本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。
腐熟花生壳和腐植酸复合园林废弃物堆肥对紫苏出苗的影响
doi: 10.11833/j.issn.2095-0756.20220292
Effect of green waste compost combined decomposed peanut shells and humic acid on seedling emergence of Perilla frutescens
-
摘要:
目的 研究不同配比的腐熟花生Arachis hypogaea壳和腐植酸改良园林废弃物堆肥产品的效果,以及改良后的园林废弃物堆肥产品作为育苗基质对紫苏Perilla frutescens出苗的影响,探究有利于紫苏育苗的最佳配比基质,为园林废弃物的合理利用提供科学依据。 方法 运用正交设计,将不同质量分数的腐熟花生壳(0、1.5%、3.0%)和腐植酸(0、0.3%、0.6%)添加至园林废弃物堆肥产品中,通过测定基质理化性质,观察其复合效果;通过测定紫苏出苗率、出苗速度、单株叶片数、死亡率、受虫害叶片率和受虫害株率等,基于冗余分析(RDA)和隶属函数法,观察改良后的园林废弃物堆肥产品对紫苏出苗的影响。 结果 添加腐熟花生壳和腐植酸可显著 (P<0.05)降低园林废弃物堆肥产品的容重、pH和电导率,改善其含水量和孔隙度,增加其全氮、全磷、铵态氮、硝态氮、速效磷、速效钾和有机质质量分数;复合后的园林废弃物堆肥产品可显著(P<0.05)提高紫苏出苗率和出苗速度,增加其幼苗单株叶片数,降低其幼苗死亡率、受虫害株率和受虫害叶片率。冗余分析表明:紫苏出苗率、受虫害叶片率和受虫害株率与育苗基质总孔隙度以及全氮、全磷、全钾、速效钾质量分数呈正相关,与育苗基质pH、电导率、容重呈负相关;紫苏幼苗单株叶片数与育苗基质全氮、全磷、全钾质量分数以及总孔隙度呈正相关,与育苗基质pH、容重呈负相关;紫苏幼苗死亡率与育苗基质pH、电导率、容重呈正相关,与育苗基质总孔隙度以及全氮、全磷、全钾、速效钾质量分数呈负相关。 结论 腐熟花生壳和腐植酸可有效改善园林废弃物堆肥产品的理化性质,提高园林废弃物堆肥产品质量;改良后的园林废弃物堆肥产品可降低幼苗死亡程度,有利于紫苏快速出苗和成活;同时,其可显著降低紫苏幼苗虫害发生率,提高其抗虫性,达到一定的生物防治效果。其中3.0%腐熟花生壳+0.3%腐植酸为最优复配组合。图2表5参27 Abstract:Objective The objective is to study the effect of decomposed peanut shells and humic acid with different proportions on the improvement of green waste compost products, as well as the impact of the improved green waste compost products as nursery substrate on Perilla frutescen seedling emergence, so as to explore the best proportion of the substrate conducive to P. frutescen seedling. Method Using orthogonal design, different mass fractions of the decomposed peanut shells (0, 1.5%, 3.0%) and humic acid (0, 0.3%, 0.6%) were added to the green waste compost products, and the composite effect was observed by measuring physical and chemical properties of the substrate. Based on redundancy analysis (RDA) and membership function method, the effects of improved green waste compost products on seedling emergence were observed through the measurement of germination rate, germination speed and number of seedling leaves per plant, mortality rate, leaf infestation rate and plant infestation rate of P. frutescen. Result Adding decomposed peanut shells and humic acid could significantly (P<0.05) reduce the bulk density, pH and EC values, improve the water content and porosity, and increase the mass fractions of total N, total P, NH4+-N , NO3−-N, available P, available K and organic matter of green waste compost products. And the composite green waste compost products could significantly (P<0.05) increase the germination rate, germination speed and the number of leaves per seedling, reduce the mortality rate, the percentage of insect damaged plants and damaged leaves of P. frutescen. RDA showed that the percentage of seedling emergence, the percentage of damaged leaves and damaged plants of P. frutescen seedlings were positively correlated with the total porosity, mass fractions of total N, total P, total K and available K of the substrate, but negatively correlated with pH, EC and bulk density of the substrate. The number of leaves per plant of P. frutescen seedlings was positively correlated with mass fractions of total N, total P, total K and total porosity of the substrate, but negatively correlated with pH and bulk density of the substrate. The mortality rate of seedlings was positively correlated with pH, EC and bulk density of the substrate, but negatively correlated with mass fractions of total porosity, total N, total P, total K and available K of the substrate. Conclusion The decomposed peanut shells and humic acid can effectively improve the physical and chemical properties of green waste compost products and optimize their quality. The optimized green waste compost products can reduce the death rate of seedlings, and facilitate the rapid emergence and survival of P. frutescen. At the same time, the optimized green waste compost products can significantly reduce the incidence of insect pests, improve insect resistance, and achieve a certain biological control effect. The optimal combination is 3.0% decomposed peanut shells + 0.3% humic acid. [Ch, 2 fig. 5 tab. 27 ref.] -
表 1 正交试验设计
Table 1. Orthogonal experimental design
处理 不同育苗基质的原材料组成/% 处理 不同育苗基质的原材料组成/% 处理 不同育苗基质的原材料组成/% 腐熟花生壳(干质量) 腐植酸(干质量) 腐熟花生壳(干质量) 腐植酸(干质量) 腐熟花生壳(干质量) 腐植酸(干质量) T1 0 0 T4 1.5 0 T7 3.0 0 T2 0 0.3 T5 1.5 0.3 T8 3.0 0.3 T3 0 0.6 T6 1.5 0.6 T9 3.0 0.6 表 2 不同基质的物理性质
Table 2. Physical properties of different substrates
处理 容重/(g·cm−3) 最大含水量/% 总孔隙度/% 通气孔隙度/% 持水孔隙度/% 水气比/% T1 0.44±0.02 a 64.59±0.72 g 62.92±0.08 e 8.68±0.04 d 54.24±0.14 e 6.25±0.06 a T2 0.39±0.03 b 68.55±1.09 f 65.07±0.09 e 10.71±0.03 c 54.36±0.13 e 5.07±0.07 a T3 0.38±0.05 b 68.54±1.11 f 70.36±0.10 d 10.51±0.05 c 59.85±0.12 c 5.69±0.04 a T4 0.37±0.04 b 72.22±0.11 e 72.76±0.11 c 13.20±0.03 b 59.56±0.09 d 4.51±0.02 a T5 0.36±0.01 b 75.97±1.14 d 73.98±0.13 c 13.29±0.09 b 60.69±0.18 b 4.57±0.02 a T6 0.36±0.03 b 76.42±1.08 c 77.55±0.10 b 11.67±0.08 c 65.87±0.20 a 5.64±0.07 a T7 0.34±0.06 c 79.26±0.65 b 78.95±0.09 b 19.29±0.11 a 59.66±0.32 d 3.09±0.04 a T8 0.30±0.02 e 83.68±0.54 a 82.83±0.06 a 19.45±0.10 a 63.39±0.18 a 3.26±0.02 a T9 0.33±0.02 d 80.45±0.45 b 79.19±0.06 b 16.35±0.14 a 62.85±0.21 a 3.84±0.07 a 理想范围 <0.40[8] 70.00~85.00[8] 70.00~90.00[8] 10.00~30.00[18] 45.00~−65.00[18] 2.00~4.00[19] 说明:同列不同小写字母表示不同处理间差异显著 (P<0.05) 表 3 不同基质的化学性质
Table 3. Chemical properties of different substrates
处理 pH 电导率/(mS·cm−1) 全氮/(g·kg−1) 全磷/(g·kg−1) 全钾/(g·kg−1) T1 7.89±0.08 a 1.99±0.74 a 17.73±0.68 e 4.46±1.07 b 3.14±0.04 a T2 7.75±0.12 a 1.72±0.14 a 17.92±1.54 e 6.17±1.25 a 3.20±0.03 a T3 7.63±0.02 a 1.59±0.12 b 17.86±2.11 e 5.88±0.45 a 3.45±0.27 a T4 7.58±0.10 a 1.53±0.03 b 20.29±1.38 c 6.31±1.00 a 3.16±0.06 a T5 7.47±0.08 b 1.51±0.06 b 20.08±3.10 c 5.52±0.45 a 3.27±0.03 a T6 7.32±0.04 c 1.48±0.05 b 19.81±1.14 d 5.51±1.03 a 3.19±0.14 a T7 7.21±0.05 d 1.52±0.08 b 23.11±2.03 a 7.31±0.75 a 3.38±0.09 a T8 7.13±0.09 e 1.47±0.02 b 22.84±1.98 a 7.38±0.96 a 3.34±0.11 a T9 6.98±0.06 f 1.39±0.01 c 22.31±2.87 b 7.14±0.42 a 3.51±0.19 a 处理 铵态氮/(mg·kg−1) 硝态氮/(mg·kg−1) 速效磷/(mg·kg−1) 速效钾/(mg·kg−1) 有机质/(mg·kg−1) T1 714.09±44.38 d 129.58±5.24 c 4 764.97±82.52 e 627.76±3.24 d 548.69±12.91 f T2 804.24±62.78 c 129.69±0.93 c 4 838.35±130.58 d 637.22±2.24 b 548.98±14.93 f T3 720.83±111.33 d 142.16±8.82 b 4 690.12±175.35 e 639.70±1.25 a 549.65±18.31 f T4 920.03±28.44 b 151.43±17.54 a 5 090.17±168.04 c 639.44±7.95 a 621.43±9.22 d T5 1074.94±32.49 b 148.54±2.33 a 5 628.76±202.95 b 640.71±2.23 a 618.78±9.37 e T6 1 057.53±173.67 b 134.62±18.06 b 5 242.77±45.47 c 645.31±0.25 a 620.52±11.54 d T7 1 324.80±115.38 a 143.91±5.24 b 5 820.21±331.18 b 631.53±8.20 c 673.02±15.90 c T8 1 324.87±85.48 a 165.26±4.36 a 6 263.58±89.33 a 633.95±1.50 c 676.22±8.56 b T9 1 325.27±28.26 a 138.04±3.55 b 5 730.77±117.63 b 646.93±3.00 a 673.43±18.88 c 说明:同列不同小写字母表示不同处理间差异显著 (P<0.05) 表 4 不同基质的紫苏幼苗单株叶片数、死亡率、受虫害叶片率和受虫害株率
Table 4. Number of leaves per plant, mortality rate, leaf infestation rate and plant infestation rate of P. frutescens seedlings in different substrates
处理 单株叶片数/片 死亡率/% 受虫害叶片率/% 受虫害株率/% T1 5.40±1.51 b 36.12±1.44 a 12.46±0.43 b 19.54±0.76 e T2 5.37±1.03 b 33.17±2.63 b 8.56±0.58 f 19.43±0.31 e T3 4.21±1.57 d 22.89±2.63 d 6.99±0.89 h 18.57±0.99 f T4 4.46±0.50 d 21.30±1.88 e 11.83±0.54 c 21.78±0.76 c T5 4.50±2.22 d 32.20±1.64 c 7.43±1.11 g 23.84±1.98 b T6 5.03±0.81 c 14.31±0.92 f 17.73±1.02 a 26.46±1.53 a T7 4.82±1.31 c 12.67±2.75 g 10.84±0.98 d 23.72±0.92 b T8 6.12±0.59 a 10.74±1.75 i 9.93±0.47 e 17.65±0.83 g T9 6.43±0.62 a 11.34±2.42 h 11.95±0.87 c 20.68±0.54 d 说明:同列不同小写字母表示不同处理间差异显著 (P<0.05) 表 5 不同育苗基质对紫苏育苗情况的综合评价
Table 5. Comprehensive evaluation of P. frutescens seedlings on different substrates
处理 单指标评价指数 综合评
价指数出苗率 单株叶
片数死亡率 受虫害
叶片率受虫害
株率T1 0.00 0.54 0.00 0.49 0.79 0.36 T2 0.08 0.52 0.12 0.85 0.85 0.48 T3 0.26 0.00 0.52 1.00 0.92 0.54 T4 0.42 0.11 0.58 0.55 0.65 0.46 T5 0.53 0.13 0.15 0.96 0.48 0.45 T6 0.95 0.37 0.86 0.00 0.25 0.49 T7 0.87 0.27 0.92 0.64 0.49 0.64 T8 0.95 0.86 1.00 0.73 1.00 0.91 T9 1.00 1.00 0.98 0.54 0.74 0.85 -
[1] MORALES-CORTS M R, GÓMEZ-SÁNCHEZ M Á, PÉREZ-SÁNCHEZ R. Evaluation of green/pruning wastes compost and vermicompost, slumgum compost and their mixes as growing media for horticultural production [J]. Scientia Horticulturae, 2014, 172: 155 − 160. doi: 10.1016/j.scienta.2014.03.048 [2] 郝丹, 张璐, 孙向阳, 等. 园林废弃物堆肥和牛粪有机肥用于金盏菊育苗的研究[J]. 西北林学院学报, 2019, 34(4): 150 − 155. doi: 10.3969/j.issn.1001-7461.2019.04.22 HAO Dan, ZHANG Lu, SUN Xiangyang,et al. Effects of green waste compost and cow manure organic fertilizer on the emergence rate of Calendula of ficinalis [J]. Journal of Northwest Forestry University, 2019, 34(4): 150 − 155. doi: 10.3969/j.issn.1001-7461.2019.04.22 [3] BARRETT G E, ALEXANDER P D, ROBINSON J S,et al. Achieving environmentally sustainable growing media for soilless plant cultivation systems: a review [J]. Scientia Horticulturae, 2016, 212: 220 − 234. doi: 10.1016/j.scienta.2016.09.030 [4] BUSTAMANTE M A, GOMIS M P, PEREZ-MURCIA M D, et al. Use of livestock waste composts as nursery growing media: effect of a washing pre-treatment[J/OL]. Scientia Horticulturae, 2021, 281: 109954[2022-03-10]. doi: 10.1016/j.scienta.2021.109954. [5] 余韵, 刘勇, 烟亚萍, 等. 园林废弃物堆肥对楸树苗木生长和养分状况的影响[J]. 福建农林大学学报(自然科学版), 2020, 49(4): 492 − 497. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2020.04.010 YU Yun, LIU Yong, YAN Yaping,et al. Effects of garden waste compost on the growth and nutrient status of Catalpa bungei seedlings [J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2020, 49(4): 492 − 497. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2020.04.010 [6] 殷泽欣, 张璐, 白一帆. 园林绿化废弃物堆肥替代泥炭用于波斯菊的栽培[J]. 浙江农林大学学报, 2022, 39(5): 1045 − 1051. YIN Zexin, ZHANG Lu, BAI Yifan. Replacing peat with garden waste compost in Cosmos bipinnata cultivation [J]. Journal of Zhejiang A&F University, 2022, 39(5): 1045 − 1051. [7] 胡亚利, 孙向阳, 龚小强, 等. 混合改良剂改善园林废弃物堆肥基质品质提高育苗效果[J]. 农业工程学报, 2014,30(18): 198 − 204. doi: 10.3969/j.issn.1002-6819.2014.18.025 HU Yali, SUN Xiangyang, GONG Xiaoqiang,et al. Mix-ameliorant improving substrates quality of waste compost from garden and seedling effect [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 198 − 204. doi: 10.3969/j.issn.1002-6819.2014.18.025 [8] ZHANG Lu, SUN Xiangyang, TIAN Yun,et al. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis [J]. Scientia Horticulturae, 2014, 176: 70 − 78. doi: 10.1016/j.scienta.2014.06.021 [9] 董文召, 韩锁义, 徐静, 等. 花生壳研究现状与应用前景分析[J]. 中国农学通报, 2019, 35(32): 14 − 19. doi: 10.11924/j.issn.1000-6850.casb18070068 DONG Wenzhao, HAN Suoyi, XU Jing,et al. Research status and application prospect of peanut shell [J]. Chinese Agricultural Science Bulletin, 2019, 35(32): 14 − 19. doi: 10.11924/j.issn.1000-6850.casb18070068 [10] 朱巧莲, 池冰婕, 童晨晓, 等. 花生壳替代泥炭土对基质及金线莲生长和品质的影响[J]. 福建农业学报, 2021, 36(1): 71 − 77. doi: 10.19303/j.issn.1008-0384.2021.01.010 ZHU Qiaolian, CHI Bingjie, TONG Chenxiao,et al. Effect of peanut shell replacing peat soil on cultivation substrate properties and Anoectochilus roxburghii growth and quality [J]. Fujian Journal of Agricultural Sciences, 2021, 36(1): 71 − 77. doi: 10.19303/j.issn.1008-0384.2021.01.010 [11] 梁新安, 梁芳芳, 李庆伟, 等. 不同基质配比对黄瓜幼苗质量的影响[J]. 中国农学通报, 2016, 32(4): 77 − 82. doi: 10.11924/j.issn.1000-6850.casb15070094 LIANG Xin’an, LIANG Fangfang, LI Qingwei,et al. Effect of different compound substrates on cucumber seedling [J]. Chinese Agricultural Science Bulletin, 2016, 32(4): 77 − 82. doi: 10.11924/j.issn.1000-6850.casb15070094 [12] 刘灿华, 袁天佑, 闫军营, 等. 减氮配施腐植酸对耕层土壤理化性质的影响[J]. 中国土壤与肥料, 2020(5): 77 − 83. doi: 10.11838/sfsc.1673-6257.20351 LIU Canhua, YUAN Tianyou, YAN Junying,et al. Effects of combined application of humic acid and reducing N fertilizer on soil physical and chemical properties [J]. Soil and Fertilizer Sciences in China, 2020(5): 77 − 83. doi: 10.11838/sfsc.1673-6257.20351 [13] 刘宇锋, 罗佳, 苏天明, 等. 外源腐殖酸对栽培基质性状和辣椒生长发育的影响[J]. 江苏农业学报, 2016, 32(3): 647 − 655. doi: 10.3969/j.issn.1000-4440.2016.03.025 LIU Yufeng, LUO Jia, SU Tianming,et al. Physico-chemical properties of a soilless substrate and growth of pepper influenced by exogenous humic acid [J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(3): 647 − 655. doi: 10.3969/j.issn.1000-4440.2016.03.025 [14] 顾鑫, 任翠梅, 王丽娜, 等. 施用腐植酸改良大庆苏打盐碱土的效应[J]. 中国土壤与肥料, 2021(4): 77 − 82. doi: 10.11838/sfsc.1673-6257.20229 GU Xin, REN Cuimei, WANG Li’na,et al. Effects of humic acid application on soda saline-alkali soil in Daqing [J]. Soil and Fertilizer Sciences in China, 2021(4): 77 − 82. doi: 10.11838/sfsc.1673-6257.20229 [15] 何育佩, 郝二伟, 谢金玲, 等. 紫苏药理作用及其化学物质基础研究进展[J]. 中草药, 2018, 49(16): 3957 − 3968. doi: 10.7501/j.issn.0253-2670.2018.16.033 HE Yupei, HAO Erwei, XIE Jinling,et al. Research process on pharmacological effect and substance basis of Perilla frutescens [J]. Chinese Traditional and Herbal Drugs, 2018, 49(16): 3957 − 3968. doi: 10.7501/j.issn.0253-2670.2018.16.033 [16] LEE J H, CHO Y S. Assessment of phenolic profiles from various organs in different species of perilla plant (Perilla frutescens (L. ) Britt. ) and their antioxidant and enzyme inhibitory potential[J/OL]. Industrial Crops and Products, 2021, 171: 113914[2022-03-10]. doi: 10.1016/j.indcrop.2021.113914. [17] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO Shidan. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. [18] YU Ping, HUANG Lan, LI Qiansheng, et al. Effects of mixed hardwood and sugarcane biochar as bark-based substrate substitutes on container plants production and nutrient leaching[J/OL]. Agronomy, 2020, 10(2): 156[2022-03-10]. doi: 10.3390/agronomy10020156. [19] 饶宝蓉, 刘忠辉, 周先治, 等. 栽培基质对多花黄精组培苗生长的影响[J]. 中草药, 2020, 51(24): 6337 − 6344. doi: 10.7501/j.issn.0253-2670.2020.24.024 RAO Baorong, LIU Zhonghui, ZHOU Xianzhi,et al. Influence of cultivation medium on growth of tissue cultured seedlings of Polygonatum cyrtonema [J]. Chinese Traditional and Herbal Drugs, 2020, 51(24): 6337 − 6344. doi: 10.7501/j.issn.0253-2670.2020.24.024 [20] 伍海兵, 李爱平, 方海兰, 等. 绿地土壤孔隙度检测方法及其对土壤肥力评价的重要性[J]. 浙江农林大学学报, 2015, 32(1): 98 − 103. doi: 10.11833/j.issn.2095-0756.2015.01.014 WU Haibing, LI Aiping, FANG Hailan,et al. Green-belt soil testing methods for porosity and the importance of porosity on soil fertility evaluation [J]. Journal of Zhejiang A&F University, 2015, 32(1): 98 − 103. doi: 10.11833/j.issn.2095-0756.2015.01.014 [21] 麻永红, 肖玉, 杨曾奖, 等. 不同基质对铁皮石斛苗期生长特性的影响[J]. 中南林业科技大学学报, 2017, 37(7): 73 − 77. doi: 10.14067/j.cnki.1673-923x.2017.07.011 MA Yonghong, XIAO Yu, YANG Zengjiang,et al. Effects of the different media on growth of Dendrobium officinale seedling [J]. Journal of Central South University of Forestry&Technology, 2017, 37(7): 73 − 77. doi: 10.14067/j.cnki.1673-923x.2017.07.011 [22] 唐章, 杨新瑶, 闫馨予, 等. 发酵松树皮和花生壳对地下水中砷的减毒效应[J]. 环境化学, 2021, 40(3): 868 − 875. doi: 10.7524/j.issn.0254-6108.2019102602 TANG Zhang, YANG Xinyao, YAN Xinyu,et al. Detoxification effect of fermented pine bark and peanut shell against groundwater arsenic [J]. Environmental Chemistry, 2021, 40(3): 868 − 875. doi: 10.7524/j.issn.0254-6108.2019102602 [23] 张敬敏, 刘春生, 叶桂梅, 等. 腐殖酸与无机肥配施对I-107欧美杨养分和土壤肥力的影响[J]. 林业科学, 2011, 47(9): 158 − 161. doi: 10.11707/j.1001-7488.20110927 ZHANG Jingmin, LIU Chunsheng, YE Guimei,et al. Populus×euramericara cv. ‘74/76’ nutrient content and soil fertility affected by application of humic acid with inorganic fertilizers [J]. Scientia Silvae Sinicae, 2011, 47(9): 158 − 161. doi: 10.11707/j.1001-7488.20110927 [24] 丁绍兰, 谢林花, 马蕊婷. 壳类生物质释碳性能研究[J]. 环境污染与防治, 2016, 38(10): 1 − 5, 11. doi: 10.15985/j.cnki.1001-3865.2016.10.001 DING Shaolan, XIE Linhua, MA Ruiting. Study on carbon release performance of shells biomass [J]. Environmental Pollution&Control, 2016, 38(10): 1 − 5, 11. doi: 10.15985/j.cnki.1001-3865.2016.10.001 [25] 王平, 付战勇, 李絮花, 等. 腐植酸对土壤氮素转化及氨挥发损失的影响[J]. 中国土壤与肥料, 2018(4): 28 − 33. doi: 10.11838/sfsc.20180405 WANG Ping, FU Zhanyong, LI Xuhua,et al. The influence of humic acid on soil nitrogen transformation and ammonia volatilization losses [J]. Soil and Fertilizer Sciences in China, 2018(4): 28 − 33. doi: 10.11838/sfsc.20180405 [26] 姜生秀, 李昌龙, 李得禄. 衰败梭梭林下土壤结皮发育过程中水分补给对黄花补血草种子萌发的影响[J]. 西北林学院学报, 2021, 36(3): 115 − 120. doi: 10.3969/j.issn.1001-7461.2021.03.17 JIANG Shengxiu, LI Changlong, LI Delu. Effects of soil crust and supply on seed germination of Limonium aureum under decayed Haloxylon ammodendron forest [J]. Journal of Northwest Forestry University, 2021, 36(3): 115 − 120. doi: 10.3969/j.issn.1001-7461.2021.03.17 [27] 潘权, 郑华, 王志恒, 等. 植物功能性状对生态系统服务影响研究进展[J]. 植物生态学报, 2021, 45(10): 1140 − 1153. doi: 10.17521/cjpe.2020.0142 PAN Quan, ZHENG Hua, WANG Zhiheng,et al. Effects of plant functional traits on ecosystem services: a review [J]. Chinese Journal of Plant Ecology, 2021, 45(10): 1140 − 1153. doi: 10.17521/cjpe.2020.0142 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220292

计量
- 文章访问数: 10
- 被引次数: 0