 12.0对土壤呼吸与温度和土壤湿度的关系进行拟合并作图,显著性水平为0.05。

    测定期间内元江干热河谷稀树灌草丛生态系统的总降水量为718.3 mm,较元江50 a(1965−2014)平均降水量799.9 mm减少10.2%(表1)。其中雨季降水量为515.2 mm,占测定周期总降水量的71.7%,少于50 a平均值79.2%;干季的降水量为203.1 mm,占测定周期总降水量的28.3%,多于50年平均值20.8%。

    表 1  干季、雨季和全年降水、土壤呼吸总量和土壤温度、湿度日均值
    Table 1  Total value of precipitation and soil respiration, daily mean values soil temperature, soil water content in the dry season, the rain season and annual respectively
    时期土壤温度/℃土壤湿度/%土壤呼吸总量/(t·hm−2)降水/mm
    5 cm10 cm5 cm10 cm
    干季22.0±1.2 B22.4±0.5 B12.5±0.9 B13.8±1.2 B1.49±0.53 B203.1
    雨季29.0±1.1 A27.8±0.4 A14.7±1.1 A17.8±1.0 A2.71±0.76 A515.2
    年 25.7±1.2 25.2±0.4 13.7±1.0 15.9±1.1 4.20±1.30 718.3
      说明:数值为平均值±标准误,同列不同大写字母表示同一指标不同时期在0.01水平差异显著
    下载: 导出CSV 
    | 显示表格

    图1所示:元江干热河谷稀树灌草丛生态系统土壤5、10 cm处温度和湿度具有明显的季节变化,均呈现出雨季极显著高于干季的变化规律(表1)。5、10 cm处土壤温度的最低值均出现在1月,分别为15.1和16.9 ℃,随后逐渐升高,最高值出现在雨季的7−9月(图1B),分别为32.5 ℃(9月)和30.5 ℃(7月)。5、10 cm土壤湿度的最低值均出现在干季初期12月,分别为2.5%和7.1%,随后逐渐升高,最高值均出现在雨季后期的9月(图1A),分别为28.1%和28.2%。

    图 1  2014年6月至2015年6月降水量,土壤湿度(A),土壤温度(B)和土壤呼吸速率(C)季节变化
    Figure 1  Seasonal dynamics in precipitation and soil water content at 5 cm,10 cm depth (A), soil temperature at 10 cm (B) and soil respirations (C) from 2014 June to 2015 June
    数值为平均值±标准误(n=5)

    元江干热河谷稀树灌草丛土壤呼吸具有明显的季节变化,土壤呼吸速率总体呈现近似单峰型且雨季大于干季(图1C)。1−6月,随着温度的上升和降水量的逐渐增加,土壤呼吸速率也随之逐渐增加;在温度较高,降水相对稳定的6−9月,土壤呼吸速率也维持在一个相对稳定的较高水平,并且在雨季初期的2015年5月出现土壤呼吸速率峰值,为2.27 μmol·m−2·s−1;9月之后,随着温度的降低和降水量的逐渐减少,土壤呼吸速率总体上也随之减弱,到12月降水量降到最小值,土壤呼吸速率也在此时出现最低值,为0.27 μmol·m−2·s−1。经过计算,元江干热河谷稀树灌草丛生态系统土壤呼吸年总量为4.20 t·hm−2·a−1,其中,雨季的CO2排放量2.71 t·hm−2,占到全年碳排放总量的64.5%,干季的CO2排放量1.49 t·hm−2,占到全年碳排放总量的35.5%(表1),通过1 a的观测研究,元江干热河谷稀树灌草丛土壤呼吸的通量在雨季和干季都为正值,并没有出现负值。

    元江干热河稀树冠草丛生态系统土壤呼吸速率与5和10 cm土壤温度呈现指数相关关系,相关性显著(P<0.05)(图2)。根据式(3)计算得到的干热河谷土壤5和10 cm处土壤呼吸Q10分别为1.73和1.98。

    图 2  环境因子土壤温度(A)和土壤湿度(B)模拟土壤呼吸
    Figure 2  Simulated results of soil respirations by environment factors soil temperature (A) and soil water content (B)

    土壤呼吸速率与5和10 cm处土壤湿度呈现凸型抛物线关系,二者相关性显著(P<0.01)(图2)。湿度过低或者过高都会抑制土壤呼吸速率,其中5 cm处土壤湿度在25.4%时土壤呼吸速率最高,10 cm处土壤湿度在20.3%时土壤呼吸速率最高。

    根据以上结果土壤呼吸受土壤温度和土壤湿度共同作用,因此依据式(5)拟合得图3。5和10 cm土壤温度、湿度的二因子模型可以分别解释土壤呼吸的74.4%和78.9%,拟合效果均高于土壤温度和土壤湿度单独拟合的效果(图2)。

    图 3  5、10 cm土壤温度、土壤湿度分别进行双因子回归模拟土壤呼吸速率
    Figure 3  Soil respirations estimated from two-factor regression soil temperature and soil water content at 5 and 10 cm receptively

    汇总全球49个点数据(图4),得出全球萨王纳生态系统土壤呼吸年总量平均值为8.16 t·hm−2·a−1,比本研究高出近1倍。本研究土壤呼吸年总量在全球萨王纳生态系统呼吸中处于较低的位置。

    图 4  全球萨王纳土壤呼吸年总量与年降水量(A)和年均气温(B)的关系
    Figure 4  Relationship between annual soil respiration and mean annual precipitation and mean annual temperature across Savanna ecosystem of the world

    元江干热河谷稀树灌草丛生态系统干季、雨季的土壤呼吸总量分别为1.49和2.71 t·hm−2,土壤呼吸年总量为4.2 t·hm−2·a−1,低于RAICH[55]统计全球9个点得出的全球萨王纳生态系统土壤呼吸6.30 t·hm−2·a−1的均值,也低于本研究统计的全球49个点的均值,与TALMON等[31]在以色列灌丛样地,MILLARD等[18]在美国草地,REY等[32]在西班牙草地和SUN等[33]在南澳大利亚的桉树Eucalyptus spp.林的结果接近,其主要原因是这些生态系统降水量普遍偏低,而土壤呼吸总量与年均降水量相关性显著,因此这些降水量较低的萨王纳生态系统土壤呼吸均较低。

    元江干热河谷稀树灌草丛生态系统土壤呼吸雨季高于旱季,这与西双版纳橡胶Hevea brasiliensis林的研究结果相似[56],在干湿季分明的地区,雨季时,温度高,降水较多,植物生长旺盛,土壤湿度较高,较多的光合产物向地下分配,并且凋落物加速分解,从而促进了土壤呼吸[57-58];干季时,温度高,降水少,土壤湿度较低,限制了土壤呼吸的进行[59-60],本研究与相关研究[61]得出温度和湿度是土壤呼吸的主要影响因子,寒冷地区温度成为土壤呼吸的主要控制因子[62],温带和亚热带则是温度和降水的季节变化交替控制土壤呼吸[63],在热带则是降水成为主要的控制因子[64]。而元江干热河谷稀树灌草丛生态系统正是干湿季分明,气温常年较高的状态,干湿季交替导致土壤湿度的显著变化,进而造成了土壤呼吸速率表现出明显的季节波动,雨季高于干季,且差异较大。

    元江干热河谷稀树灌草丛生态系统干季土壤呼吸总量占年总量的35.5%,与SUN等[33]在南澳大利亚桉树林得到的结果类似,但是高于其他的已有研究结果[31, 34-35]。主要有2个原因:第一,干季土壤含水量较低,一般小于20%,土壤呼吸在土壤湿度为21%左右达到最大,因此在干季土壤湿度较低的情况下,土壤呼吸会随着土壤湿度的增加而增加,测试时间内干季降水量较50 a均值高出22%,干季降水的异常导致了较高的干季土壤呼吸;第二,本研究测定频率不高,因此可能会高估干季的土壤呼吸[17]

    土壤呼吸与5、10 cm处土壤温度均呈指数相关关系,这与多数研究结果一致[65-66]。然而相比于其他生态系统,干热河谷稀树灌草丛生态系统终年温度较高,且土壤湿度相对较低,对土壤呼吸产生了抑制作用,从而导致土壤呼吸和温度的指数相关较为离散,使二者趋向于凸型抛物线相关,在较干热的地区,温度较高不是限制因子,水分是主要的限制因子,导致出现这种现象[32]。土壤呼吸与土壤湿度呈凸型抛物线型关系,这与多数研究结果相似[67-68]。这表明土壤湿度过高或者过低都会抑制土壤呼吸。本研究显示:土壤呼吸的最适土壤湿度在21%左右,且最适土壤湿度5 cm大于10 cm,可能是因为雨季5 cm处土壤温度高于10 cm处土壤温度,而土壤呼吸主要受土壤温度和水分协同影响[69],本研究的结果亦是如此,因此较高的土壤温度(5、10 cm分别为27.68、28.88 ℃)需要更高的土壤湿度(5、10 cm分别为22.07%、21.12%)配合才能使土壤呼吸速率(2.27 μmol·m−1·s−1)达到最大;也可能是本研究测定频率不高,且持续时间只有1 a,因此在将来的实验中需要增加观测频率和时间长度。本研究土壤湿度与土壤呼吸速率的拟合效果优于土壤温度,土壤湿度长期处于最优土壤湿度下方,因此,该生态系统土壤呼吸可能处于抑制状态,从而使土壤湿度成为影响土壤呼吸的主要生态因子[36],这与全球萨王纳生态系统土壤呼吸速率与土壤温度拟合效果不显著与降水拟合显著的结果是一致的,表明土壤水分对全球萨王纳生态系统土壤呼吸的影响大于土壤温度。

    由5和10 cm处土壤温度计算得到该系统土壤呼吸的Q10分别为1.73和1.98,分别小于和接近全球平均值2.0。这可能是与该生态系统全年温度较高、土壤养分含量和土壤湿度均较低有关。有关研究表明:Q10随着温度的升高而降低,随土壤有机质含量的增加而增大[70-71]。与该生态系统纬度相近而年均温较低降水较多的热带雨林的Q10为2.03~2.36[68];纬度相近年均温更低,降水更多,土壤有机质含量较高的哀牢山常绿阔叶林的Q10可达4.53[28]。因此,在年均温较高的干热河谷地区,土壤呼吸对温度的敏感性相对较低,而降水成为限制土壤呼吸的主要因子。其中5 cm处的Q10(1.73)小于10 cm处的Q10(1.98),可能是雨季5 cm处土壤温度高于10 cm处土壤温度,符合随着温度越高Q10越低的普遍认知[70-72]。10 cm土温下Q10=1.98与全球均值很接近且10 cm处土壤温度与土壤呼吸拟合效果高于5 cm土壤温度,因此在采用模型模拟元江萨王纳生态系统土壤呼吸时,建议采用10 cm处土壤温度。

    元江干热河谷稀树灌草丛生态系统的土壤温度、湿度和土壤呼吸速率具有明显的季节变化特征,均表现为雨季高于干季。元江干热河谷稀树灌草丛生态系统土壤呼吸年总量为4.20 t·hm−2·a−1,其中,雨季的CO2排放量2.71 t·hm−2,占到全年碳排放总量的64.5%,干季的CO2排放量1.49 t·hm−2,占到全年碳排放总量的35.5%。元江干热河谷稀树灌草丛生态系统土壤呼吸速率与土壤温度和土壤湿度分别呈指数和抛物线关系,土壤呼吸受土壤温度和土壤湿度共同影响,土壤湿度是土壤呼吸的主要限制因子,5和10 cm处土壤温度计算得到的Q10分别为1.73和1.98,小于全球均值2.0。全球萨王纳生态系统年平均碳排放量为8.16 t·hm−2·a−1,比元江萨王纳生态系统高出近1倍,全球萨王纳生态系统平均降水为931.29 mm,比元江高出14.1%;全球萨王纳生态系统土壤呼吸主要受年降水量的影响。

    感谢中国科学院西双版纳热带植物园元江干热河谷生态站和中心实验室的大力支持,以及刀万有、封乾元、刀新明在实验过程中的帮助。

  • 表  1  世界桉树人工林分布[7-14]

    Table  1.   Distribution of global eucalypt forests [7-14]

    国家种植面积/hm2国家种植面积/hm2国家种植面积/hm2国家种植面积/hm2
    巴西 4 862 000 摩洛哥 215 000 玻利维亚 41 000 土耳其 20 000
    中国 4 500 000菲律宾 189 000 阿尔及利亚 40 000 卢旺达 17 000
    印度 3 942 600 马达加斯加 163 000尼日利亚 40 000 多哥 17 000
    澳大利亚 926 000 印度尼西亚 128 000 孟加拉国 39 000哥斯达黎加 17 000
    乌拉圭 676 024 安哥拉 113 000 肯尼亚 39 000 新西兰 15 000
    智利 652 100埃塞俄比亚 100 000 斯威士兰 33 000 危地马拉 13 000
    葡萄牙 647 000 墨西哥 100 000美国 32 500 津巴布韦 13 000
    西班牙 640 000 委内瑞拉 100 000 伊朗 31 000所罗门群岛 12 000
    越南 586 000 厄瓜多尔 81 000 哥伦比亚 27 000 尼加拉瓜 12 000
    南非 568 000意大利 72 000 乌干达 25 000 厄立特里亚 12 000
    苏丹 540 400 刚果 68 000莫桑比克 25 000 赞比亚 12 000
    泰国 500 000 塞内加尔 65 000 布隆迪 25 000尼泊尔 11 000
    秘鲁 480 000 伊拉克 60 000 马拉维 25 000 法国 10 000
    阿根廷 330 000突尼斯 56 000 帕劳 21 000
    巴基斯坦 245 000 古巴 53 000巴拉圭 21 000
      说明:中国主要分布在广西壮族自治区、广东省、福建省、云南省和其他地区,占比分别为45%、30%、6%、5%和14%;巴西主要分布在      米纳斯吉拉斯州、圣保罗州、巴伊亚州、南马托格罗索州和其他地区,占比分别为29%、23%、14%、13%和21%;印度主要分布     在卡纳塔克邦、西孟加拉邦、马哈拉施特拉邦、北方邦和其他地区,占比分别为40%、13%、10%、6%和31%
    下载: 导出CSV
  • [1] 祁述雄. 中国桉树[M]. 北京: 中国林业出版社, 2002.

    QI Shuxiong. Chinese Eucalypt [M]. Beijing: China Forestry Publishing House, 2002.
    [2] Montreal Process Implementation Group For Australia And National Forest Inventory Steering Committee. Australia’s State of the Forests Report 2018 [R]. Canberra: ABARES, 2018.
    [3] 杨章旗. 广西桉树人工林引种发展历程与可持续发展研究[J]. 广西科学, 2019, 26(4): 355 − 361.

    YANG Zhangqi. Development history and sustainable development of Eucalyptus plantations introduction in Guangxi [J]. Guangxi Sci, 2019, 26(4): 355 − 361.
    [4] 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58 − 64.

    WANG Can, ZHANG Yaxin. Implementation pathway and policy system of carbon neutrality vision [J]. Chin J Environ Sci Manage, 2020, 12(6): 58 − 64.
    [5] ZHANG Jinbiao, AN Min, WU Hanwen, et al. Chemistry and bioactivity of Eucalyptus essential oils [J]. Allelopathy J, 2010, 25(2): 313 − 330.
    [6] CHEN Xue, ZHANG Kaili, XIAO Lingping, et al. Total utilization of lignin and carbohydrates in Eucalyptus grandis: an integrated biorefinery strategy towards phenolics, levulinic acid, and furfural [J/OL]. Biotechnol Biofuels, 2020, 13: 2[2021-10-10]. doi: 10.1186/s13068-019-1644-z.
    [7] JACOBS M R. Eucalypts for Planting [R]. Rome: Food and Agriculture Organization of the United Rome Italy, 1981.
    [8] PORTTS B M, DUNGEY H S. Intelspecific hebridization of Eucalyptus: key issues for breeders and geneticists [J]. New For, 2004, 27(2): 115 − 138.
    [9] 王豁然. 桉树生物学概论[M]. 北京: 科学出版社, 2010.

    WANG Huoran. A Chinese Appreciation of Eucalyptus [M]. Beijing: Science Press, 2010.
    [10] 温远光, 周晓果, 喻素芳, 等. 全球桉树人工林发展面临的困境与对策[J]. 广西科学, 2018, 25(2): 107 − 116.

    WEN Yuanguang, ZHOU Xiaoguo, YU Sufang, et al. The predicament and countermeasures of development of global Eucalyptus plantations [J]. Guangxi Sci, 2018, 25(2): 107 − 116.
    [11] 中国林学会. 桉树科学发展问题调研报告[M]. 北京: 中国林业出版社, 2016.

    Chinese Society of Forestry. Anshu Kexue Fazhan Wenti Diaoyan Baogao [M]. Beijing: China Forestry Publishing House, 2016.
    [12] REIS A A D, FRANKLIN S E, JÚNIOR F W A, et al. Classification of Eucalyptus plantation site index (SI) and mean annual increment (MAI) prediction using DEM-based geomorphometric and climatic variables in Brazil [J/OL]. Geocarto Int, 2020[2021-10-10]. doi: 10.1080/10106049.2020.1778103.
    [13] Brazilian Association of Forest Plantation Producers. Statistical Yearbook 2010 [R]. Brasília: ABRAF, 2010
    [14] FAO. Reports Submitted to the Regional Expert Consultation on Eucalyptus-Volume Ⅱ [R]. Bangkok: FAO Regional Office for Asia and the Pacific, 1996.
    [15] 张樟德. 桉树人工林的发展与可持续经营[J]. 林业科学, 2008, 44(7): 97 − 102.

    ZHANG Zhangde. A review on development situation and sustainable management of eucalypt plantation [J]. Sci Silv Sin, 2008, 44(7): 97 − 102.
    [16] 朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康[J]. 中国科学: 生命科学, 2021, 51(1): 1 − 11.

    ZHU Yongguan, PENG Jingjing, WEI Zhong, et al. Linking the soil microbiome to soil health [J]. Sci Sin Vitae, 2021, 51(1): 1 − 11.
    [17] 杨远彪, 吕成群, 黄宝灵, 等. 连栽桉树人工林土壤微生物和酶活性的分析[J]. 东北林业大学学报, 2008, 36(12): 10 − 12.

    YANG Yuanbiao, LÜ Chengqun, HUANG Baoling, et al. Soil microbes and enzymes in Eucalyptus plantations under different rotations of continuously planting [J]. J Northeast For Univ, 2008, 36(12): 10 − 12.
    [18] O’BRIEN F J M, ALMARAZ M, FOSTER M A, et al. Soil salinity and pH drive soil bacterial community composition and diversity along a lateritic slope in the avon river critical zone observatory, Western Australia [J/OL]. Front Microbiol, 2019, 10: 1486[2021-10-10]. doi: 10.3389/fmicb.2019.01486.
    [19] ZHOU Xiaoqi, GUO Zhiying, CHEN Chengrong, et al. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations [J]. Biogeosciences, 2017, 14(8): 2101 − 2111.
    [20] SHEN Jupei, CHEN C R, LEWIS T. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest [J/OL]. Sci Rep, 2016, 6: 19639[2021-10-10]. doi: 10.1038/srep19639.
    [21] SHEN Jupei, ESFANDBOD M, WAKELIN S A, et al. Changes in bacterial community composition across natural grassland and pine forests in the Bunya Mountains in subtropical Australia [J]. Soil Res, 2019, 57(8): 825 − 834.
    [22] VARELA C, SUNDTROM J, CUIJVERS K, et al. Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus gunnii [J/OL]. Sci Rep, 2020, 10: 14716[2021-10-10]. doi: 10.1038/s41598-020-71663-x.
    [23] 彭雯, 谭玲, 明安刚, 等. 南亚热带典型人工纯林土壤剖面细菌群落组成差异分析[J]. 土壤通报, 2018, 49(6): 1361 − 1369.

    PENG Wen, TAN Ling, MING Angang, et al. Bacterial community composition in soil profile of typical monoculture plantations in south subtropical China [J]. Chin J Soil Sci, 2018, 49(6): 1361 − 1369.
    [24] QU Zhaole, LIU Bing, MA Yang, et al. Differences in bacterial community structure and potential functions among Eucalyptus plantations with different ages and species of trees [J/OL]. Appl Soil Ecol, 2020, 149: 103515[2021-06-10]. doi: 10.1016/j.apsoil.2020.103515.
    [25] LI Jiayu, LIN Jiayi, PEI Chenyu, et al. Variation of soil bacterial communities along a chronosequence of Eucalyptus plantation [J/OL]. Peer J, 2018, 6: e5648[2021-6-10]. doi: 10.7717/peerj.5648.
    [26] de ARAUJO PEREIRA A P, de ANDRADE P A, BINI D, et al. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium [J/OL]. PLoS One, 2017, 12(7): e0180371[2021-6-10]. doi: 10.1371/journal.pone.0180371.
    [27] JIMENEZ-BUENO N G, VALENZUELA-ENCINAS C, MARSCH R, et al. Bacterial indicator taxa in soils under different long-term agricultural management [J]. J Appl Microbiol, 2016, 120(4): 921 − 933.
    [28] 李超, 许宇星, 吴志华, 等. 不同施肥措施对桉树人工林土壤细菌群落结构及多样性的短期影响[J]. 桉树科技, 2020, 37(1): 10 − 17.

    LI Chao, XU Yuxing, WU Zhihua, et al. Short-term effects of different Eucalyptus plantation fertilization treatments on soil bacterial community structure and diversity [J]. Eucalypt Sci Technol, 2020, 37(1): 10 − 17.
    [29] YAMADA T, SEKIGUCHI Y. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘Subphylum I’ with natural and biotechnological relevance [J]. Microbes Environ, 2009, 24(3): 205 − 216.
    [30] PODOSOKORSKAYA O A, BONCH-OSMOLOVSKAYA E A, NOVIKOV A A, et al. Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae [J]. Int J Syst Evol Microbiol, 2013, 63(1): 86 − 92.
    [31] 袁红朝, 吴昊, 葛体达, 等. 长期施肥对稻田土壤细菌、古菌多样性和群落结构的影响[J]. 应用生态学报, 2015, 26(6): 1807 − 1813.

    YUAN Hongchao, WU Hao, GE Tida, et al. Effects of long-term fertilization on bacterial and archaeal diversity and community structure within subtropical red paddy soils [J]. Chin J Appl Ecol, 2015, 26(6): 1807 − 1813.
    [32] PANKRATOV T A, KIRSANOVA L A, KAPARULLINA E N, et al. Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991 [J]. Int J Syst Evol Microbiol, 2012, 62(2): 430 − 437.
    [33] ISHAQ L, BARBER P A, HARDY G E S J, et al. Diversity of fungi associated with roots of Eucalyptus gomphocephala seedlings grown in soil from healthy and declining sites [J]. Aust Plant Path, 2018, 47: 155 − 162.
    [34] YOU Fang, LU Ping, HUANG Longbin. Characteristics of prokaryotic and fungal communities emerged in eco-engineered waste rock: Eucalyptus open woodlands at Ranger uranium mine [J/OL]. Sci Total Environ, 2022, 816: 151571[2021-6-10]. doi: 10.1016/j.scitotenv.2021.151571.
    [35] GATES G M, RATKOWSKY D A, GROVE S J. Aggregated retention and macrofungi: a case study from the Warra LTER site, Tasmania [J]. Tasforests, 2009, 18(11): 33 − 54.
    [36] CURLEVSKI N J A, XU Zhihong, ANDERSON I C, et al. Converting Australian tropical rainforest to native Araucariaceae plantations alters soil fungal communities [J]. Soil Biol Biochem, 2010, 42(1): 14 − 20.
    [37] 陈祖静, 高尚坤, 陈园, 等. 短期施肥对桉树人工林土壤真菌群落结构及功能类群的影响[J]. 生态学报, 2020, 40(11): 3813 − 3821.

    CHEN Zujing, GAO Shangkun, CHEN Yuan, et al. Effects of short-term fertilization on soil fungal community structure and functional group in Eucalyptus artificial forest [J]. Acta Ecol Sin, 2020, 40(11): 3813 − 3821.
    [38] LIU Bin, QU Zhaolei , MA Yang, et al. Eucalyptus plantation age and species govern soil fungal community structure and function under a tropical monsoon climate in China [J/OL]. Front Fungal Biol, 2021, 2: 703467[2021-06-10]. doi: 10.3389/ffunb.2021.703467.
    [39] RACHID C T C C, BALIEIRO F C, FONSECA E S, et al. Intercropped silviculture systems, a key to achieving soil fungal community management in Eucalyptus plantations [J/OL]. PLoS One, 2015, 10(2): e0118515[2021-06-10]. doi: 10.1371/journal.pone.0118515.
    [40] JIMU L, KEMLER M, MUJURU L, et al. Illumina DNA metabarcoding of Eucalyptus plantation soil reveals the presence of mycorrhizal and pathogenic fungi [J]. Forestry, 2018, 91(2): 238 − 245.
    [41] SCHMIDT-DANNERT C. Biocatalytic portfolio of Basidiomycota [J]. Curr Opin Chem Biol, 2016, 31: 40 − 49.
    [42] 李宽莹, 王泽林, 徐兴有, 等. 不同施肥处理对日光温室内土壤微生物数量与酶活性的影响[J]. 西北林学院学报, 2019, 34(2): 56 − 61.

    LI Kuanying, WANG Zelin, XU Xingyou, et al. Effects of fertilization pattern on soil microorganism quantity and soil enzyme activity under the greenhouse grape-cultivating system [J]. J Northwest For Univ, 2019, 34(2): 56 − 61.
    [43] da SILVA G S, MELO C A D, FIALHO C M T, et al. Impact of sulfentrazone, isoxaflutole and oxyfluorfen on the microorganisms of two forest soils [J]. Bragantia, 2014, 73(3): 292 − 299.
    [44] 谢志坚, 李海蓝, 徐昌旭, 等. 2种除草剂的土壤生态效应及其对后茬作物生长的影响[J]. 土壤学报, 2014, 51(4): 880 − 887.

    XIE Zhijian, LI Hailan, XU Changxu, et al. Effects of two kinds of herbicides on paddy soil ecology and growth of succeeding crops [J]. Acta Pedol Sin, 2014, 51(4): 880 − 887.
    [45] ROY-BOLDUC A, LALIBERTÉ E, BOUDREAU S, et al. Strong linkage between plant and soil fungal communities along a successional coastal dune system [J/OL]. Fems Microbiol Ecol, 2016, 92(10): fiw156[2021-06-10]. doi: 10.1093/femsec/fiw156.
    [46] 何伟, 吴福忠, 杨万勤, 等. 百草枯对巨桉人工幼林土壤细菌多样性的影响[J]. 环境科学学报, 2012, 32(11): 2857 − 2864.

    HE Wei, WU Fuzhong, YANG Wanqin, et al. Effect of paraquat on soil bacteria diversity in a young eucalypt plantation [J]. Acta Sci Circumst, 2012, 32(11): 2857 − 2864.
    [47] 苏少泉, 耿贺利. 百草枯特性与使用[J]. 农药, 2008, 47(4): 244 − 247.

    SU Shaoquan, GENG Heli. The properties and application of paraquat [J]. Agrochemicals, 2008, 47(4): 244 − 247.
    [48] 魏圣钊, 李林, 曹芹, 等. 巨桉连栽对土壤微生物生物量和数量的影响[J]. 热带亚热带植物学报, 2020, 28(1): 35 − 43.

    WEI Shengzhao, LI Lin, CAO Qin, et al. Effect of continuous planting of Eucalyptus grandis on biomass and number of soil microbes [J]. J Trop Subtrop Bot, 2020, 28(1): 35 − 43.
    [49] ZHU Lingyue, WANG Xiuhai, CHEN Fangfang, et al. Effects of the successive planting of Eucalyptus urophylla on soil bacterial and fungal community structure, diversity, microbial biomass, and enzyme activity [J]. Land Degrad Dev, 2019, 30(6): 636 − 646.
    [50] 黄振格, 何斌, 谢敏洋, 等. 连栽桉树人工林土壤氮素季节动态特征[J]. 东北林业大学学报, 2020, 48(9): 88 − 94.

    HUANG Zhenge, HE Bin, XIE Minyang, et al. Seasonal dynamic characteristic of soil nitrogen in Eucalyptus plantations under successive rotation [J]. J Northeast For Univ, 2020, 48(9): 88 − 94.
    [51] ZAGATTO M R G, de ARAUJO PEREIRA A P, de SOUZA A J, et al. Interactions between mesofauna, microbiological and chemical soil attributes in pure and intercropped Eucalyptus grandis and Acacia mangium plantations [J]. For Ecol Manage, 2019, 433: 240 − 247.
    [52] RACHID C, BALIEIRO F C, PEIXOTO R S, et al. Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes [J]. Soil Biol Biochem, 2013, 66: 146 − 153.
    [53] KAMIMURA N, TAKAHASHI K, MORI K, et al. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism [J]. Environ Microbiol Rep, 2017, 9(6): 679 − 705.
    [54] LI Shoutian, ZHOU Jianmin, WANG Huoyan, et al. Phenolic acids in plant-soil-microbe system: a review [J]. Pedosphere, 2002, 12(1): 1 − 14.
    [55] KOUTIKA L S, FIORE A, TABACCHIONI S, et al. Influence of Acacia mangium on soil fertility and bacterial community in Eucalyptus plantations in the Congolese Coastal Plains [J/OL]. Sustainability, 2020, 12(21): 8763[2021-06-10]. doi: 10.3390/su12218763.
    [56] PEREIRA A P A, DURRER A, GUMIERE T, et al. Mixed Eucalyptus plantations induce changes in microbial communities and increase biological functions in the soil and litter layers [J]. For Ecol Manage, 2019, 433: 332 − 342.
    [57] 刘小香, 陈秋波, 王真辉, 等. 巨尾桉挥发油对真菌和昆虫的化感作用[J]. 生态学杂志, 2007, 26(6): 835 − 839.

    LIU Xiaoxiang, CHEN Qiubo, WANG Zhenhui, et al. Allelopathic effects of essential oil from Eucalyptus grandis×E. urophylla on pathogenic fungi and pest insects [J]. Chin J Ecol, 2007, 26(6): 835 − 839.
    [58] SANTOS F M, de CARVALHO BALIEIRO F, FONTE M A, et al. Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium [J]. Plant Soil, 2018, 423: 141 − 155.
    [59] GERMON A, GUERRINI I A, BORDRON B, et al. Consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration by fine-roots down to a depth of 17 m [J]. Plant Soil, 2018, 424: 203 − 220.
    [60] 李万年, 黄则月, 赵春梅, 等. 望天树人工幼林土壤微生物量碳氮及养分特征[J]. 北京林业大学学报, 2020, 42(12): 51 − 62.

    LI Wannian, HUANG Zeyue, ZHAO Chunmei, et al. Characteristics of soil microbial biomass C, N and nutrients in young plantations of Parashorea chinensis [J]. J Beijing For Univ, 2020, 42(12): 51 − 62.
    [61] 陈永康, 谭许脉, 李萌, 等. 珍贵固氮树种降香黄檀与二代巨尾桉混交种植对土壤微生物群落结构和功能的影响[J]. 广西植物, 2021, 41(9): 1476 − 1485.

    CHEN Yongkang, TAN Xumai, LI Meng, et al. Effects of mixture of nitrogen-fixing tree species Dalbergia odorifera and second-generation Eucalyptus urophylla on structure and function of soil microbial community in subtropical China [J]. Guihaia, 2021, 41(9): 1476 − 1485.
    [62] 黄雪蔓, 刘世荣, 尤业明. 固氮树种对第二代桉树人工林土壤微生物生物量和结构的影响[J]. 林业科学研究, 2014, 27(5): 612 − 620.

    HUANG Xueman, LIU Shirong, YOU Yeming. Effects of N-fixing tree species on soil microbial biomass and community structure of the second rotation Eucalyptus plantations [J]. For Res, 2014, 27(5): 612 − 620.
    [63] QIU Huen, GE Tida, LIU Jieyun, et al. Effects of biotic and abiotic factors on soil organic matter mineralization: experiments and structural modeling Analysis [J]. Eur J Soil Biol, 2018, 84: 27 − 34.
    [64] KABUYAH R N T M, van DONGEN B E, BEWSHER A D, et al. Decomposition of lignin in wheat straw in a sand-dune grassland [J]. Soil Biol Biochem, 2012, 45: 128 − 131.
    [65] CAO Yusong, FU Shenglei, ZOU Xiaoming, et al. Soil microbial community composition under Eucalyptus plantations of different age in subtropical China [J]. Eur J Soil Biol, 2010, 46(2): 128 − 135.
    [66] MOHSIN F, SINGH R P, JATTAN S S, et al. Root studies in a Eucalyptus hybrid plantation at various ages [J]. Indian For, 2000, 126(11): 1165 − 1174.
    [67] GELDENHUYS C J. Native forest regeneration in pine and eucalypt plantations in Northern Province, South Africa [J]. For Ecol Manage, 1997, 99(1/2): 101 − 115.
    [68] 张丹桔, 张健, 杨万勤, 等. 一个年龄序列巨桉人工林植物和土壤生物多样性[J]. 生态学报, 2013, 33(13): 3947 − 3962.

    ZHANG Danju, ZHANG Jian, YANG Wanqin, et al. Plant’s and soil organism’s diversity across a range of Eucalyptus grandis plantation ages [J]. Acta Ecol Sin, 2013, 33(13): 3947 − 3962.
    [69] 竹万宽, 许宇星, 王志超, 等. 不同生长阶段尾巨桉人工林土壤-微生物化学计量特征[J]. 浙江农林大学学报, 2021, 38(4): 692 − 702.

    ZHU Wankuan, XU Yuxing, WANG Zhichao, et al. Soil-microbial stoichiometry of Eucalyptus urophylla×E. grandis plantation at different growth stages [J]. J Zhejiang A&F Univ, 2021, 38(4): 692 − 702.
    [70] XU Jie, LIU Bing, QU Zhaolei, et al. Age and species of Eucalyptus plantations affect soil microbial biomass and enzymatic activities [J/OL]. Microorganisms, 2020, 8(6): 811[2021-10-10]. doi: 10.3390/microorganisms8060811.
    [71] 江瑶, 莫晓勇, 邓海燕, 等. 巨桉人工林外生菌根真菌群落组成及多样性[J]. 西北林学院学报, 2020, 35(6): 153 − 159.

    JIANG Yao, MO Xiaoyong, DENG Haiyan, et al. Composition and diversity of ectomycorrhizal fungal community associated with Eucalyptus grandis plantation [J]. J Northwest For Univ, 2020, 35(6): 153 − 159.
    [72] BOUILLET J P, LACLAU J P, ARNAUD M, et al. Changes with age in the spatial distribution of roots of Eucalyptus clone in Congo: impact on water and nutrient uptake [J]. For Ecol Manage, 2002, 171(1/2): 43 − 57.
    [73] 吴晓芙, 胡曰利. 刚果12号桉无性系人工林养分曲线[J]. 林业科学, 2002, 38(5): 24 − 30.

    WU Xiaofu, HU Yueli. Nutrient curve of Eucalyptus ABL12 plantation [J]. Sci Silv Sin, 2002, 38(5): 24 − 30.
    [74] 王艳, 胡小飞, 王方超, 等. 施氮磷肥对杉木人工林3种林下植物养分动态及化学计量比的影响[J]. 江西农业大学学报, 2016, 38(2): 304 − 311.

    WANG Yan, HU Xiaofei, WANG Fangchao, et al. Effects of nitrogen and phosphorus fertilization on nutrient dynamics and stoichiometric ratios of three-understory plants in Chinese fir plantation [J]. Acta Agric Univ Jiangxi, 2016, 38(2): 304 − 311.
    [75] 李佳雨, 林家怡, 裴晨羽, 等. 桉树种植对林地土壤丛枝菌根真菌群落结构及多样性的影响[J]. 生态学报, 2019, 39(8): 2723 − 2731.

    LI Jiayu, LIN Jiayi, PEI Chenyu, et al. Diversity and structure of the soil arbuscular mycorrhizal fungal community are altered by Eucalyptus plantations [J]. Acta Ecol Sin, 2019, 39(8): 2723 − 2731.
    [76] SHENG Min, LALANDE R, HAMEL C, et al. Effect of long-term tillage and mineral phosphorus fertilization on arbuscular mycorrhizal fungi in a humid continental zone of eastern Canada [J]. Plant Soil, 2013, 369(1): 599 − 613.
    [77] SPOHN M. Element cycling as driven by stoichiometric homeostasis of soil microorganisms [J]. Basic Appl Ecol, 2016, 17(6): 471 − 478.
    [78] 侯俊杰, 康丽华, 陆俊锟, 等. 芽孢杆菌对桉树幼苗的促生效果及其ACC脱氨酶活性的研究[J]. 微生物学通报, 2014, 41(10): 2029 − 2034.

    HOU Junjie, KANG Lihua, LU Junkun, et al. Growth-promoting effect of Bacillus strains on Eucalyptus seedling and their ACC deaminase activity [J]. Microbiol China, 2014, 41(10): 2029 − 2034.
    [79] 李永双, 范周周, 国辉, 等. 菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响[J]. 中国岩溶, 2020, 39(6): 854 − 862.

    LI Yongshuang, FAN Zhouzhou, GUO Hui, et al. Effects of microorganisms agent addition on soil microbes in different rhizosphere soils and calcium carbonate dissolution [J]. Carsol Sin, 2020, 39(6): 854 − 862.
    [80] SALEEM M, FETZER I, HARMS H, et al. Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal [J/OL]. Proc Royal Soc B, 2016, 283(1825): 20152724[2021-10-10]. doi: 10.1098/rspb.2015.2724.
    [81] 王艳红, 于镇华, 李彦生, 等. 植物-土壤-微生物间碳流对大气CO2浓度升高的响应[J]. 土壤与作物, 2018, 7(1): 22 − 30.

    WANG Yanhong, YU Zhenhua, LI Yansheng, et al. Carbon flow in the plant-soil-microbe continuum in response to atmospheric elevated CO2 [J]. Soils Crops, 2018, 7(1): 22 − 30.
    [82] 文晓萍, 黄宝灵, 吕成群, 等. 巨尾桉接种根瘤菌试验效果初探[J]. 西北林学院学报, 2008, 23(6): 118 − 121.

    WEN Xiaoping, HUANG Baoling, LÜ Chengqun, et al. Research for the effect of rhizobia inoculation on the Eucalyptus grandis×E. urophylla [J]. J Northwest For Univ, 2008, 23(6): 118 − 121.
    [83] 方丽英, 吴庆梅, 吕成群, 等. 土壤益生菌对盆栽马尾松苗生长的影响[J]. 四川林业科技, 2007, 28(5): 66 − 68.

    FANG Liying, WU Qingmei, LÜ Chengqun, et al. Effect of soil probioticson the growth of potted masson’s pine seedlings [J]. J Sichuan For Sci Technol, 2007, 28(5): 66 − 68.
    [84] 陈兰周, 刘永定, 宋立荣. 微鞘藻胞外多糖在沙漠土壤成土中的作用[J]. 水生生物学报, 2002, 26(2): 155 − 159.

    CHEN Lanzhou, LIU Yongding, SONG Lirong. The function of exopolysaccharides of Microcoleus in the formation of desert soil [J]. Acta Hydrobiol Sin, 2002, 26(2): 155 − 159.
    [85] 付晓峰, 张桂萍, 张小伟, 等. 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响[J]. 西北植物学报, 2016, 36(2): 353 − 360.

    FU Xiaofeng, ZHANG Guiping, ZHANG Xiaowei, et al. Effects of PSB and AMF on growth, microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var. mairei seedlings [J]. Acta Bot Boreali-Occident Sin, 2016, 36(2): 353 − 360.
    [86] 张辉, 黄宝灵, 吕成群, 等. 巨尾桉接种促生菌对根际土壤微生物及营养元素的影响[J]. 东北林业大学学报, 2013, 41(3): 69 − 72.

    ZHANG Hui, HUANG Baoling, LÜ Chengqun, et al. Effects of Eucalyptus grandis×E. urophylla inoculated PGPR on soil rhizosphere microbe and nutrient [J]. J Northeast For Univ, 2013, 41(3): 69 − 72.
    [87] 张海燕, 肖延华, 张旭东, 等. 土壤微生物量作为土壤肥力指标的探讨[J]. 土壤通报, 2006, 37(3): 422 − 425.

    ZHANG Haiyan, XIAO Yanhua, ZHANG Xudong, et al. Microbial biomass as an indicator for evaluation of soil fertility properties [J]. Chin J Soil Sci, 2006, 37(3): 422 − 425.
    [88] 黎云昆, 肖忠武. 我国林地土壤污染、退化、流失问题及对策[J]. 林业经济, 2015, 37(9): 3 − 15.

    LI Yunkun, XIAO Zhongwu. China’s forestland soil pollution, degradation, erosion problems and countermeasures [J]. For Econ, 2015, 37(9): 3 − 15.
    [89] 张婧, 杜阿朋. 桉树在土壤重金属污染区土壤生物修复的应用前景[J]. 桉树科技, 2010, 27(2): 43 − 47.

    ZHANG Jing, DU Apeng. Application prospect of Eucalyptus in remedying the polluted soil by heavy metal [J]. Eucalypt Sci Technol, 2010, 27(2): 43 − 47.
    [90] 黄佳玉, 谈宇, 廖妤婕, 等. 丛枝菌根真菌对桉树吸收Cu和Zn的作用研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 118 − 122.

    HUANG Jiayu, TAN Yu, LIAO Yujie, et al. Effects of arbuscular mycorrhizal fungi on the uptake of copper and zinc by Eucalyptus [J]. J Guangxi Norm Univ Nat Sci Ed, 2013, 31(2): 118 − 122.
    [91] 张旭红, 高艳玲, 林爱军, 等. 重金属污染土壤接种丛枝菌根真菌对蚕豆毒性的影响[J]. 环境工程学报, 2008, 2(2): 274 − 278.

    ZHANG Xuhong, GAO Yanling, LIN Aijun, et al. Effects of arbuscular mycorrhizal fungi colonization on toxicity of soil contaminated by heavy metals to Vicia faba [J]. Chin J Environ Eng, 2008, 2(2): 274 − 278.
    [92] 廖妤婕, 谈宇, 付旺, 等. 丛枝菌根真菌作用下桉树对铅的耐受机制研究[J]. 基因组学与应用生物学, 2014, 33(3): 633 − 639.

    LIAO Yujie, TAN Yu, FU Wang, et al. Study on the Pb-tolerance mechanism of Eucalyptus under the role of Arbuscular mycorrhizal fungi [J]. Genomics Appl Biol, 2014, 33(3): 633 − 639.
    [93] 刘永鑫, 秦媛, 郭晓璇, 等. 微生物组数据分析方法与应用[J]. 遗传, 2019, 41(9): 845 − 862.

    LIU Yongxin, QIN Yuan, GUO Xiaoxuan, et al. Methods and applications for microbiome data analysis [J]. Hereditas, 2019, 41(9): 845 − 862.
    [94] 白洋, 钱景美, 周俭民, 等. 农作物微生物组: 跨越转化临界点的现代生物技术[J]. 中国科学院院刊, 2017, 32(3): 260 − 265.

    BAI Yang, QIAN Jingmei, ZHOU Jianmin, et al. Crop microbiome: breakthrough technology for agriculture [J]. Bull Chin Acad Sci, 2017, 32(3): 260 − 265.
  • [1] 武仁杰, 邢玮, 葛之葳, 毛岭峰, 彭思利.  4种林分凋落叶不同分解阶段化学计量特征 . 浙江农林大学学报, 2023, 40(1): 155-163. doi: 10.11833/j.issn.2095-0756.20220289
    [2] 云慧雅, 毕华兴, 焦振寰, 王宁, 崔艳红, 赵丹阳, 王珊珊, 兰道云, 刘泽晖.  晋西黄土区不同林分类型和密度条件下林下灌草组成及多样性特征 . 浙江农林大学学报, 2023, 40(3): 569-578. doi: 10.11833/j.issn.2095-0756.20220433
    [3] 王艺雄, 张华锋, 李全, 张君波, 王绍良, 宋新章.  氮添加对毛竹林土壤磷组分的影响 . 浙江农林大学学报, 2022, 39(4): 695-704. doi: 10.11833/j.issn.2095-0756.20220236
    [4] 黄瑾, 余龙飞, 李文娟, 黄平.  基于稳定同位素自然丰度技术的土壤氧化亚氮产生与排放过程研究进展 . 浙江农林大学学报, 2021, 38(5): 906-915. doi: 10.11833/j.issn.2095-0756.20210458
    [5] 朱丹苗, 陈俊辉, 姜培坤.  杉木人工林土壤有机碳和微生物特征及其影响因素的研究进展 . 浙江农林大学学报, 2021, 38(5): 973-984. doi: 10.11833/j.issn.2095-0756.20200598
    [6] 杜雨菲, 吴保国, 陈玉玲.  基于机器学习算法的广西桉树适宜性研究 . 浙江农林大学学报, 2020, 37(1): 122-128. doi: 10.11833/j.issn.2095-0756.2020.01.016
    [7] 许宇星, 王志超, 竹万宽, 杜阿朋.  雷州半岛3种速生人工林下土壤生态化学计量特征 . 浙江农林大学学报, 2018, 35(1): 35-42. doi: 10.11833/j.issn.2095-0756.2018.01.005
    [8] 竹万宽, 陈少雄, RogerARNOLD, 王志超, 许宇星, 杜阿朋.  不同种桉树人工林土壤呼吸速率时空动态及其影响要素 . 浙江农林大学学报, 2018, 35(3): 412-421. doi: 10.11833/j.issn.2095-0756.2018.03.004
    [9] 臧晓琳, 张洪芹, 王鑫朝, 马元丹, 宝音陶格涛, 高岩, 张汝民.  放牧对冷蒿根际土壤微生物数量和群落功能多样性的影响 . 浙江农林大学学报, 2017, 34(1): 86-95. doi: 10.11833/j.issn.2095-0756.2017.01.013
    [10] 王丹, 马元丹, 郭慧媛, 高岩, 张汝民, 侯平.  模拟酸雨胁迫与柳杉凋落物对土壤养分及微生物的影响 . 浙江农林大学学报, 2015, 32(2): 195-203. doi: 10.11833/j.issn.2095-0756.2015.02.005
    [11] 赵贵, 丁效东, 王荣萍, 廖新荣, 李淑仪.  雷州半岛桉树不同品种和树龄对磷吸收的影响 . 浙江农林大学学报, 2012, 29(3): 407-411. doi: 10.11833/j.issn.2095-0756.2012.03.013
    [12] 姜海燕, 闫伟.  大兴安岭兴安落叶松林土壤微生物分布特征 . 浙江农林大学学报, 2010, 27(2): 228-232. doi: 10.11833/j.issn.2095-0756.2010.02.011
    [13] 魏媛, 张金池, 俞元春, 喻理飞.  贵州高原退化喀斯特植被恢复过程中土壤微生物数量的变化特征 . 浙江农林大学学报, 2009, 26(6): 842-848.
    [14] 陆道调, 蔡会德, 张旭, 牟继平.  桉树无性系速生丰产林生长及经济效益评价 . 浙江农林大学学报, 2008, 25(1): 65-68.
    [15] 徐胜光, 李淑仪, 蓝佩玲, 廖新荣, 陈昌和, 徐旭常.  燃煤烟气脱硫副产物用于桉树的效果及机理 . 浙江农林大学学报, 2004, 21(1): 15-21.
    [16] 徐秋芳, 姜培坤.  有机肥对毛竹林间及根区土壤生物化学性质的影响 . 浙江农林大学学报, 2000, 17(4): 364-368.
    [17] 董林根, 姜小娟, 方茂盛.  雷竹覆盖栽培林地土壤微生物的初步研究 . 浙江农林大学学报, 1998, 15(3): 236-239.
    [18] 姜培坤, 徐秋芳, 钱新标, 沈锡康, 俞欢群.  矿质肥料对杉木苗根区土壤生化性的影响 . 浙江农林大学学报, 1996, 13(1): 10-14.
    [19] 何光训.  杉木连栽林地土壤酚类物质降解受阻的内外因 . 浙江农林大学学报, 1995, 12(4): 434-439.
    [20] 杜国坚, 黄天平, 张庆荣, 张浦山, 程荣亮.  杉木混交林土壤微生物及生化特征和肥力* . 浙江农林大学学报, 1995, 12(4): 347-352.
  • 期刊类型引用(3)

    1. 周莹莹,林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势. 植物生态学报. 2023(05): 733-744 . 百度学术
    2. 孙晨娜,杨大新,宋清海,陈爱国,闻国静,张树斌,张晶,段兴武,金艳强. 2011–2020年云南元江干热河谷生态站气象监测数据集. 中国科学数据(中英文网络版). 2022(01): 205-216 . 百度学术
    3. 郭文章,井长青,邓小进,陈宸,赵苇康,侯志雄,王公鑫. 天山北坡典型草地土壤呼吸特征及其对环境因子的响应. 中国农业科技导报. 2022(10): 189-199 . 百度学术

    其他类型引用(3)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210701

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/5/1144

表(1)
计量
  • 文章访问数:  1086
  • HTML全文浏览量:  177
  • PDF下载量:  98
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2022-04-22
  • 录用日期:  2022-04-22
  • 网络出版日期:  2022-05-18
  • 刊出日期:  2022-10-20

世界桉树林土壤微生物研究综述

doi: 10.11833/j.issn.2095-0756.20210701
    基金项目:  国家自然科学基金资助项目(31760201,41807097);广西自然科学基金资助项目(2019GXNSFBA245096);广西科技计划项目(AD19245194)
    作者简介:

    韦菊娴(ORCID: 0000-0002-4645-840X),从事森林培育与地力维持研究。E-mail: 846644767@qq.com

    通信作者: 王聪(ORCID: 0000-0002-5641-9594),讲师,博士,从事土壤养分循环研究。E-mail: wangcuriel@foxmail.com
  • 中图分类号: S714.3

摘要: 土壤微生物主要通过参与养分元素循环和能量流动等过程来影响桉树生长发育,在提高土壤肥力和生产力方面扮演着重要角色。桉树作为世界三大速生树种之一,种类多,抗逆性强,适应性广。由于生态系统的复杂性和土壤微生物学研究技术手段的限制,桉树林土壤微生物多样性和功能的研究较少,当前对桉树林土壤微生物群落特征的研究大多处于初级阶段。本研究系统综述了不同经营方式、林分类型和林分年龄条件下桉树林土壤微生物群落特征的变化规律及研究进展。与桉树天然林相比,桉树人工林土壤微生物数量一般较少。与桉树人工纯林相比,桉树混交林能提高土壤微生物数量、多样性和活性。桉树林土壤微生物数量一般随林龄的增长而增加,而外生菌根真菌与内生菌根真菌多样性随林龄的增长而下降。分析了土壤微生物参与桉树林土壤养分元素循环和重金属污染修复的作用机制,并对桉树林土壤微生物研究和分析方法及其应用进行了展望。可为维持桉树林土壤健康、促进林业绿色可持续发展提供科学指导。表1参94

English Abstract

杨开业, 巩合德, 李敬, 等. 元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征[J]. 浙江农林大学学报, 2020, 37(5): 849-859. DOI: 10.11833/j.issn.2095-0756.20190647
引用本文: 韦菊娴, 王聪, 何斌, 等. 世界桉树林土壤微生物研究综述[J]. 浙江农林大学学报, 2022, 39(5): 1144-1154. DOI: 10.11833/j.issn.2095-0756.20210701
YANG Kaiye, GONG Hede, LI Jing, et al. Dynamic characteristics of soil respiration of Savanna ecosystem in dry hot valley of Yuanjiang[J]. Journal of Zhejiang A&F University, 2020, 37(5): 849-859. DOI: 10.11833/j.issn.2095-0756.20190647
Citation: WEI Juxian, WANG Cong, HE Bin, et al. Research progress on soil microorganisms in eucalypt forests[J]. Journal of Zhejiang A&F University, 2022, 39(5): 1144-1154. DOI: 10.11833/j.issn.2095-0756.20210701
  • 桉树是桃金娘科Myrtaceae桉属Eucalyptus、杯果木属Angophora和伞房属Corymbia植物的统称,常绿乔木,种类多、适应性广、抗逆性强,与杨树Populus 和松树 Pinus一同被称为世界三大速生树种[1]。桉树主要原生于澳大利亚(约1.01亿 hm2),极少数产于印度尼西亚、巴布亚新几内亚和菲律宾[2]。桉树调节气候、涵养水源和保持水土作用突出,碳汇功能相当强大,研究[3-4]发现:桉树二氧化碳吸收量达24.3 t·hm−2·a−1,是杉木Cunninghamia lanceolata的2.2倍,马尾松 Pinus massoniana的3.0倍,对于实现碳中和具有重要意义。作为优质可再生生物质能源,桉树材是纸浆、人造板、家具的主要原料,还被广泛用于生产各种林副产品,如桉树叶油、桉树多酚、桉树木炭等[5-6]。目前,全球桉树人工林面积已超过2 257万 hm2(表1),巴西、中国和印度是桉树人工林面积最大的3个国家,提供约2.5亿 m3·a−1桉树木材,占世界人工林木材年产量的37%[7-14]

    表 1  世界桉树人工林分布[7-14]

    Table 1.  Distribution of global eucalypt forests [7-14]

    国家种植面积/hm2国家种植面积/hm2国家种植面积/hm2国家种植面积/hm2
    巴西 4 862 000 摩洛哥 215 000 玻利维亚 41 000 土耳其 20 000
    中国 4 500 000菲律宾 189 000 阿尔及利亚 40 000 卢旺达 17 000
    印度 3 942 600 马达加斯加 163 000尼日利亚 40 000 多哥 17 000
    澳大利亚 926 000 印度尼西亚 128 000 孟加拉国 39 000哥斯达黎加 17 000
    乌拉圭 676 024 安哥拉 113 000 肯尼亚 39 000 新西兰 15 000
    智利 652 100埃塞俄比亚 100 000 斯威士兰 33 000 危地马拉 13 000
    葡萄牙 647 000 墨西哥 100 000美国 32 500 津巴布韦 13 000
    西班牙 640 000 委内瑞拉 100 000 伊朗 31 000所罗门群岛 12 000
    越南 586 000 厄瓜多尔 81 000 哥伦比亚 27 000 尼加拉瓜 12 000
    南非 568 000意大利 72 000 乌干达 25 000 厄立特里亚 12 000
    苏丹 540 400 刚果 68 000莫桑比克 25 000 赞比亚 12 000
    泰国 500 000 塞内加尔 65 000 布隆迪 25 000尼泊尔 11 000
    秘鲁 480 000 伊拉克 60 000 马拉维 25 000 法国 10 000
    阿根廷 330 000突尼斯 56 000 帕劳 21 000
    巴基斯坦 245 000 古巴 53 000巴拉圭 21 000
      说明:中国主要分布在广西壮族自治区、广东省、福建省、云南省和其他地区,占比分别为45%、30%、6%、5%和14%;巴西主要分布在      米纳斯吉拉斯州、圣保罗州、巴伊亚州、南马托格罗索州和其他地区,占比分别为29%、23%、14%、13%和21%;印度主要分布     在卡纳塔克邦、西孟加拉邦、马哈拉施特拉邦、北方邦和其他地区,占比分别为40%、13%、10%、6%和31%

    随着桉树产业的快速发展,不合理经营管理和林木采伐(如长期施肥和缩短桉树轮伐期)问题凸显,林地土壤肥力下降,病虫害频发,土壤生物多样性下降,环境污染加剧,严重危害了土壤健康和林业可持续发展[15]。土壤微生物是诊断土壤健康的理想指标[16],通过自身代谢参与养分循环和污染物降解,驱动元素生物地球化学循环,在增强植物根际免疫力、提高土壤肥力等方面发挥关键作用。本研究系统综述了不同经营方式和林分因子条件下桉树林土壤微生物群落的变化规律,分析土壤微生物和桉树林土壤健康的互作机制,并对今后桉树林土壤微生物研究和分析方法及其应用进行了展望,以期为维持森林土壤健康和促进林业绿色可持续发展提供指导。

    • 依据经营方式的不同,桉树林分可分为天然林和人工林。受不同林地经营措施如施用肥料和除草剂、连栽等影响,桉树林土壤环境条件存在差异,这会对土壤微生物活性、丰度和群落组成结构产生影响[17]。桉树天然林土壤细菌的优势群落主要为放线菌门Actinobacteria (15%~42%)和变形菌门Proteobacteria (12%~65%)[18-22]。施用化肥改变了桉树人工林土壤养分含量和pH,从而影响土壤微生物群落。桉树人工林中土壤细菌的优势群落[23-26]为绿弯菌门Chloroflexi (10%~44%)、变形菌门(18%~44%)、放线菌门(14%~41%)和酸杆菌门Acidobacteria (9%~18%),相较天然林,土壤中绿弯菌门和酸杆菌门相对丰度增加,可能是施用化肥导致的[27]。李超等[28]采用高通量测序技术对16S rRNA的V3~V4区域进行研究,发现施用复合肥提高了桉树根系的生理活性,改变了土壤细菌群落组成;与不施肥桉树人工林相比,施肥组人工林土壤绿弯菌门和酸杆菌门群落相对丰度更高。有研究[29]发现:绿弯菌门为兼性厌氧细菌,通过参与氮代谢将土壤内多糖分解成氢和有机酸,加快土壤内有机物的降解[30]。随着复合肥施用量的增加,施肥组桉树林土壤速效氮和植物根系分泌物增加,绿弯菌门群落相对丰度也随之增加[31]。酸杆菌门细菌能够在酸性条件下降解木质素与纤维素,参与土壤有机质循环[32]。随着复合肥施用量的增加,土壤速效氮、有效磷、速效钾含量增加,土壤pH下降,为酸杆菌门细菌提供了良好的生存环境,因而相对丰度增加。子囊菌门Ascomycota和担子菌门Basidiomycota是桉树林土壤真菌的优势群落[1933-36],两者比例在天然林中分别为60%~86%和9%~25%,在人工林中则分别为19%~50%和47%~75%[37-40]。担子菌门真菌可有效降解木质素。SCHMIDT-DANNERT[41]研究发现施用复合肥使得桉树人工林土壤中木质素含量升高,为担子菌门真菌提供足够底物,促进其生长和繁殖[42],这可能是桉树人工林担子菌门真菌相对丰度增加的原因。

      与桉树天然林相比,施用除草剂后桉树人工林林下植被多样性减少,土壤养分含量下降,可能是导致土壤微生物数量减少的原因。SILVA等研究[43]发现:相比没有施用除草剂的桉树人工林,施用不同剂量和频率的除草剂后,林下植被多样性和根系生理活性降低,土壤微生物生物量碳、氮含量下降。除草剂还会促成植物体内乙烯合成、脱落酸积累和气孔缩小,使二氧化碳吸收量减少,抑制光合作用并影响植物根系的生长发育和活性,引起林下植被多样性降低,间接使土壤养分含量和微生物活性降低,从而影响土壤微生物生物量碳、氮含量[44-45]。何伟等[46]采用变性梯度凝胶电泳法研究了桉树人工林表层土壤细菌群落多样性特征,发现施用除草剂的桉树人工林林下植被多样性发生改变,土壤细菌多样性先减少后增加。原因可能是施用除草剂使林下植被多样性下降,土壤凋落物输入的种类与数量减少,影响微生物基质数量和种类,或对某些土壤微生物产生抑制,导致细菌多样性减少。随着时间推移,除草剂被土壤黏粒吸附、微生物降解,随着除草剂毒性减弱,细菌多样性随之增加[47]

      现存桉树人工林主要为1代植苗林,2代萌芽林,3代萌芽林。魏圣钊等[48]采用平板菌落计数法发现:随桉树人工林连栽代次增加,土壤细菌、放线菌和真菌数量均呈减少的趋势。ZHU等[49]研究发现:尾叶桉 Eucalyptus urophylla连续种植后土壤微生物生物量降低,这可能是因为土壤全磷、全氮和含水率随桉树连栽代次增加而逐渐下降,微生物生长所需基质减少,生长受到限制[50]。可见连栽会造成桉树人工林土壤养分含量下降,影响土壤微生物数量和活性。

    • 林分可根据树种组成分为纯林和混交林,不同林分的凋落物数量和质量、土壤养分含量、根际土壤化感物质含量和根系活动等均有差异,这会对土壤微生物群落特征产生影响[51-52]

      桉树人工纯林凋落物难降解化合物(如木质素等)的比例较高,这些结构复杂的化合物降解时会产生大量酚酸类小分子化合物[53],对土壤微生物具有抑制作用[54]。与桉树人工纯林相比,桉树混交林凋落物数量和种类增加,能为更多种类土壤微生物生长提供底物,从而使土壤微生物数量和活性提高。KOUTIKA等[55]研究发现:桉树-刺槐Robinia pseudoacacia混交林中存在不同种类的凋落物,相比纯林,凋落物碳氮比较低,氮代谢强度提高,酚酸类物质减少,对微生物生长的抑制作用较低,从而使土壤微生物的生物量和多样性增加。PEREIRA等[56]发现:桉树-马占相思 Acacia mangium混交林中凋落物碳氮比较桉树人工纯林低,土壤细菌多样性增加。原因可能是不同种类和质地的凋落物促进了有机质积累,为更多种类的土壤微生物提供了底物。

      与桉树人工纯林相比,不同树种组成的桉树混交林能提高土壤养分,降低有害化感物质,从而提高土壤微生物数量和活性。刘小香等[57]发现:桉树纯林根系分泌物和凋落物分解产生的化感物质会抑制土壤微生物的生长繁殖。SANTOS等[58]发现:与桉树人工纯林相比,马占相思-桉树混交林根系分泌物对微生物的抑制作用较低,凋落物分解速率较高,碳代谢活性增强,土壤有机碳含量增加,土壤养分状况得到改善,土壤微生物总数比桉树人工纯林高。马占相思是一种浅根树种,根系较细,吸收根多,与桉树混交后,可提高土壤孔隙度,改善土壤空间结构和养分状况,使土壤微生物总数增加[59]。李万年等[60]发现:望天树Parashorea chinensis与桉树混交改善了林地土壤根系分布的空间结构。望天树幼树期根系较浅,与桉树混交后,可有效疏松土壤,改善土壤颗粒结构;混交林土壤全氮、全钾、速效磷含量增加,促进养分的合理利用。

      与桉树人工纯林相比,桉树混交林不同树种组成影响根系活动,使真菌群落的生物量降低,土壤细菌和放线菌群落的生物量提高。陈永康等[61]和黄雪蔓等[62]采用磷脂脂肪酸法发现:桉树与降香黄檀 Dalbergia odorifera混交可提高根系活性,增加根系分泌物,使土壤细菌和放线菌群落的生物量提高,真菌群落的生物量降低。这可能是由于细菌倾向于分解简单化合物(如根系分泌物中易降解可溶性有机碳等)[63],而真菌是有机大分子物质(如木质素等)的主要分解者[64]。桉树-降香黄檀混交林根系分泌物中易分解活性化合物较桉树人工纯林要多,难降解化合物(如木质素等)则较少,土壤碳氮比降低,导致真菌群落生物量降低,细菌和放线菌群落生物量提高。

    • 桉树林分不同年龄阶段的土壤理化性质[65]、细根生长状况[66]、林下植被多样性[67]、根际土壤化感物质含量的差异等均会导致土壤微生物群落特征发生变化。

      不同年龄阶段桉树吸收土壤养分的种类和数量不同,从而影响土壤养分状况,并改变土壤微生物群落特征。张丹桔等[68]发现:四川丹棱县巨桉E. grandis人工林轮伐期前(4 a)土壤细菌和真菌逐步减少,此后随林龄增加而逐渐增加。这可能是因为轮伐期前(4 a)为桉树人工林速生生长阶段,林木生长需要消耗大量养分,原有有机质的分解大于外界输入,土壤有机碳含量低,微生物生长基质减少,因而活性与数量下降;随着林龄增长,林木生长趋缓,对养分吸收减少;同时林下生物多样性增加,凋落物不断积累,分解产生有机碳输入土壤,使得土壤有机碳质量分数升高,为微生物生长提供足够基质,因而活性与数量均有增加[69]。XU等[70]发现:雷州半岛北部尾巨桉 E. urophylla × E. grandis人工林土壤细菌和真菌数量具有林龄效应,土壤细菌和真菌数量表现为随林龄增长而增加的趋势。

      桉树人工林细根生长状况一般表现为幼龄林阶段优于成熟林,这可能是导致幼龄林阶段外生菌根真菌群落多样性指数大于成熟林的原因。江瑶等[71]比较了不同林龄桉树人工林的土壤外生菌根真菌群落多样性,发现桉树栽植2 a时土壤外生菌根真菌物种丰度高于6 a。这可能是2年生桉树处于速生阶段,细根较多,根系活性较高,对营养物质和水分的需求量大[72],桉树通过分配大量的养分物质利用外生菌根辅助养分吸收,一定程度上提升了外生菌根真菌多样性。随着林龄增长,桉树生长速度减缓,养分吸收速率降低[73],对外生菌根真菌的依赖性降低,细根活性下降,外生菌根真菌群落多样性减少。

      土壤磷含量依赖于土壤本身的母质特征[74]。幼龄林阶段桉树人工林土壤养分循环缓慢,土壤磷元素来源少,磷含量一般小于成熟林,这可能导致了幼龄林阶段内生菌根真菌群落多样性指数大于成熟林。李佳雨等[75]采用湿筛倾析法研究比较不同林龄桉树人工林的土壤内生菌根真菌群落多样性的变化后发现:栽植2 a的桉树土壤内生菌根真菌香农指数和辛普森指数均最高,5 a时均为最低,但组间多样性指数差异不显著。随着人工营林措施(如施磷肥)的进行,桉树人工林土壤磷含量增加,植物对内生菌根真菌的依赖性降低,分配给内生菌根真菌的养分减少,造成内生菌根真菌多样性减少[76]。随着桉树林龄增加,内生菌根真菌群落多样性指数逐渐减少。

    • 土壤微生物通过自身代谢参与碳、氮、磷、铁和硫等元素循环[77]来改善土壤养分状况,提升土壤健康。目前对桉树碳、氮和磷元素循环与土壤微生物群落间关系的研究较多[78]

      李永双等[79]通过盆栽实验对云南省建水地区植被根际土壤中产碳酸酐酶的微生物进行分离培养,获得1株具有较强溶蚀效果的沙雷氏菌属 Serratia细菌。SALEEM等[80]研究认为沙雷氏菌菌液分泌物对碳酸钙类岩石的溶蚀具有促进作用,根际微生物降解有机残体产生的二氧化碳可增大难溶性碳酸盐的溶解性[81]。文晓萍等[82]将回接相思树Acacia根瘤作用于非豆科Leguminosea植物巨尾桉苗木的生长,发现接种根瘤菌处理土壤含氮量显著提高。可能是根瘤菌可以将植物不能吸收的氮、土壤固定态磷、钾以及微量元素变成可吸收利用的状态[83],接种根瘤菌后产生的胞外多糖为土壤微生物提供了更多的碳源[84],促进了土壤可培养微生物(细菌、真菌和放线菌)的生长[85],有利于土壤微生物固定无机态氮,因此有效地提高巨尾桉土壤氮素的积累。张辉等[86]研究发现:接种促生菌(固氮菌、解钾菌、解磷菌)后,巨尾桉土壤有效磷质量分数提高。可能是因为这些联合固氮菌可以分泌有机酸,而有机酸可使土壤中不溶性磷素转变为可溶性磷素,使磷有效地溶解和被植物吸收[87]

    • 当前,中国林地土壤重金属污染和土壤农药污染等问题[88]严重,土壤健康受到威胁。目前研究主要是关于土壤微生物群落对土壤重金属污染的影响[89]

      黄佳玉等[90]通过盆栽实验发现:接种摩西球囊霉菌Glomus mosseae且土壤中外加铜和锌质量分数分别为25和200 mg·kg−1处理,桉树苗中铜质量分数由26 mg·kg−1降低为13 mg·kg−1,较未接种处理差异显著(P<0.05)。这可能是由于菌根真菌的结构阻碍金属元素向地上部分运输,降低重金属元素对植物的毒性,从而保护桉树的生长[91]。廖妤婕等[92]采用差速离心法和化学试剂逐步提取法研究了桉树对铅的耐受机制,从铅在桉树不同部位中的亚细胞分布和化学形态来看,高质量分数(200和400 mg·kg−1) 铅处理下,接种丛枝菌根真菌(AMF)的桉树根部细胞壁组分和叶片可溶组分的分配比例增大,细胞壁滞留作用和液泡区隔化作用增强,可能是AMF作用下桉树耐铅的主要机制。细胞壁和以液泡为主的可溶组分是桉树储存铅的2个主要场所,桉树根部细胞壁对铅的滞留作用最强,叶片中可溶组分对铅的区隔化作用最强。随着铅胁迫的增加,接种AMF的桉树根部对铅的固持作用及细胞壁组分的滞留作用增强,同时,滞留在桉树根部的铅从活性较强的乙醇提取态向活性较弱的醋酸提取态转化,减弱了铅的活性,也减少了铅向地上部分茎和叶的迁移;此外,叶片可溶组分对铅的区隔化增强,也减轻了迁移到地上部分的铅对桉树的毒害作用。

    • 微生物分子生态技术的快速发展和应用,为拓宽微生物群落结构和多样性研究提供了新的途径和方法,推动了碳、氮、磷等元素生物地球化学循环机制和土壤污染的深入探索。加强对土壤微生物组成和功能的研究,强化其在桉树林生态系统中的作用,对减少化肥和农药的施用、维持森林土壤健康,进而促进桉树林绿色可持续发展具有重要意义。

      当前对桉树林土壤微生物群落特征的研究大多处于初级阶段,多数通过采集少量次数的土壤样本,基于平板菌落计数法、磷脂脂肪酸法、16S rRNA高通量测序等方法进行。与高通量测序法相比,平板菌落计数法和磷脂脂肪酸法等方法灵敏度和准确度低、检测微生物种类少、数据量少[93],基于非功能基因的扩增子测序等方法无法准确评估微生物群落功能特征。因此,目前的研究尚未充分了解桉树林土壤微生物活性、数量、群落组成结构和功能特征,难以准确评价桉树林土壤健康状况。为实现桉树林土壤健康与可持续发展,建议从3个方面进一步开展相关研究:①运用多种组学方法(如宏基因组学、宏转录组学和宏代谢组学等)研究桉树林土壤微生物群落特征,探究土壤微生物的功能并使其有益功能最大化,从而提高桉树林生态系统中林木的抗病性和资源的有效利用。②集成桉树林土壤微生物和土壤健康大数据自动化分析系统,为土壤微生物作为土壤健康评估的重要指标提供有力支撑。③微生物移植工程已经成功应用于改变植物微生物菌群组成[94],发挥了改善土壤健康和促进林业可持续发展的巨大潜力。今后可深入探究土壤微生物参与特定生物过程的功能,并将其广泛应用于治疗性微生物组工程。

参考文献 (94)

目录

/

返回文章
返回