-
开展珍稀濒危植物的群落生态学研究有助于野生植物资源的保护、恢复和可持续更新。群落生态学研究一般通过探究物种的分布范围、群落结构及种内与种间联结关系等,揭示群落生活史、适应性、生长趋势等[1-3]。物种组成与群落结构在一定程度上展现植物对资源的利用能力和群落的稳定程度[4]。汪国海等[5]通过研究濒危植物单性木兰Kmeria septentrionalis的群落结构与空间分布格局,探究其聚集方式和传播途径。濒危物种的生态位宽度与群落总体关联度能够反映物种间的相互关系(竞争或促进作用)及对生境条件的适应状况和资源利用情况等[6-8]。刘万德等[9]对藤枣Eleutharrhena macrocarpa的生境特征和种间联结研究发现:藤枣与下层木呈极显著负相关,减少群落内下层木可以促进藤枣群落可持续生长[3, 9-11]。杨国平等[12]通过建立预测景东翅子树Pterospermum kingtungense群落动态的Lefkovitch矩阵模型,探究濒危物种在特定的小生境片段中的分布区间。因此,基于群落生态学的研究方法,有助于全面评估珍稀濒危物种的内外致濒因子,缓解其濒危态势,实现有效的拯救保护[10-11]。
细果秤锤树Sinojackia microcarpa为中国特有的极小群落野生植物,多分布在浙江临安、建德等地,处于极度濒危和受胁迫状态[13-17]。目前,对秤锤属Sinojackia的研究相对较多。杨国栋等[18]采用生态学理论结合自组织特征映射网络(SOM)方法,划分了野生秤锤树群落的群丛类型。徐惠明等[19]分析了狭果秤锤树S. rehderiana的群落年龄结构,发现该群落具有良好的更新潜力。周赛霞等[20]研究发现:受密度制约或种子扩散限制等,狭果秤锤树的空间聚集分布趋势逐渐减弱。秤锤属物种多表现出竞争能力相对较弱,对外界干扰的响应较为显著[18-19]。本研究通过对细果秤锤树群落的长期动态监测,分析细果秤锤树群落的物种组成、生态位宽度及其与主要树种的种间关联,揭示细果秤锤树的生境适应性与竞争强度,有助于在就地、迁地保护回归实践中建立适宜的生存环境。
-
细果秤锤树总计509株,其中富家坞分布个体数量最多(243株),灵山顶最少(71株)。群落里单丛萌蘖枝干中的最大胸径为8.10 cm,平均树高为5.40 m(表1)。乌石滩、富家坞、灵山顶细果秤锤树群落的胸径变异系数分别为34%、33%和33%,均表现为较低变异性。
表 1 细果秤锤树群落资源组成
Table 1. Composition of population resources of S. microcarpa
分布区 数量/
株胸径/
cm树高/
m胸径变异
系数/%树高变异
系数/%乌石滩 195 3.07±1.05 5.00±1.87 34 38 富家坞 243 3.05±1.02 5.40±1.98 33 41 灵山顶 71 2.95±0.98 4.90±2.41 33 54 说明:胸径和树高数值为平均值±标准差 细果秤锤树分布在海拔23~429 m的区域(表2和表3),乌石滩和富家坞受人工干预程度较高,存在人为滥砍及割灌除草等抚育过程。土壤呈较疏松多孔的黏质土,土壤容重为1.06~1.19 g·cm−3,pH为4.72~5.79,偏酸性土壤,有效磷和速效钾偏低。细果秤锤树群落土壤有机质、氮、磷、钾及其速效成分中等,土壤养分条件一般。
表 2 细果秤锤树群落生境调查
Table 2. Environmental survey of S. microcarpa population
分布区 样地 海拔/m 纬度(N) 经度(E) 坡向 群落特征 乌石滩 P1 58 29°34′16″ 119°33′10″ 西 樟树Cinnamomum camphora-板栗Castanea mollissima混交林 P2 45 29°34′18″ 119°33′60″ 西 板栗林 P3 64 29°34′17″ 119°33′00″ 东北 板栗林 富家坞 P4 58 29°34′57″ 119°33′42″ 东南 柏木Cupressus funebris-南酸枣Choerospondias axiliaris混交林 P5 95 29°34′57″ 119°33′36″ 东南 柏木林 P6 128 29°35′20″ 119°33′24″ 东 柏木-拟赤杨Alniphyllum fortunei混交林 灵山顶 P7 190 29°35′35″ 119°33′52″ 东北 樟树林 P8 384 29°35′11″ 119°33′11″ 东北 毛竹Phyllostachys edulis林 P9 396 29°35′40″ 119°33′10″ 东北 毛竹林 表 3 细果秤锤树群落的生境因素
Table 3. Habitat factors of S. microcarpa
分布区 海拔/m 土壤容重/
(g·cm−3)土壤pH 土壤有机
质/(g·kg−1)土壤总孔
隙度/%土壤碱解氮/
(mg·kg−1)土壤有效磷/
(mg·kg−1)土壤速效钾/
(mg·kg−1)乌石滩 70±26 a 1.01±0.10 a 5.46±0.20 a 38.84±3.66 a 61.74±3.67 a 103.41±3.08 a 6.23±0.82 a 82.46±3.22 a 富家坞 109±39 a 1.12±0.06 a 5.47±0.43 a 40.76±1.22 a 57.72±2.25 a 97.61±6.90 a 5.79±1.26 a 82.93±6.82 a 灵山顶 370±110 a 1.07±0.09 a 5.23±0.15 a 45.74±3.42 a 59.72±3.44 a 107.71±8.72 a 5.54±1.45 a 95.48±14.02 a 变化范围 23~429 1.00~1.19 4.72~5.79 36.81~48.38 55.20~62.42 91.04~113.67 5.30~7.84 75.69~102.80 说明:数值为平均值±标准差。同列不同小写字母表示同一指标不同分布区之间差异显著(P<0.05) -
细果秤锤树样地内共记录到胸径≥1 cm的木本植物401株,隶属于35科50属51种。其中优势科有樟科Lauraceae (5属6种)、山茶科Theaceae (3属4种)、壳斗科Fagaceae (3属3种)、马鞭草科Verbenaceae (3属3种)、安息香科Styracaceae (2属3种)、大戟科Euphorbiaceae (2属2种)、金缕梅科Hamamelidaceae (2属2种)、漆树科Anacardiaceae (2属2种)、茜草科Rubiaceae (2属2种)、榆科Ulmaceae (2属2种)。樟树的平均胸径最大,达30.8 cm,有22株;平均胸径较大的树种有臭椿Ailanthus altissima、枫香Liquidambar formosana、柏木、南酸枣和毛竹。
样地中重要值≥1%的上层木物种共16种,重要值排前4位的物种是毛竹、柏木、板栗和细果秤锤树,这4个物种重要值之和为49.85%,是群落优势树种(表4)。下层中阔叶箬竹Indocalamus latifolius的重要值最高,为15.48%;重要值排前3位的物种有水团花Adina pilulifera、毛花连蕊茶Camellia fraterna和细果秤锤树(表5)。细果秤锤树在上、下木层中重要值分别为9.50%和4.60%,是主要建群种之一。
表 4 细果秤锤树群落上层木主要物种的重要值和生态位宽度
Table 4. Important values and niche breadth of the dominant species in upper wood layer of S. microcarpa community
编号 物种 重要值/
%生态位宽度 编号 物种 重要值/
%生态位宽度 Levins
指数Shannon-Wiener
指数Levins
指数Shannon-Wiener
指数1 毛竹 19.63 1.96 0.68 11 杉木 2.00 1.78 0.63 2 柏木 10.84 2.48 1.00 12 黄檀 1.95 2.29 0.90 3 板栗 9.88 2.80 1.13 13 白花泡桐 1.70 1.00 0.00 4 细果秤锤树 9.50 5.87 1.92 14 盐肤木 1.51 1.00 0.00 5 樟树 8.44 1.82 0.64 15 木油桐 1.27 1.96 0.68 6 南酸枣 2.75 1.83 0.80 16 大叶白纸扇 1.21 2.00 0.69 7 拟赤杨 2.34 1.95 0.68 17 厚壳树 0.99 1.00 0.00 8 枫香 2.32 1.00 0.00 18 臭椿 0.96 1.00 0.00 9 木蜡树 2.18 2.70 1.05 19 檵木 0.88 1.63 0.00 10 棕榈 2.09 2.78 1.06 说明:木蜡树Toxicodendron sylvestr;棕榈Trachycarpus fortunei;杉木Cunninghamia lanceolata;黄檀Dalbergia hupeana;白花泡桐Paulownia fortunei;盐肤木Rhus chinensis;木油桐Vernicia montana;大叶白纸扇Mussaenda shikokiana;厚壳树Ehretia thysiflora;檵木Loropetalum chinensis 表 5 细果秤锤树群落下层木主要物种的重要值和生态位宽度值
Table 5. Important value and niche breadth of the dominant species in lower wood layer of S. microcarpa community
编号 物种 重要值/% 生态位宽度 编号 物种 重要值/% 生态位宽度 Levins
指数Shannon-Wiener
指数Levins
指数Shannon-Wiener
指数1 阔叶箬竹 15.48 1.98 0.84 9 短柄枹栎 2.41 1.84 0.65 2 水团花 8.45 3.43 1.30 10 紫麻 2.30 1.08 0.16 3 细果秤锤树 4.60 6.82 2.00 11 木荷 1.86 1.00 0.00 4 毛花连蕊茶 4.58 4.95 1.77 12 华箬竹 1.63 1.00 0.00 5 茶 4.44 4.09 1.73 13 杉木 1.59 1.28 0.38 6 檵木 3.05 4.39 1.60 14 海金子 1.58 1.92 0.74 7 窄基红褐柃 2.98 1.00 0.00 15 黄檀 1.54 2.81 1.06 8 杭州榆 2.69 1.00 0.00 16 朱砂根 1.45 3.90 1.57 说明:窄基红褐柃Eurya rubiginosa var. attenuata;杭州榆Ulmus changii;短柄枹栎Quercus glandulifera;木荷Schima superba;华箬竹Sasa sinica;朱砂根Ardisia crenata -
细果秤锤树具有最大的生态位宽度,Levins的生态位宽度指数及Shannon-Wiener的生态位宽度指数在上层木中分别为5.87%和1.92%(表5),板栗、棕榈、木蜡树与柏木的生态位宽度依次降低。细果秤锤树在上层木林层与下层木林层中生态位宽度差异不明显,说明细果秤锤树的种对竞争具有一定优势,在所调查的小流域生境中具有较强的适应能力,分布幅度较广。
-
细果秤锤树群落上层木物种生态位相似性和生态位重叠值最大均为盐肤木-臭椿(表6)。细果秤锤树与上层优势树种樟树生态相似性值最高(0.62),白花泡桐次之(0.59)。生态位宽度较大的柏木和黄檀的生态位相似性达0.65,而生态位宽度较窄的枫香和臭椿的生态位相似性为0,说明生态位相似性与生态位宽度有一定关联。生态位重叠值在0.8~1.0的种对有杉木-盐肤木和南酸枣-枫香,大于0.5的种对有39对(占20.53%),其中生态位重叠值小于0.1的种对共有90对(占47.37%)。上层木树种间生态位重叠值总体偏低,对资源利用的利用策略存在差异。细果秤锤树与樟树(0.62)和黄檀(0.59)具有较大的生态位重叠,存在较大的生态和资源利用相似性。
表 6 细果秤锤树群落上层木主要优势种间的生态位相似性比例和生态位重叠指数
Table 6. Niche similarity and niche overlap of dominant plant species in S. microcarpa community in the upper wood layer
编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 0 0 0.06 0 0 0.14 0 0 0.27 0.58 0 0.07 0.42 0 0 0 0.42 0 2 0 0.04 0.34 0 0.23 0.41 0.45 0.26 0.43 0 0.52 0 0 0.19 0.74 0.19 0 0.55 3 0 0.02 0.35 0.15 0.41 0.04 0.04 0 0.04 0 0.04 0.52 0 0.04 0.04 0.04 0 0 4 0.09 0.54 0.47 0.42 0.43 0.18 0.15 0.13 0.25 0.20 0.21 0.38 0.04 0.02 0.21 0.16 0.04 0.19 5 0 0 0.11 0.62 0.40 0 0 0 0 0.42 0 0.34 0 0 0 0.52 0 0 6 0 0.15 0.49 0.48 0.68 0.23 0.23 0.09 0.14 0.40 0.14 0.27 0 0.14 0.14 0.54 0 0 7 0.12 0.46 0.01 0.33 0 0.22 0.57 0.71 0.29 0.14 0.15 0 0.14 0.15 0.15 0.15 0.14 0 8 0 0.49 0.05 0.22 0 0.32 0.72 0.42 0.49 0 0.58 0 0 0.58 0.42 0.48 0 0 9 0 0.41 0 0.32 0 0.17 0.96 0.59 0 0 0 0 0 0 0 0 0 0 10 0.27 0.58 0.05 0.25 0 0.22 0.24 0.65 0 0.27 0.73 0 0.27 0.49 0.66 0.48 0.27 0.24 11 0.64 0 0 0.32 0.62 0.54 0.12 0 0 0.28 0 0.07 0.38 0 0 0.42 0.38 0 12 0 0.65 0.06 0.24 0 0.25 0.18 0.73 0 0.89 0 0 0 0.68 0.75 0.48 0 0.32 13 0.09 0 0.63 0.59 0.30 0.39 0 0 0 0 0.04 0 0 0 0 0 0 0 14 0.59 0 0 0.09 0 0 0.19 0 0 0.45 0.63 0 0 0 0 0 1.00 0 15 0 0.30 0.06 0.04 0 0.27 0.20 0.81 0 0.80 0 0.90 0 0 0.42 0.48 0 0 16 0 0.87 0.04 0.40 0 0.16 0.12 0.48 0 0.79 0 0.88 0 0 0.59 0.42 0 0.58 17 0 0.20 0.04 0.28 0.66 0.75 0.13 0.55 0 0.54 0.52 0.61 0 0 0.67 0.40 0 0 18 0.59 0 0 0.09 0 0 0.19 0 0 0.45 0.63 0 0 1.00 0 0 0 0 19 0 0.86 0 0.46 0 0 0 0 0 0.39 0 0.43 0 0 0 0.80 0 0 说明:编号所代表物种见表4。对角线下方为生态位相似性,对角线上方为生态位重叠值 下层木物种生态位相似性为0~0.96,生态位重叠为0~0.10,最大值种对均为海金子Pittosporum illiciodes-紫麻Oreocnide frutescens。细果秤锤树与下层优势树种檵木生态相似性值最高(0.86);与水团花(0.51)和茶Camellia sinensis (0.48)具有较大生态重叠(表7)。下层木主要物种生态位重叠平均值为0.23,且多数种对的生态位重叠在其平均值附近,表明下层木主要物种的竞争关系相对稳定。
表 7 细果秤锤树群落下层木主要优势种间的生态位相似性比例和生态位重叠指数
Table 7. Niche similarity and niche overlap of dominant plant species in S.microcarpa community in the lower wood layer
编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 0.09 0.32 0.21 0.16 0.20 0.34 0.02 0.25 0 0 0.09 0.09 0 0 0 2 0.04 0.51 0.43 0.53 0.52 0.29 0.46 0 0 0.13 0.56 0.19 0 0 0 3 0.30 0.65 0.36 0.48 0.63 0.33 0.38 0.23 0.01 0.10 0.07 0 0.01 0 0 4 0.34 0.58 0.38 0.59 0.53 0.46 0.54 0 0.08 0.39 0.24 0.11 0.11 0.17 0.08 5 0.18 0.58 0.53 0.64 0.55 0.27 0.47 0 0.34 0.19 0.21 0.11 0.34 0.06 0 6 0.19 0.65 0.86 0.52 0.62 0.44 0.34 0.04 0.04 0.24 0.13 0.13 0.07 0.09 0.12 7 0.31 0.27 0.32 0.47 0.21 0.36 0.14 0.34 0 0.39 0.29 0.24 0.04 0.17 0.16 8 0.02 0.56 0.47 0.75 0.48 0.41 0.15 0 0.05 0.18 0.17 0 0.06 0.03 0.01 9 0.35 0 0.41 0 0 0.09 0.70 0 0 0 0 0 0 0 0 10 0 0 0.02 0.20 0.75 0.07 0 0.08 0 0.01 0 0 0.96 0 0 11 0 0.12 0.03 0.41 0.10 0.29 0.44 0.10 0 0.01 0.11 0 0.05 0.22 0.64 12 0.06 0.77 0.12 0.44 0.32 0.12 0.33 0.24 0 0 0.14 0.35 0 0 0 13 0.13 0.35 0 0.29 0.23 0.26 0.50 0.01 0 0 0 0.48 0 0 0 14 0 0 0.02 0.21 0.75 0.08 0.01 0.08 0 1.00 0.05 0 0 0 0.04 15 0 0 0 0.45 0.13 0.19 0.35 0.05 0 0 0.32 0 0 0 0 16 0 0 0 0.21 0 0.24 0.33 0.02 0 0 0.93 0 0 0.04 0 说明:编号所代表物种见表5。对角线下方为生态位相似性,对角线上方为生态位重叠值 -
细果秤锤树群落上层木12个优势种间总体联结性方差比率为1.23,大于1,即种间存在一定程度正联结;其显著检验统计量为11.05,高于χ2分布临界值,表明上层木群落间总体上呈显著的正联结关系。下层木12个优势种间总体联结性方差比率为0.58,小于1,即种间存在一定程度负联结;其显著检验统计量为5.19,介于χ2分布临界值之间,即下层木12个优势种间呈不显著负联结关系。
χ2检验主要反映不同种对之间联结的显著度。联结系数检验结果显示:上层和下层各12个优势木中,正、负联结种对数相接近。细果秤锤树群落上层木中正、负联结的种对分别为27和28个(各占种对数的40.91%和42.42%),正负关联比为0.96∶1.00。种对间总体显著率为12.12%,种间联结较松散,无联结的种对占16.67%,细果秤锤树与其他种之间都不存在联结性。下层木种对联结显著度的分布大致与上层木相似,正负关联比0.83∶1.00。细果秤锤树与水团花呈显著正联结关系。细果秤锤树-阔叶箬竹、细果秤锤树-茶、细果秤锤树-檵木、细果秤锤树-窄基红褐柃表现出极显著负关联(表8)。
表 8 细果秤锤树群落12个优势种χ2检验、联结系数(AC)及Pearson相关检验结果
Table 8. Result of χ2 test, association coefficient (AC) and Pearson correlation coefficient of the 12 dominant species in S. microcarpa community
检验方法 检验结果 数值范围 上层木 下层木 检验方法 检验结果 数值范围 上层木 下层木 种对数 占比/% 种对数 占比/% 种对数 占比/% 种对数 占比/% χ2 正相关 P≤0.01 0 0 0 0 AC 负相关 −0.2≤AC<0 2 3.03 2 3.03 0.01<P≤0.05 2 3.03 7 10.61 −0.6≤AC<−0.2 3 4.54 3 4.54 P>0.05 25 37.88 22 33.33 AC≤−0.6 23 34.85 30 45.46 无关联 χ2=0 11 16.67 2 3.03 负相关 P≤0.01 0 0 0 0 Pearson
相关检验正相关 P≤0.01 13 19.70 0 0 0.01<P≤0.05 6 9.09 5 7.58 0.01<P≤0.05 0 0 0 0 P>0.05 22 33.33 30 45.45 P>0.05 25 37.88 31 46.97 无关联 0<P<0.20 0 0 0 0 AC 正相关 AC≥0.6 9 13.64 20 30.30 负相关 P≤0.01 0 0 0 0 0.2≤AC<0.6 8 12.12 2 3.03 0.01<P≤0.05 0 0 0 0 0<AC<0.2 8 12.12 7 10.61 P>0.05 28 42.42 35 53.03 无关联 AC =0 13 19.70 2 3.03 上层木中总体显著率为19.70%(极显著正关联13个,P<0.01),不显著(P>0.05)正关联25个,占37.88%;不显著负关联28个,占比42.42%。细果秤锤树与其他树种为无联结关系,整个细果秤锤树群落处于优势发展趋势(表8)。下层木中总体显著率为0,不显著正关联31个,占46.97%;不显著负关联35个,占53.03%。细果秤锤树与水团花、毛花连蕊茶、杭州榆、短柄枹栎呈不显著正关联,与阔叶箬竹、茶、檵木、窄基红褐柃呈不显著负关联。
Species composition and niche of Sinojackia microcarpa, a rare and endangered plant
-
摘要:
目的 基于群落生态学研究濒危植物细果秤锤树Sinojackia microcarpa的生境适应性和种间相互关系,有利于展开细果秤锤树的保护与扩繁。 方法 基于浙江省建德市细果秤锤树典型种群保护样地的群落调查与生境数据,分析物种组成、生态位特征、优势种种间联结关系。 结果 ①细果秤锤树样地内共记录到胸径≥1 cm的木本植物401株,隶属于35科50属51种。样地上层木中重要值≥1%的物种共16种,重要值排在前4位的物种从大到小依次为毛竹Phyllostachys edulis、柏木Cupressus funebris、板栗Castanea mollissima和细果秤锤树,这4个物种重要值之和为49.85%。②细果秤锤树与上层木树种樟树Cinnamomum cmphora、与下层木树种檵木Loropetalum chinensis的生态位相似性最高,且生态重叠值大于0.5。细果秤锤树与茶Camellia sinensis、檵木、毛花连蕊茶Camellia fraterna等物种负联结,表明它们之间存在显著的竞争关系。 结论 个体数量稀少,生境条件较差,在资源受限时种间竞争激烈等是细果秤锤树濒临灭绝的关键原因。表8参33 Abstract:Objective The purpose is to study the habitat adaptability and interspecific relationship of the endangered plant Sinojackia microcarpa based on population ecology, which is beneficial to its effective protection and propagation. Method Based on the community survey and habitat data of typical population of S. microcarpa in Jiande, Zhejiang Province, the species composition, niche characteristics, and the linkage between dominant species were analyzed. Result (1) A total of 401 woody plants with diameter at breast height (DBH)≥1 cm were recorded, belonging to 51 species, 50 genera, and 35 families. There were 16 species with an important value≥1% in the upper wood of the sample site, and the top 4 species with an important value ranging from large to small were Phyllostachys edulis, Cupressus funebris, Castanea mollissima, and S. microcarpa. The sum of the important values of these 4 species was 49.85%. (2) S. microcarpa had the highest niche similarity with the upper wood species such as Cinnamomum cmphora, as well as the lower wood species such as Loropetalum chinensis. The ecological overlap value was greater than 0.5. The negative interspecific association between S. microcarpa, Camellia sinensis, Loropetalum chinensis and Camellia fraterna suggested that there was significant competition between them. Conclusion Rare individuals, poor habitat conditions, and fierce interspecific competition when resources are limited are the key reasons for the extinction of S. microcarpa. [Ch, 8 tab. 33 ref.] -
表 1 细果秤锤树群落资源组成
Table 1. Composition of population resources of S. microcarpa
分布区 数量/
株胸径/
cm树高/
m胸径变异
系数/%树高变异
系数/%乌石滩 195 3.07±1.05 5.00±1.87 34 38 富家坞 243 3.05±1.02 5.40±1.98 33 41 灵山顶 71 2.95±0.98 4.90±2.41 33 54 说明:胸径和树高数值为平均值±标准差 表 2 细果秤锤树群落生境调查
Table 2. Environmental survey of S. microcarpa population
分布区 样地 海拔/m 纬度(N) 经度(E) 坡向 群落特征 乌石滩 P1 58 29°34′16″ 119°33′10″ 西 樟树Cinnamomum camphora-板栗Castanea mollissima混交林 P2 45 29°34′18″ 119°33′60″ 西 板栗林 P3 64 29°34′17″ 119°33′00″ 东北 板栗林 富家坞 P4 58 29°34′57″ 119°33′42″ 东南 柏木Cupressus funebris-南酸枣Choerospondias axiliaris混交林 P5 95 29°34′57″ 119°33′36″ 东南 柏木林 P6 128 29°35′20″ 119°33′24″ 东 柏木-拟赤杨Alniphyllum fortunei混交林 灵山顶 P7 190 29°35′35″ 119°33′52″ 东北 樟树林 P8 384 29°35′11″ 119°33′11″ 东北 毛竹Phyllostachys edulis林 P9 396 29°35′40″ 119°33′10″ 东北 毛竹林 表 3 细果秤锤树群落的生境因素
Table 3. Habitat factors of S. microcarpa
分布区 海拔/m 土壤容重/
(g·cm−3)土壤pH 土壤有机
质/(g·kg−1)土壤总孔
隙度/%土壤碱解氮/
(mg·kg−1)土壤有效磷/
(mg·kg−1)土壤速效钾/
(mg·kg−1)乌石滩 70±26 a 1.01±0.10 a 5.46±0.20 a 38.84±3.66 a 61.74±3.67 a 103.41±3.08 a 6.23±0.82 a 82.46±3.22 a 富家坞 109±39 a 1.12±0.06 a 5.47±0.43 a 40.76±1.22 a 57.72±2.25 a 97.61±6.90 a 5.79±1.26 a 82.93±6.82 a 灵山顶 370±110 a 1.07±0.09 a 5.23±0.15 a 45.74±3.42 a 59.72±3.44 a 107.71±8.72 a 5.54±1.45 a 95.48±14.02 a 变化范围 23~429 1.00~1.19 4.72~5.79 36.81~48.38 55.20~62.42 91.04~113.67 5.30~7.84 75.69~102.80 说明:数值为平均值±标准差。同列不同小写字母表示同一指标不同分布区之间差异显著(P<0.05) 表 4 细果秤锤树群落上层木主要物种的重要值和生态位宽度
Table 4. Important values and niche breadth of the dominant species in upper wood layer of S. microcarpa community
编号 物种 重要值/
%生态位宽度 编号 物种 重要值/
%生态位宽度 Levins
指数Shannon-Wiener
指数Levins
指数Shannon-Wiener
指数1 毛竹 19.63 1.96 0.68 11 杉木 2.00 1.78 0.63 2 柏木 10.84 2.48 1.00 12 黄檀 1.95 2.29 0.90 3 板栗 9.88 2.80 1.13 13 白花泡桐 1.70 1.00 0.00 4 细果秤锤树 9.50 5.87 1.92 14 盐肤木 1.51 1.00 0.00 5 樟树 8.44 1.82 0.64 15 木油桐 1.27 1.96 0.68 6 南酸枣 2.75 1.83 0.80 16 大叶白纸扇 1.21 2.00 0.69 7 拟赤杨 2.34 1.95 0.68 17 厚壳树 0.99 1.00 0.00 8 枫香 2.32 1.00 0.00 18 臭椿 0.96 1.00 0.00 9 木蜡树 2.18 2.70 1.05 19 檵木 0.88 1.63 0.00 10 棕榈 2.09 2.78 1.06 说明:木蜡树Toxicodendron sylvestr;棕榈Trachycarpus fortunei;杉木Cunninghamia lanceolata;黄檀Dalbergia hupeana;白花泡桐Paulownia fortunei;盐肤木Rhus chinensis;木油桐Vernicia montana;大叶白纸扇Mussaenda shikokiana;厚壳树Ehretia thysiflora;檵木Loropetalum chinensis 表 5 细果秤锤树群落下层木主要物种的重要值和生态位宽度值
Table 5. Important value and niche breadth of the dominant species in lower wood layer of S. microcarpa community
编号 物种 重要值/% 生态位宽度 编号 物种 重要值/% 生态位宽度 Levins
指数Shannon-Wiener
指数Levins
指数Shannon-Wiener
指数1 阔叶箬竹 15.48 1.98 0.84 9 短柄枹栎 2.41 1.84 0.65 2 水团花 8.45 3.43 1.30 10 紫麻 2.30 1.08 0.16 3 细果秤锤树 4.60 6.82 2.00 11 木荷 1.86 1.00 0.00 4 毛花连蕊茶 4.58 4.95 1.77 12 华箬竹 1.63 1.00 0.00 5 茶 4.44 4.09 1.73 13 杉木 1.59 1.28 0.38 6 檵木 3.05 4.39 1.60 14 海金子 1.58 1.92 0.74 7 窄基红褐柃 2.98 1.00 0.00 15 黄檀 1.54 2.81 1.06 8 杭州榆 2.69 1.00 0.00 16 朱砂根 1.45 3.90 1.57 说明:窄基红褐柃Eurya rubiginosa var. attenuata;杭州榆Ulmus changii;短柄枹栎Quercus glandulifera;木荷Schima superba;华箬竹Sasa sinica;朱砂根Ardisia crenata 表 6 细果秤锤树群落上层木主要优势种间的生态位相似性比例和生态位重叠指数
Table 6. Niche similarity and niche overlap of dominant plant species in S. microcarpa community in the upper wood layer
编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 0 0 0.06 0 0 0.14 0 0 0.27 0.58 0 0.07 0.42 0 0 0 0.42 0 2 0 0.04 0.34 0 0.23 0.41 0.45 0.26 0.43 0 0.52 0 0 0.19 0.74 0.19 0 0.55 3 0 0.02 0.35 0.15 0.41 0.04 0.04 0 0.04 0 0.04 0.52 0 0.04 0.04 0.04 0 0 4 0.09 0.54 0.47 0.42 0.43 0.18 0.15 0.13 0.25 0.20 0.21 0.38 0.04 0.02 0.21 0.16 0.04 0.19 5 0 0 0.11 0.62 0.40 0 0 0 0 0.42 0 0.34 0 0 0 0.52 0 0 6 0 0.15 0.49 0.48 0.68 0.23 0.23 0.09 0.14 0.40 0.14 0.27 0 0.14 0.14 0.54 0 0 7 0.12 0.46 0.01 0.33 0 0.22 0.57 0.71 0.29 0.14 0.15 0 0.14 0.15 0.15 0.15 0.14 0 8 0 0.49 0.05 0.22 0 0.32 0.72 0.42 0.49 0 0.58 0 0 0.58 0.42 0.48 0 0 9 0 0.41 0 0.32 0 0.17 0.96 0.59 0 0 0 0 0 0 0 0 0 0 10 0.27 0.58 0.05 0.25 0 0.22 0.24 0.65 0 0.27 0.73 0 0.27 0.49 0.66 0.48 0.27 0.24 11 0.64 0 0 0.32 0.62 0.54 0.12 0 0 0.28 0 0.07 0.38 0 0 0.42 0.38 0 12 0 0.65 0.06 0.24 0 0.25 0.18 0.73 0 0.89 0 0 0 0.68 0.75 0.48 0 0.32 13 0.09 0 0.63 0.59 0.30 0.39 0 0 0 0 0.04 0 0 0 0 0 0 0 14 0.59 0 0 0.09 0 0 0.19 0 0 0.45 0.63 0 0 0 0 0 1.00 0 15 0 0.30 0.06 0.04 0 0.27 0.20 0.81 0 0.80 0 0.90 0 0 0.42 0.48 0 0 16 0 0.87 0.04 0.40 0 0.16 0.12 0.48 0 0.79 0 0.88 0 0 0.59 0.42 0 0.58 17 0 0.20 0.04 0.28 0.66 0.75 0.13 0.55 0 0.54 0.52 0.61 0 0 0.67 0.40 0 0 18 0.59 0 0 0.09 0 0 0.19 0 0 0.45 0.63 0 0 1.00 0 0 0 0 19 0 0.86 0 0.46 0 0 0 0 0 0.39 0 0.43 0 0 0 0.80 0 0 说明:编号所代表物种见表4。对角线下方为生态位相似性,对角线上方为生态位重叠值 表 7 细果秤锤树群落下层木主要优势种间的生态位相似性比例和生态位重叠指数
Table 7. Niche similarity and niche overlap of dominant plant species in S.microcarpa community in the lower wood layer
编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 0.09 0.32 0.21 0.16 0.20 0.34 0.02 0.25 0 0 0.09 0.09 0 0 0 2 0.04 0.51 0.43 0.53 0.52 0.29 0.46 0 0 0.13 0.56 0.19 0 0 0 3 0.30 0.65 0.36 0.48 0.63 0.33 0.38 0.23 0.01 0.10 0.07 0 0.01 0 0 4 0.34 0.58 0.38 0.59 0.53 0.46 0.54 0 0.08 0.39 0.24 0.11 0.11 0.17 0.08 5 0.18 0.58 0.53 0.64 0.55 0.27 0.47 0 0.34 0.19 0.21 0.11 0.34 0.06 0 6 0.19 0.65 0.86 0.52 0.62 0.44 0.34 0.04 0.04 0.24 0.13 0.13 0.07 0.09 0.12 7 0.31 0.27 0.32 0.47 0.21 0.36 0.14 0.34 0 0.39 0.29 0.24 0.04 0.17 0.16 8 0.02 0.56 0.47 0.75 0.48 0.41 0.15 0 0.05 0.18 0.17 0 0.06 0.03 0.01 9 0.35 0 0.41 0 0 0.09 0.70 0 0 0 0 0 0 0 0 10 0 0 0.02 0.20 0.75 0.07 0 0.08 0 0.01 0 0 0.96 0 0 11 0 0.12 0.03 0.41 0.10 0.29 0.44 0.10 0 0.01 0.11 0 0.05 0.22 0.64 12 0.06 0.77 0.12 0.44 0.32 0.12 0.33 0.24 0 0 0.14 0.35 0 0 0 13 0.13 0.35 0 0.29 0.23 0.26 0.50 0.01 0 0 0 0.48 0 0 0 14 0 0 0.02 0.21 0.75 0.08 0.01 0.08 0 1.00 0.05 0 0 0 0.04 15 0 0 0 0.45 0.13 0.19 0.35 0.05 0 0 0.32 0 0 0 0 16 0 0 0 0.21 0 0.24 0.33 0.02 0 0 0.93 0 0 0.04 0 说明:编号所代表物种见表5。对角线下方为生态位相似性,对角线上方为生态位重叠值 表 8 细果秤锤树群落12个优势种χ2检验、联结系数(AC)及Pearson相关检验结果
Table 8. Result of χ2 test, association coefficient (AC) and Pearson correlation coefficient of the 12 dominant species in S. microcarpa community
检验方法 检验结果 数值范围 上层木 下层木 检验方法 检验结果 数值范围 上层木 下层木 种对数 占比/% 种对数 占比/% 种对数 占比/% 种对数 占比/% χ2 正相关 P≤0.01 0 0 0 0 AC 负相关 −0.2≤AC<0 2 3.03 2 3.03 0.01<P≤0.05 2 3.03 7 10.61 −0.6≤AC<−0.2 3 4.54 3 4.54 P>0.05 25 37.88 22 33.33 AC≤−0.6 23 34.85 30 45.46 无关联 χ2=0 11 16.67 2 3.03 负相关 P≤0.01 0 0 0 0 Pearson
相关检验正相关 P≤0.01 13 19.70 0 0 0.01<P≤0.05 6 9.09 5 7.58 0.01<P≤0.05 0 0 0 0 P>0.05 22 33.33 30 45.45 P>0.05 25 37.88 31 46.97 无关联 0<P<0.20 0 0 0 0 AC 正相关 AC≥0.6 9 13.64 20 30.30 负相关 P≤0.01 0 0 0 0 0.2≤AC<0.6 8 12.12 2 3.03 0.01<P≤0.05 0 0 0 0 0<AC<0.2 8 12.12 7 10.61 P>0.05 28 42.42 35 53.03 无关联 AC =0 13 19.70 2 3.03 -
[1] PIMM S L, JENKINS C N, ABELL R, et al. The biodiversity of species and their rates of extinction, distribution, and protection[J/OL]. Science, 2014, 344(6187): 1246752[2022-02-10]. doi: 10.1126/science.1246752. [2] 邱英雄. 中国特有濒危植物明党参的保护生物学研究[D]. 杭州: 浙江大学, 2003. QIU Yingxiong. Study on Conservation Biology of Endangered Changium smyrnioides Endemic to China[D]. Hangzhou: Zhejiang University, 2003. [3] 吴成贡, 蒋昌顺. 濒危植物保护生物学技术研究进展[J]. 华南热带农业大学学报, 2006, 12(3): 49 − 51. WU Chenggong, JIANG Changshun. Research progress on techniques of conservation biology of endangered plants [J]. J South China Univ Trop Agric, 2006, 12(3): 49 − 51. [4] 姚良锦, 姚兰, 易咏梅, 等. 湖北七姊妹山亚热带常绿落叶阔叶混交林的物种组成和群落结构[J]. 生物多样性, 2017, 25(3): 275 − 284. YAO Liangjin, YAO Lan, YI Yongmei, et al. Species composition and community structure of a 6-ha subtropical evergreen and deciduous broad-leaved mixed forest dynamics plot in the Qizimei Mountains, Hubei Province [J]. Biodiversity Sci, 2017, 25(3): 275 − 284. [5] 汪国海, 潘扬, 覃国乐, 等. 喀斯特生境中濒危植物单性木兰种群结构及空间分布格局研究[J]. 林业科学研究, 2021, 34(3): 81 − 87. WANG Guohai, PAN Yang, QIN Guole, et al. Population structure and spatial distribution pattern of Kmeria septentrionalis an endangered species, in karst habitat [J]. For Res, 2021, 34(3): 81 − 87. [6] 李丘霖, 宗秀虹, 邓洪平, 等. 赤水桫椤群落乔木层优势物种生态位与种间联结性研究[J]. 西北植物学报, 2017, 37(7): 174 − 180. LI Qiulin, ZONG Xiuhong, DENG Hongping, et al. Niche and interspecific association of dominant species in tree layer of Chishui Alsophila spinulosa community [J]. Acta Bot Boreali-Occident Sin, 2017, 37(7): 174 − 180. [7] 梁士楚, 李铭红. 生态学[M]. 武汉: 华中科技大学出版社, 2015. LIANG Shichu, LI Minghong. Ecology[M]. Wuhan: Huazhong University of Science and Technology Press, 2015. [8] LEVINE J M, HILLERISLAMBERS J. The importance of niches for the maintenance of species diversity [J]. Nature, 2009, 461(7261): 254 − 257. [9] 刘万德, 苏建荣, 徐崇华, 等. 濒危植物藤枣的生境与种群结构特征[J]. 林业科学研究, 2017, 30(1): 137 − 144. LIU Wande, SU Jianrong, XU Chonghua, et al. Habitat and population structure characteristics of Eleutharrhena macrocarpa [J]. For Res, 2017, 30(1): 137 − 144. [10] OMELKO A, UKHVATKINA O, ZHMERENETSKY A, et al. From young to adult trees: how spatial patterns of plants with different life strategies change during age development in an old-growth Korean pine-broadleaved forest [J]. For Ecol Manage, 2018, 411: 46 − 66. [11] 李帅锋, 郎学东, 黄小波, 等. 藤枣生境地木本植物种间关联性与群落稳定性[J]. 生物多样性, 2020, 28(3): 350 − 357. LI Shuaifeng, LANG Xuedong, HUANG Xiaobo, et al. Interspecific association of woody plant species and community stability in the Eleutharrhena macrocarpa habitat [J]. Biodiversity Sci, 2020, 28(3): 350 − 357. [12] 杨国平, 吴涛, 耿云芬, 等. 生境片断化对濒危植物景东翅子树种群结构与动态的影响[J]. 生物多样性, 2021, 29(4): 449 − 455. YANG Guoping, WU Tao, GENG Yunfen, et al. Effects of habitat fragmentation on population structure and dynamics of the endangered plant Pterospermum kingtungense [J]. Biodiversity Sci, 2021, 29(4): 449 − 455. [13] 钟泰林. 珍稀濒危植物细果秤锤树保护生物学研究[D]. 南昌: 江西农业大学, 2017. ZHONG Tailin. Study on the Conservation Biology of the Rare and Endangered Sinojackia macrocarpa (Styracaceae)[D]. Nangchang: Jiangxi Agricultural University, 2017. [14] 孙卫邦, 刘德团, 张品. 极小种群野生植物保护研究进展与未来工作的思考[J]. 广西植物, 2021, 41(10): 1605 − 1617. SUN Weibang, LIU Detuan, ZHANG Pin. Conservation research of plant species with extremely small populations (PSESP): progress and future direction [J]. Guihaia, 2021, 41(10): 1605 − 1617. [15] 胡长贵. 细果秤锤树调查初报[J]. 安徽林业科技, 2018, 44(5): 54 − 55. HU Changgui. Preliminary survey report on Sinojackia macrocarpa [J]. Anhui For Sci Technol, 2018, 44(5): 54 − 55. [16] 姚小洪. 秤锤树属与长果安息香属植物的保育遗传学研究[D]. 北京: 中国科学院研究生院, 2006. YAO Xiaohong. Studies on Conservation Genetics of Sinojackia Hu and Changiostyrax C. T. Chen[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2006. [17] 苏小菱, 马丹丹, 李根有, 等. 浙江省珍稀濒危植物细果秤锤树的种群数量监测报告[J]. 浙江林学院学报, 2009, 26(1): 142 − 144. SU Xiaoling, MA Dandan, LI Genyou, et al. Population quantity surveillance of the rare and endangered plant in Zhejiang Province: Sinojackia macrocarpa [J]. J Zhejiang For Coll, 2009, 26(1): 142 − 144. [18] 杨国栋, 季芯悦, 陈林, 等. 基于SOM的野生秤锤树群落的空间分布和环境解释[J]. 生物多样性, 2018, 26(12): 1268 − 1276. YANG Guodong, JI Xinyue, CHEN Lin, et al. Spatial distribution and environmental interpretation of wild Sinojackia xylocarpa communities based on self-organizing map (SOM) [J]. Biodiversity Sci, 2018, 26(12): 1268 − 1276. [19] 徐惠明, 谢国文, 王业磷, 等. 狭果秤锤树种群年龄结构和空间分布格局研究[J]. 广东农业科学, 2016, 43(8): 51 − 57. XU Huiming, XIE Guowen, WANG Yelin, et al. Study on age structure and spatial distribution pattern of Sinojackia rehderiana population [J]. Guangdong Agric Sci, 2016, 43(8): 51 − 57. [20] 周赛霞, 高浦新, 潘福兴, 等. 狭果秤锤树自然种群分布格局[J]. 浙江农林大学学报, 2020, 37(2): 220 − 227. ZHOU Saixia, GAO Puxin, PAN Fuxing, et al. Natural population distribution pattern of Sinojackia rehderiana in an evergreen broadleaf forest [J]. J Zhejiang A&F Univ, 2020, 37(2): 220 − 227. [21] 白晓航, 张金屯. 小五台山森林群落优势种的生态位分析[J]. 应用生态学报, 2017, 28(12): 3815 − 3826. BAI Xiaohang, ZHANG Jintun. Niche analysis of dominant species of forest community in Xiaowutai Mountain, China [J]. Chin J Appl Ecol, 2017, 28(12): 3815 − 3826. [22] 刘润红, 陈乐, 涂洪润, 等. 桂林岩溶石山青冈群落下层木主要物种生态位与种间联结[J]. 生态学报, 2020, 40(6): 2057 − 2071. LIU Runhong, CHEN Le, TU Hongrun, et al. Niche and interspecific association of main species in shrub layer of Cyclobalanopsis glauca community in karst hills of Guilin [J]. Acta Ecol Sin, 2020, 40(6): 2057 − 2071. [23] LEVINS R. Evolution in Changing Environments: Some Theoretical Explorations[M]. Princeton: Princeton University Press, 1968. [24] SCHLUTER D. A variance test for detecting species associations, with some example applications [J]. Ecology, 1984, 65(3): 998 − 1005. [25] PIANKA E R. The structure of lizard communities [J]. Ann Rev Ecol Syst, 1973, 4: 53 − 74. [26] 金山, 武帅楷. 太行山南段油松林火烧迹地优势草本生态位及种间关系[J]. 北京林业大学学报, 2021, 43(4): 35 − 46. JIN Shan, WU Shuaikai. Niche and interspecific association of dominant species in herb layer of burned Pinus tabuliformis forest in the southern Taihang Mountain of northern China [J]. J Beijing For Univ, 2021, 43(4): 35 − 46. [27] 吴丹婷, 吴初平, 盛卫星, 等. 浙江建德楠木天然林群落种间联结动态[J]. 浙江农林大学学报, 2021, 38(4): 671 − 681. WU Dangting, WU Chuping, SHENG Weixing, et al. Interspecific association dynamics of Nanmu natural forest in Jiande, Zhejiang Province [J]. J Zhejiang A&F Univ, 2021, 38(4): 671 − 681. [28] BIASE A D, ANTONINI G, MANCINI E, et al. Discordant patterns in the genetic, ecological, and morphological diversification of a recently radiated phytophagous beetle clade (Coleoptera: Nitidulidae: Meligethinae) [J]. Rend Lincei, 2012, 23(2): 207 − 215. [29] 王立龙, 王广林, 黄永杰, 等. 黄山濒危植物小花木兰生态位与年龄结构研究[J]. 生态学报, 2006, 26(6): 1862 − 1871. WANG Lilong, WANG Guanglin, HUANG Yongjie, et al. Age structure and niche of the endangeredMagnolia sieboldii in Huangshan Mountain [J]. Acta Ecol Sin, 2006, 26(6): 1862 − 1871. [30] 张腾, 郑秋敏, 王玉玲, 等. 缙云秋海棠与主要伴生物种的种间关联性研究[J]. 西南师范大学学报(自然科学版), 2019, 44(9): 52 − 59. ZHANG Teng, ZHENG Qiumin, WANG Yulin, et al. On interspecific association for Begonia Jinyunensis and its major associated species [J]. J Southwest China Norm Univ Nat Sci Ed, 2019, 44(9): 52 − 59. [31] SU Songjin, LIU Jinfu, HE Zhongsheng, et al. Ecological species groups and interspecific association of dominant tree species in Daiyun Mountain National Nature Reserve [J]. J Mount Sci, 2015, 12(3): 637 − 646. [32] ROUSSET O, LEPART J. Positive and negative interactions at different life stages of a colonizing species (Quercus humilis) [J]. J Ecol, 2000, 88(3): 401 − 412. [33] BROOKER R W, MAESTRE F T, CALLAWAY R M, et al. Facilitation in plant communities: the past, the present, and the future [J]. J Ecol, 2010, 96(1): 18 − 34. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220197