Replacing peat with garden waste compost in Cosmos bipinnata cultivation
-
摘要:
目的 探究园林绿化废弃物堆肥替代泥炭用作波斯菊Cosmos bipinnata栽培基质的可行性,实现园林绿化废弃物的科学、经济、有效利用,减少花卉栽培中泥炭的使用量。 方法 将园林绿化废弃物堆肥和泥炭按不同体积比配制成5种栽培基质[100%园林绿化废弃物堆肥(T100)、75%园林绿化废弃物堆肥+25%泥炭(T75)、50%园林绿化废弃物堆肥+50%泥炭(T50)、25%园林绿化废弃物堆肥+75%泥炭(T25)、100%泥炭(T0)],T100和T0作为对照,用于波斯菊的栽培试验。通过比较不同种栽培基质的理化性质和波斯菊的生长指标,从中选择出园林绿化废弃物堆肥和泥炭最佳配比的栽培基质。 结果 添加园林绿化废弃物堆肥能够显著提高栽培基质中全氮、全磷、全钾、速效磷和速效钾质量分数(P<0.05),改善栽培基质容重、最大含水量、总孔隙度、通气孔隙和酸碱环境,其中添加比例为50%(T50)时,栽培基质理化性质表现最优。与对照(T0)相比,最优栽培基质(T50)栽培的波斯菊地上部鲜质量提高了390.4%,地上部干质量提高了322.2%,地下部鲜质量提高了145.6%,地下部干质量提高了93.1%,株高提高了137.4%,花朵数提高了109.0%,根长提高了95.7%。 结论 园林绿化废弃物堆肥可以部分替代泥炭用于波斯菊栽培,其中以50%园林绿化废弃物堆肥+50%泥炭构成的栽培基质对波斯菊生长最为有利。表5参25 Abstract:Objective This study aims to explore the feasibility of using green waste compost as the Cosmos bipinnata cultivation substrate instead of peat, so as to achieve the scientific, economic and effective utilization of green waste and reduce the use of peat in flower cultivation. Method Green waste compost and peat were prepared into 5 kinds of cultivation substrates according to different proportions [100% green waste compost (T100), 75% green waste compost+25% peat (T75), 50% green waste compost+50% peat (T50), 25% green waste compost+75% peat (T25), and 100% peat (T0)]. T100 and T0 were used as the control for the cultivation test of C. bipinnata. By comparing the physical and chemical properties of different cultivation substrates and the growth index of C. bipinnata, the cultivation substrate with the best proportion of garden waste compost and peat was selected. Result Adding green waste compost could significantly increase the contents of total nitrogen, total phosphorus, total potassium, available phosphorus, and available potassium in the cultivation substrate(P<0.05), and improve the bulk density, maximum water content, total porosity, aeration pores, and acid-base environment of the cultivation substrate. The physical and chemical properties of the cultivation substrate were the best when the addition ratio of green waste compost was 50%. Compared with the control (T0), the fresh weight of aboveground parts, the dry weight of aboveground parts, the fresh weight of underground parts, and the dry weight of underground parts in T50 culture increased by 390.4%, 322.2%, 145.6%, and 93.1%, respectively. The plant height, the flower number, and the root length of C. bipinnata increased by 137.4%, 109.0%, and 95.7% respectively. Conclusion Green waste compost can partially replace peat for C. bipinnata cultivation, and the cultivation substrate composed of 50% green waste compost + 50% peat is the most favorable for the growth of C. bipinnata, which can better replace peat as the cultivation substrate of C. bipinnata for garden greening. [Ch, 5 tab. 25 ref.] -
Key words:
- green waste compost /
- peat /
- Cosmos bipinnata /
- cultivation substrate
-
表 1 试验设计
Table 1. Experimental design
基质代号
(处理)不同基质的配比(体积比) 园林绿化废弃物堆肥/% 泥炭/% T100 100 0 T75 75 25 T50 50 50 T25 25 75 T0 0 100 表 2 不同栽培基质物理性质
Table 2. Physical properties of different cultivation substrates
处理 容重/(g·cm−3) 最大含水量/% 总孔隙度/% 通气孔隙/% 处理 容重/(g·cm−3) 最大含水量/% 总孔隙度/% 通气孔隙/% T100 0.41±0.03 a 82.67±0.17 a 84.11±0.31 a 23.16±0.16 a T25 0.33±0.02 d 84.33±0.27 b 87.51±0.29 bc 17.88±0.11 c T75 0.39±0.02 b 83.06±0.21 ab 85.32±0.25 ab 20.55±0.24 b T0 0.31±0.03 e 85.95±0.23 b 88.93±0.28 c 15.40± 0.17 d T50 0.37±0.05 c 83.41±0.20 b 86.78±0.21 b 19.79±0.19 b 理想值 <0.40[12] 70.00~85.00[13] 70.00~90.00[14] 15.00~30.00[14] 说明:平均值±标准差(n=5)。同列不同小写字母表示不同处理间差异显著(P<0.05) 表 3 不同栽培基质化学性质
Table 3. Chemical properties of different cultivated substrates
处理 pH EC/(mS·cm−1) 全氮/(g·kg−1) 全磷/(g·kg−1) 全钾/(g·kg−1) 速效磷/(mg·kg−1) 速效钾/(mg·kg−1) T100 6.64±0.04 a 3.51±0.01 a 35.6±0.7 a 10.9±0.6 a 13.2±0.1 a 143±2 a 8 873±67 a T75 6.51±0.06 b 2.47±0.10 b 29.1±1.2 b 8.6±0.2 b 9.8±0.7 b 131±2 b 6 967±54 b T50 6.42±0.09 c 1.67±0.05 c 22.3±0.6 c 6.1±0.4 c 7.2±0.2 c 117±2 c 5 053±56 c T25 6.37±0.03 d 0.89±0.02 d 15.6±0.8 d 3.4±0.1 d 4.1± 0.4 d 103±1 d 3 136±38 d T0 6.26±0.07 e 0.39±0.03 e 7.7±0.2 e 0.2±0.0 e 0.3±0.0 e 86±1 e 1 218±20 e 理想值 5.2~6.5[15] 0.75~3.49[16] 说明:平均值±标准差(n=5)。同列不同小写字母表示不同处理间差异显著(P<0.05) 表 4 不同栽培基质对波斯菊生物量的影响
Table 4. Effects of different cultivation substrates on the biomass of C. bipinnata
处理 地上部 地下部 处理 地上部 地下部 鲜质量/g 干质量/g 鲜质量/g 干质量/g 鲜质量/g 干质量/g 鲜质量/g 干质量/g T100 9.77±0.13 d 0.61±0.03 d 1.96±0.07 d 0.42±0.05 d T25 16.59±0.07 b 0.93±0.04 b 2.37±0.11 b 0.51±0.04 b T75 12.01±0.19 c 0.72±0.07 c 2.11±0.13 c 0.47±0.06 c T0 6.48±0.11 e 0.36±0.08 e 1.60±0.24 e 0.29±0.02 e T50 31.78±0.21 a 1.52±0.10 a 3.93±0.06 a 0.56±0.02 a 说明:平均值±标准差(n=5)。同列不同小写字母表示不同处理间差异显著(P<0.05) 表 5 不同栽培基质对波斯菊生长指标的影响
Table 5. Effects of different cultivation substrates on growth Indexes of C. bipinnata
处理 株高/cm 花朵数/朵 根长/cm 处理 株高/cm 花朵数/朵 根长/cm T100 69.40±8.77 d 4.00±1.00 c 15.70±1.26 d T25 117.89±9.93 b 6.00±1.00 b 24.44±2.21 b T75 84.34±8.41 c 5.33±0.67 b 19.55±1.03 c T0 60.46±7.64 e 3.67±0.67 c 13.45±1.17 e T50 143.55±10.12 a 7.67±0.67 a 26.32±1.78 a 说明:平均值±标准差(n=5)。同列不同小写字母表示不同处理间差异显著(P<0.05) -
[1] 江至云. 浙江省花卉苗木产业发展现状、问题及对策研究[D]. 杭州: 浙江农林大学, 2018. JIANG Zhiyun. Research on the Current Situation, Problems and Countermeasures of Flower and Seedling Industry in Zhejiang Province[D]. Hangzhou: Zhejiang A&F University, 2018. [2] 马海龙, 刘忠华, 段志平, 等. 蚯蚓粪替代泥炭的栽培基质特性及对绿萝和吊兰花卉生长的影响[J]. 中国土壤与肥料, 2021(5): 112 − 118. doi: 10.11838/sfsc.1673-6257.20316 MA Hailong, LIU Zhonghua, DUAN Zhiping, et al. The effect of vermicompost replacing peat on the physical and chemical properties of the substrate and the growth of two flowers of green radish and Chlorophytum [J]. Soil Fert Sci China, 2021(5): 112 − 118. doi: 10.11838/sfsc.1673-6257.20316 [3] 周冰玉, 李志威, 游宇驰, 等. 2015年黄河源区泥炭地分布及其空间差异性[J]. 湿地科学, 2021, 19(5): 543 − 550. ZHOU Bingyu, LI Zhiwei, YOU Yuchi, et al. Distribution and spatial differences of peatlands in the source region of the Yellow River in 2015 [J]. Wetland Sci, 2021, 19(5): 543 − 550. [4] 卜晓莉, 姬慧娟, 马青林, 等. 生物炭-泥炭复合基质对马缨杜鹃生长和生理的影响[J]. 植物资源与环境学报, 2021, 30(5): 58 − 68. doi: 10.3969/j.issn.1674-7895.2021.05.07 BU Xiaoli, JI Huijuan, MA Qinglin, et al. Effects of biochar-peat composite substrate on growth and physiology of Rhododendron delavayi [J]. J Plant Resour Environ, 2021, 30(5): 58 − 68. doi: 10.3969/j.issn.1674-7895.2021.05.07 [5] 陈彤, 邱军付, 齐兴育, 等. 园林废弃物基栽培基质的配方筛选及综合评价[J]. 环境工程学报, 2021, 15(4): 1444 − 1450. doi: 10.12030/j.cjee.202008169 CHEN Tong, QIU Junfu, QI Xingyu, et al. Screening and comprehensive evaluation of garden waste based cultivation substrate [J]. Chin J Environ Eng, 2021, 15(4): 1444 − 1450. doi: 10.12030/j.cjee.202008169 [6] 郝丹, 张璐, 孙向阳, 等. 金盏菊栽培中园林废弃物堆肥与牛粪替代泥炭的效果分析[J]. 植物营养与肥料学报, 2020, 26(8): 1556 − 1564. doi: 10.11674/zwyf.19475 HAO Dan, ZHANG Lu, SUN Xiangyang, et al. Effect analysis of garden waste compost and cow manure substituting peat in Calendula officinalis cultivation [J]. Plant Nutr Fert Sci, 2020, 26(8): 1556 − 1564. doi: 10.11674/zwyf.19475 [7] 倪肖卫, 郭建斌, 殷庆霏, 等. 园林废弃物堆肥用作绿化基质对佛甲草生长的影响[J]. 干旱区资源与环境学报, 2019, 33(4): 103 − 108. NI Xiaowei, GUO Jianbin, YIN Qingfei, et al. Effects of green waste compost used as roof greening substrate on the growth of Sedum lineare [J]. J Arid Land Resour Environ, 2019, 33(4): 103 − 108. [8] 李燕, 孙向阳, 龚小强. 园林废弃物堆肥替代泥炭用于红掌和鸟巢蕨栽培[J]. 浙江农林大学学报, 2015, 32(5): 736 − 742. doi: 10.11833/j.issn.2095-0756.2015.05.012 LI Yan, SUN Xiangyang, GONG Xiaoqiang. Use of green waste compost as a peat surrogate in substrates for Anthurium andraeanum and Asplenium nidus cultivation [J]. J Zhejiang A&F Univ, 2015, 32(5): 736 − 742. doi: 10.11833/j.issn.2095-0756.2015.05.012 [9] 方艳, 王杰, 覃杨, 等. 蜜源植物波斯菊对捕食性天敌种群动态的影响[J]. 中国生物防治学报, 2021, 37(5): 877 − 884. FANG Yan, WANG Jie, QIN Yang, et al. Effect of nectar plant Cosmos bipinnata on the population dynamics of predatory natural enemies [J]. Chin J Biol Control, 2021, 37(5): 877 − 884. [10] 殷泽欣, 张璐, 郝丹, 等. 牛粪堆肥替代泥炭用于3种茄科植物育苗的可行性[J]. 浙江农业学报, 2021, 33(9): 1700 − 1709. doi: 10.3969/j.issn.1004-1524.2021.09.14 YIN Zexin, ZHANG Lu, HAO Dan, et al. Feasibility of cow dung compost substituting peat in seeding nursery of three Solanaceae plants [J]. Acta Agric Zhejiang, 2021, 33(9): 1700 − 1709. doi: 10.3969/j.issn.1004-1524.2021.09.14 [11] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. BAO Shidan. Soil Agrochemical Analysis[M]. Beijing: China Agriculture Press, 2000. [12] ABAD M, NOGUERA P, BURES S. National inventory of organic wastes for use as growing substrate for ornamental potted plant production: cause study in Spain [J]. Bioresour Technol, 2001, 77(2): 197 − 200. doi: 10.1016/S0960-8524(00)00152-8 [13] 樊怀福, 杜长霞, 朱祝军, 等. 基质含水量对番茄生长、品质和产量的影响[J]. 浙江农业科学, 2011, 52(3): 45 − 48. doi: 10.3969/j.issn.0528-9017.2011.03.013 FAN Huaifu, DU Changxia, ZHU Zhujun, et al. Effects of substrate water content on tomato growth, quality and yield [J]. J Agric Sci, 2011, 52(3): 45 − 48. doi: 10.3969/j.issn.0528-9017.2011.03.013 [14] ZHANG Lu, SUN Xiangyang, TIAN Yun, et al. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis [J]. Sci Hortic, 2014, 176: 70 − 78. doi: 10.1016/j.scienta.2014.06.021 [15] 李苏翼. 废弃物堆肥化基质性状调控及对无土草坪生长的影响[D]. 泰安: 山东农业大学, 2016. LI Suyi. Waste Composting Substrates Properties Regulation and Effects on Soil-free Turf Growth[D]. Tai’an: Shandong Agricultural University, 2016. [16] 郝丹, 张璐, 孙向阳, 等. 园林废弃物堆肥和牛粪有机肥用于金盏菊育苗的研究[J]. 西北林学院学报, 2019, 34(4): 150 − 155. doi: 10.3969/j.issn.1001-7461.2019.04.22 HAO Dan, ZHANG Lu, SUN Xiangyang, et al. Effects of green waste compost and cow manure organic fertilizer on the emergence rate of Calendula of ficinalis [J]. J Northwest For Univ, 2019, 34(4): 150 − 155. doi: 10.3969/j.issn.1001-7461.2019.04.22 [17] ZHANG Lu, SUN Xiangyang. Effects of bean dregs and crab shell powder additives on the composting of green waste [J]. Bioresour Technol, 2018, 260: 283 − 293. doi: 10.1016/j.biortech.2018.03.126 [18] 朱珠. 番茄夏季育苗基质筛选及水分调控研究[D]. 扬州: 扬州大学, 2018. ZHU Zhu. Screening of Tomato Seedling Substrate and Water Regulation in Summer[D]. Yangzhou: Yangzhou University, 2018. [19] 胡雨彤, 时连辉, 刘登民, 等. 不同比例珍珠岩对污泥堆肥理化性状与孔雀草生长的影响[J]. 应用生态学报, 2014, 25(7): 1949 − 1954. HU Yutong, SHI Lianhui, LIU Dengmin, et al. Effects of different perlite additions on physical and chemical properties of sewage compost and growth of Tagetes patula [J]. Chin J Appl Ecol, 2014, 25(7): 1949 − 1954. [20] 张璐. 园林绿化废弃物堆肥化的过程控制及其产品改良与应用研究[D]. 北京: 北京林业大学, 2015. ZHANG Lu. Process Control of Composting of Landscaping Waste and Its Improvement and Application[D]. Beijing: Beijing Forestry University, 2015. [21] FEGHHENABI F, HADI H, KHODAVERDILOO H, et al. Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L. )[J/OL]. Agric Water Manage, 2020, 231[2021-11-20]. doi: 10.1016/j.agwat.2020.106022. [22] 于瀚, 欧静, 杨小燕, 等. 不同基质配比对‘阳光’樱容器苗生长生理的影响[J]. 中国农学通报, 2021, 37(29): 47 − 55. doi: 10.11924/j.issn.1000-6850.casb2020-0698 YU Han, OU Jing, YANG Xiaoyan, et al. Influence of different substrate proportions on the growth and physiology of' C. companulat ‘Youkou’ seedlings in containers [J]. Chin Agric Sci Bull, 2021, 37(29): 47 − 55. doi: 10.11924/j.issn.1000-6850.casb2020-0698 [23] 艾娟娟, 厚凌宇, 邵国栋, 等. 林业废弃物基质配方特性及其对柚木生长的影响[J]. 浙江农林大学学报, 2018, 35(6): 1027 − 1037. doi: 10.11833/j.issn.2095-0756.2018.06.005 AI Juanjuan, HOU Lingyu, SHAO Guodong, et al. The characteristics of forestry waste matrix formulation and its effect on teak growth [J]. J Zhejiang A&F Univ, 2018, 35(6): 1027 − 1037. doi: 10.11833/j.issn.2095-0756.2018.06.005 [24] 王紫阳, 杨颖, 华建峰, 等. 碱处理对‘中山杉406’幼苗叶片光合特性和生理的影响[J]. 植物资源与环境学报, 2020, 29(4): 72 − 74. doi: 10.3969/j.issn.1674-7895.2020.04.10 WANG Ziyang, YANG Ying, HAU Jianfeng, et al. Effect of alkali treatment on photosynthetic characteristics and physiology of' leaves of Taxodium ‘Zhongshanshan 406’ seedlings [J]. J Plant Resour Environ, 2020, 29(4): 72 − 74. doi: 10.3969/j.issn.1674-7895.2020.04.10 [25] 毛爽, 周万里, 杨帆, 等. 植物根系应答盐碱胁迫机理研究进展[J]. 浙江农业学报, 2021, 33(10): 1991 − 2000. doi: 10.3969/j.issn.1004-1524.2021.10.23 MAO Shuang, ZHOU Wanli, YANG Fan, et al. Research progress on mechanism of plant roots response to saline-alkali stress [J]. Acta Agric Zhejiang, 2021, 33(10): 1991 − 2000. doi: 10.3969/j.issn.1004-1524.2021.10.23 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210829

计量
- 文章访问数: 17
- 被引次数: 0