留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷州半岛尾巨桉人工林水分利用来源的旱雨季差异

王志超 许宇星 竹万宽 杜阿朋

王志超, 许宇星, 竹万宽, 杜阿朋. 雷州半岛尾巨桉人工林水分利用来源的旱雨季差异[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220481
引用本文: 王志超, 许宇星, 竹万宽, 杜阿朋. 雷州半岛尾巨桉人工林水分利用来源的旱雨季差异[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220481
WANG Zhichao, XU Yuxing, ZHU Wankuan, DU Apeng. Difference in water use sources of Eucalyptus urophylla×E. grandis plantation in the Leizhou Peninsula during dry and rainy seasons[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220481
Citation: WANG Zhichao, XU Yuxing, ZHU Wankuan, DU Apeng. Difference in water use sources of Eucalyptus urophylla×E. grandis plantation in the Leizhou Peninsula during dry and rainy seasons[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220481

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

雷州半岛尾巨桉人工林水分利用来源的旱雨季差异

doi: 10.11833/j.issn.2095-0756.20220481
基金项目: 广东省自然科学基金项目(2021A1515010560);广东省林业科技创新项目(2018KJCX014);广东湛江桉树林生态系统国家定位观测研究站运行项目;林业生态网络监测平台项目
详细信息
    作者简介: 王志超(ORCID: 0000-0003-3945-3755),助理研究员,从事生态水文研究。E-mail: wzc2254@163.com
    通信作者: 杜阿朋(ORCID: 0000-0001-7010-5674),副研究员,博士,从事森林生态学研究。E-mail: dapzj@163.com
  • 中图分类号: S715

Difference in water use sources of Eucalyptus urophylla×E. grandis plantation in the Leizhou Peninsula during dry and rainy seasons

  • 摘要:   目的  探讨桉树人工林适应季节性干旱的水分利用来源策略,为桉树产业的可持续经营管理和水资源高效利用提供数据支持。  方法  以雷州半岛分布面积最大的尾巨桉Eucalyptus urophylla×E. grandis为研究对象,通过测定旱雨季典型月份尾巨桉木质部水、各土层土壤水和地下水的氢稳定同位素值(δD)和氧稳定同位素值(δ18O),并利用贝叶斯混合模型(MixSIAR)量化尾巨桉旱雨季对各土层土壤水或地下水的利用比例,深入探讨了尾巨桉旱雨季水分利用来源的差异。  结果  当地大气降水存在明显的蒸发富集现象,且其δ18O呈明显的雨季偏负,旱季偏正的季节变化规律;各月土壤含水量均随深度的加深而增加最后趋于稳定,旱季土壤含水量显著(P<0.05)小于雨季,且越接近地表差异越大。尾巨桉在雨季主要利用0~40和40~100 cm土层的土壤水,利用比例分别为28.0%和24.3%,而旱季主要利用150~200 cm土层的土壤水和地下水,利用比例分别为29.9%和22.6%。旱季大量降水后,土壤水分尤其是浅层土壤水得到大量补充,尾巨桉对0~40和40~100 cm土层土壤水的利用比例分别提高了111.4%和10.3%,对100~150、150~200 cm土层土壤水和地下水的利用比例分别降低了3.1%、40.1%和15.9%。  结论  尾巨桉面对环境可利用水资源的变化,具有灵活多变的水分利用来源策略,这表明尾巨桉对季节性干旱具有较强的适应能力。图5表1参44
  • 图  1  研究期间研究降水量的分布和降水的δ18O值     

    垂直短划线指示的是植物茎样及土壤样品的取样时间

    Figure  1  Distribution of precipitation and δ18O values of precipitation during the study period

    图  2  研究区当地大气降水线和全球大气降水线比较

    Figure  2  Comparison of local meteoric water line in the study area and global meteoric water line

    图  3  尾巨桉人工林不同月份土壤含水量变化特征

    Figure  3  Change characteristics of soil water content of E. urophylla×E. grandis plantation in different months

    图  4  不同取样时间植物木质部水、各土层土壤水以及地下水的δ18O值

    Figure  4  δ18O of stem water, soil water and groundwater at different sampling times

    图  5  尾巨桉人工林雨季、旱季及旱季大量补水后的各潜在水源的利用比例变化

    Figure  5  Changes in the proportion of each potential water source used in the wet and dry seasons and after substantial water supply in the dry season in E. urophylla × E. grandis plantations

    表  1  不同月份尾巨桉人工林对各潜在水源的利用比例

    Table  1.   Proportions of potential water sources for E. urophylla × E.grandis plantation in different months

    土层深度/cm各月尾巨按人工林对潜在水源的利用率/%
    7月8月9月12月1月2月
    贡献率范围贡献率范围贡献率范围贡献率范围贡献率范围贡献率范围
    0~4045.53.5~80.615.80.4~51.122.70.7~64.311.00.7~38.115.40.5~49.227.91.2~75.0
    40~10012.10.3~41.730.91.0~73.729.81.2~72.611.20.4~35.618.10.5~54.316.10.5~51.4
    100~15012.20.4~43.022.50.8~65.515.20.5~50.615.00.6~46.424.40.9~63.419.10.6~56.1
    150~20011.70.3~42.718.00.6~56.919.40.8~56.739.63.3~74.220.30.6~61.517.90.6~54.8
    地下水18.40.9~55.012.80.5~44.013.00.3~44.823.30.8~62.721.80.7~63.119.01.2~56.7
      说明:贡献率表示植物对来源水的利用比例,范围表示来源水贡献率所出现的频率
    下载: 导出CSV
  • [1] 王锐, 章新平, 戴军杰, 等. 亚热带地区不同林分下植物水分利用的季节差异[J]. 生态环境学报, 2020, 29(4): 665 − 675.

    WANG Rui, ZHANG Xinping, DAI Junjie, et al. Seasonal differences in water-uptake pattern of plants under different forest types in subtropical regions [J]. Ecology Environment Science, 2020, 29(4): 665 − 675.
    [2] MA Jian, ZHOU Lei, FOLTZ G R, et al. Hydrological cycle changes under global warming and their effects on multiscale climate variability [J]. Annals of the New York Academy of Sciences, 2020, 1472(1): 21 − 48. doi:  10.1111/nyas.14335
    [3] WANG Xuyang, LI Yuqiang, WANG Mingming, et al. Changes in daily extreme temperature and precipitation events in mainland China from 1960 to 2016 under global warming [J]. International Journal of Climatology, 2021, 41(2): 1465 − 1483. doi:  10.1002/joc.6865
    [4] YADUVANSHI A, NKEMELAN T, BENDAPUDI R, et al. Temperature and rainfall extremes change under current and future global warming levels across Indian climate zones[J/OL]. Weather Climate Extremes, 2021, 31: 100291[2022-06-18]. doi:  10.1016/j.wace.2020.100291.
    [5] HAO Zengchao, SINGH V P, XIA Youlong. Seasonal drought prediction: advances, challenges, and future prospects [J]. Reviews of Geophysics, 2018, 56(1): 108 − 141. doi:  10.1002/2016RG000549
    [6] ZHOU Guoyi, WEI Xiaohua, WU Yiping, et al. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China [J]. Global Change Biology, 2011, 17(12): 3736 − 3746. doi:  10.1111/j.1365-2486.2011.02499.x
    [7] CHEN Sisi, YUAN Xing. CMIP6 projects less frequent seasonal soil moisture droughts over China in response to different warming levels[J/OL]. Environmental Research Letters, 2021, 16(4): 044053[2022-06-23]. doi: 10.1088/1748-9326/abe782.
    [8] GUPTA A, RICO M A, CANO-DELGADO A I. The physiology of plant responses to drought [J]. Science, 2020, 368(6488): 266 − 269. doi:  10.1126/science.aaz7614
    [9] EWE S M L, STERNBERG L S L, BUSCH D E. Water-use patterns of woody species in pineland and hammock communities of south Florida [J]. Forest Ecology and Management, 1999, 118(1/3): 139 − 148.
    [10] 徐庆, 冀春雷, 王海英, 等. 氢氧碳稳定同位素在植物水分利用策略研究中的应用[J]. 世界林业研究, 2009, 22(4): 41 − 46.

    XU Qing, JI Chunlei, WANG Haiying, et al. Use of stable isotopes of hydrogen, oxygen and carbon to identify water use strategy by plants [J]. World Forestry Research, 2009, 22(4): 41 − 46.
    [11] 徐庆, 刘世荣, 安树青, 等. 四川卧龙亚高山暗针叶林土壤水的氢稳定同位素特征[J]. 林业科学, 2007, 43(1): 8 − 14. doi:  10.3321/j.issn:1001-7488.2007.01.002

    XU Qing, LIU Shirong, AN Shuqing, et al. Characteristics of hydrogen stable isotope in soil water of sub-alpine dark coniferous forest in Wolong, Sichuan Province [J]. Scientia Silvae Sinicae, 2007, 43(1): 8 − 14. doi:  10.3321/j.issn:1001-7488.2007.01.002
    [12] 杨爱国, 付志祥, 王玲莉, 等. 科尔沁沙地杨树水分利用策略[J]. 北京林业大学学报, 2018, 40(5): 63 − 72.

    YANG Aiguo, FU Zhixiang, WANG Lingli, et al. Strategies on water utilization of poplar in Horqin Sandy Land of northern China [J]. Journal of Beijing Fororestry University, 2018, 40(5): 63 − 72.
    [13] SPRENGER M, LEISTERT H, GIMBEL K, et al. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes [J]. Reviews of Geophysics, 2016, 54(3): 674 − 704. doi:  10.1002/2015RG000515
    [14] 王平元, 刘文杰, 李金涛. 西双版纳绞杀植物斜叶榕的水分利用策略[J]. 应用生态学报, 2010, 21(4): 836 − 842.

    WANG Pingyuan, LIU Wenjie, LI Jintao. Water use strategy of Ficus tinctoria in tropical rainforest region of Xishuangbanna, Southwestern China [J]. Chinese Journal of Applied Ecology, 2010, 21(4): 836 − 842.
    [15] STRATTON L C, GOLDSTEIN G, MEINZER F C. Temporal and spatial partitioning of water resources among eight woody species in a Hawaiian dry forest [J]. Oecologia, 2000, 124(3): 309 − 317. doi:  10.1007/s004420000384
    [16] CAMPOE O C, ALVARES C A, CARNEIRO R L, et al. Climate and genotype influences on carbon fluxes and partitioning in Eucalyptus plantations [J/OL]. Forest Ecology and Management, 2020, 475: 118445[2022-06-23]. doi: 10.1016/j.foreco.2020.118445.
    [17] WANG Zhichao, DU Apeng, XU Yuxing, et al. Factors limiting the growth of Eucalyptus and the characteristics of growth and water use under water and fertilizer management in the dry season of Leizhou Peninsula, China [J]. Agronomy, 2019, 9(10): 590 − 607. doi:  10.3390/agronomy9100590
    [18] XU Yuxing, DU Apeng, WANG Zhichao, et al. Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity[J/OL]. Forest Ecology and Management, 2020, 456: 117683[2022-06-08]. doi: 10.1016/j.foreco.2019.117683.
    [19] IUSS Working Group WRB. World Reference Base for Soil Resources[R]. Rome: FAO, 2006.
    [20] 王春林, 邹菊香, 麦北坚, 等. 近50年华南气象干旱时空特征及其变化趋势[J]. 生态学报, 2015, 35(3): 595 − 602.

    WANG Chunlin, ZOU Juxiang, MAI Beijian, et al. Temporal-spatial characteristics and its variation trend of meteorological drought in recent 50 years, South China [J]. Acta Ecologica Sinica, 2015, 35(3): 595 − 602.
    [21] 曾祥明, 徐宪立, 钟飞霞, 等. MixSIAR和IsoSource模型解析植物水分来源的比较研究[J]. 生态学报, 2020, 40(16): 5611 − 5619.

    ZENG Xiangming, XU Xianli, ZHONG Feixia, et al. Comparative study of MixSIAR and IsoSource models in the analysis of plant water sources [J]. Acta Ecologica Sinica, 2020, 40(16): 5611 − 5619.
    [22] 杨俊华. 中国大气降水δ18O的时空分布及其影响因素[D]. 北京: 中国科学院大学, 2013.

    YANG Junhua. Spatial and Temporal Distribution of δ18O in Precipitation Over China and Its Influence Factors[D]. Beijing: University of Chinese Academy of Sciences, 2013.
    [23] 王海燕, 刘廷玺, 王力, 等. 科尔沁沙地坨甸交错区土壤水分的空间变异规律[J]. 干旱区研究, 2013, 30(3): 438 − 443.

    WANG Haiyan, LIU Tingxi, WANG Li, et al. Spatial variation of soil moisture content in the dune-meadow ecotone in the Horqin Sandy Land [J]. Arid Zone Reseach, 2013, 30(3): 438 − 443.
    [24] 刘自强, 余新晓, 娄源海, 等. 北京山区栓皮栎林水分来源及生长季动态规律[J]. 北京林业大学学报, 2016, 38(7): 40 − 47.

    LIU Ziqiang, YU Xinxiao, LOU Yuanhai, et al. Water use strategy of Quercus variabilis in Beijing mountainous area [J]. Journal of Beijing Forestry University, 2016, 38(7): 40 − 47.
    [25] 王勇, 赵成义, 王丹丹, 等. 塔里木河流域不同林龄胡杨与柽柳的水分利用策略研究[J]. 水土保持学报, 2017, 31(6): 157 − 163.

    WANG Yong, ZHAO Chengyi, WANG Dandan, et al. Water use strategies of Populus euphratica and Tamarix ramosissima at different ages in Tarim River Basin [J]. Journal of Soil Water Conservation, 2017, 31(6): 157 − 163.
    [26] 容丽, 王世杰, 俞国松, 等. 荔波喀斯特森林4种木本植物水分来源的稳定同位素分析[J]. 林业科学, 2012, 48(7): 14 − 22. doi:  10.11707/j.1001-7488.20120703

    RONG Li, WANG Shijie, YU Guosong, et al. Stable isotope analysis of water sources of four woody species in the Libo Karst forest [J]. Scientia Silvae Sinicae, 2012, 48(7): 14 − 22. doi:  10.11707/j.1001-7488.20120703
    [27] EHLERINGER J R, DAWSON T E. Water uptake by plants: perspectives from stable isotope composition [J]. Plant,Cell and Environment, 1992, 15(9): 1073 − 1082. doi:  10.1111/j.1365-3040.1992.tb01657.x
    [28] EVARISTO J, JASECHKO S, MCDONNELL J J. Global separation of plant transpiration from groundwater and streamflow [J]. Nature, 2015, 525(7567): 91 − 94. doi:  10.1038/nature14983
    [29] 靳宇蓉, 鲁克新, 李鹏, 等. 基于稳定同位素的土壤水分运动特征[J]. 土壤学报, 2015, 52(4): 792 − 801. doi:  10.11766/trxb201411130569

    JIN Yurong, LU Kexin, LI Peng, et al. Research on soil water movement based on stable isotopes [J]. Acta Pedologica Sinica, 2015, 52(4): 792 − 801. doi:  10.11766/trxb201411130569
    [30] XU Hao, LI Yan. Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events [J]. Plant and Soil, 2006, 285(1): 5 − 17.
    [31] HU Haiying, ZHU Lin, LI Huixia, et al. Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China [J]. Journal of Arid Land, 2021, 13(2): 109 − 122. doi:  10.1007/s40333-021-0051-z
    [32] JIA Guodong, LIU Ziqiang, CHEN Lixin, et al. Distinguish water utilization strategies of trees growing on earth‐rocky mountainous area with transpiration and water isotopes [J]. Ecology and Evolution, 2017, 7(24): 10640 − 10651. doi:  10.1002/ece3.3584
    [33] 丁亚丽, 陈洪松, 聂云鹏, 等. 基于稳定同位素的喀斯特坡地尾巨桉水分利用特征[J]. 应用生态学报, 2016, 27(9): 2729 − 2736.

    DING Yali, CHEN Hongsong, NIE Yunpeng, et al. Water use strategy of Eucalyptus urophylla × E. grandis on karst hillslope based on isotope analysis [J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2729 − 2736.
    [34] 高娅, 贾志清, 李清雪, 等. 降雨对高寒沙地不同林龄中间锦鸡儿水分利用特征的影响[J]. 应用生态学报, 2021, 32(6): 1935 − 1942.

    GAO Ya, JIA Zhiqing, LI Qingxue, et al. Effects of precipitation on water use characteristics of Caragana intermedia plantations with different stand ages in alpine sandy land [J]. Chinese Journal of Applied Ecology, 2021, 32(6): 1935 − 1942.
    [35] 刘丽颖, 贾志清, 朱雅娟, 等. 青海共和盆地不同林龄乌柳林的水分利用策略[J]. 林业科学研究, 2012, 25(5): 597 − 603. doi:  10.3969/j.issn.1001-1498.2012.05.009

    LIU Liying, JIA Zhiqing, ZHU Yajuan, et al. Water use strategy of Salix cheilophila stands with different ages in Gonghe Basin, Qinghai Province [J]. Foretry Reseach, 2012, 25(5): 597 − 603. doi:  10.3969/j.issn.1001-1498.2012.05.009
    [36] 陈洪松, 聂云鹏, 王克林. 岩溶山区水分时空异质性及植物适应机理研究进展[J]. 生态学报, 2013, 33(2): 317 − 326. doi:  10.5846/stxb201112011836

    CHEN Hongsong, NIE Yunpeng, WANG Kelin. Spatio-temporal heterogeneity of water and plant adaptation mechanisms in karst regions: a review [J]. Acta Ecologica Sinica, 2013, 33(2): 317 − 326. doi:  10.5846/stxb201112011836
    [37] WANG Pingyuan, LIU Wenjie, ZHANG Jiaolin, et al. Seasonal and spatial variations of water use among riparian vegetation in tropical monsoon region of SW China[J/OL]. Ecohydrology, 2019, 12(4): e2085. doi: 10.1002/eco.2085.
    [38] SCHENK H J, JACKSON R B. The global biogeography of roots [J]. Ecological Monographs, 2002, 72(3): 311 − 328. doi:  10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
    [39] 刘自强, 余新晓, 贾国栋, 等. 北京山区侧柏和栓皮栎的水分利用特征[J]. 林业科学, 2016, 52(9): 22 − 30.

    LIU Ziqiang, YU Xinxiao, JIA Guodong, et al. Water use characteristics of Platycladus orientalis and Quercus variabilis in Beijing Mountain Area [J]. Scientia Silvae Sinicae, 2016, 52(9): 22 − 30.
    [40] MAGH R K, EIFERLE C, BURZLAFF T, et al. Competition for water rather than facilitation in mixed beech-fir forests after drying-wetting cycle[J/OL]. Journal of Hydrology, 2020, 587: 124944[2022-06-23]. doi: 10.1016/j.jhydrol.2020.124944.
    [41] XU Qing, LI Harbin, CHEN Jiquan, et al. Water use patterns of three species in subalpine forest, Southwest China: the deuterium isotope approach [J]. Ecohydrology, 2011, 4(2): 236 − 244. doi:  10.1002/eco.179
    [42] WU Xue, ZHENG Xinjun, YIN Xinwei, et al. Seasonal variation in the groundwater dependency of two dominant woody species in a desert region of Central Asia [J]. Plant and Soil, 2019, 444(1): 39 − 55.
    [43] DAI Yue, ZHENG Xinjun, TANG Lisong, et al. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert [J]. Plant and Soil, 2015, 389(1/2): 73 − 87.
    [44] 戴岳, 郑新军, 唐立松, 等. 古尔班通古特沙漠南缘梭梭水分利用动态[J]. 植物生态学报, 2014, 38(11): 1214 − 1225. doi:  10.3724/SP.J.1258.2014.00117

    DAI Yue, ZHENG Xinjun, TANG Lisong, et al. Dynamics of water usage in Haloxylonammodendron in the southern edge of the Gurbantünggüt Desert [J]. Chinese Journal of Plant Ecology, 2014, 38(11): 1214 − 1225. doi:  10.3724/SP.J.1258.2014.00117
  • [1] 竹万宽, 许宇星, 王志超, 杜阿朋.  尾巨桉人工林土壤呼吸对林下植被管理措施的响应 . 浙江农林大学学报, 2023, 40(1): 164-175. doi: 10.11833/j.issn.2095-0756.20220138
    [2] 李芳燕, 夏晓雪, 吴梦洁, 洪家都, 程龙军.  巨桉EgrCIN1响应非生物逆境的分析 . 浙江农林大学学报, 2022, 39(6): 1194-1202. doi: 10.11833/j.issn.2095-0756.20220348
    [3] 竹万宽, 许宇星, 王志超, 杜阿朋.  不同生长阶段尾巨桉人工林土壤-微生物化学计量特征 . 浙江农林大学学报, 2021, 38(4): 692-702. doi: 10.11833/j.issn.2095-0756.20200536
    [4] 黄瑾, 余龙飞, 李文娟, 黄平.  基于稳定同位素自然丰度技术的土壤氧化亚氮产生与排放过程研究进展 . 浙江农林大学学报, 2021, 38(5): 906-915. doi: 10.11833/j.issn.2095-0756.20210458
    [5] 戴其林, 张超, 商克容, 周燕, 邱磊, 余树全.  利用森林模拟优化模型(FSOS)分析森林经营单位合理年伐量 . 浙江农林大学学报, 2020, 37(5): 833-840. doi: 10.11833/j.issn.2095-0756.20190651
    [6] 王志超, 许宇星, 竹万宽, 杜阿朋.  雷州半岛尾叶桉人工林夜间耗水特征及驱动因素 . 浙江农林大学学报, 2020, 37(4): 646-653. doi: 10.11833/j.issn.2095-0756.20190531
    [7] 陆军, 孙丽娟, 王晓荣, 吉泓睿, 倪晓详, 程龙军.  巨桉糖基转移酶基因EgrGATL1序列特征及表达分析 . 浙江农林大学学报, 2018, 35(4): 604-611. doi: 10.11833/j.issn.2095-0756.2018.04.004
    [8] 王鹏飞, 沈娟章, 谭卫红.  稳定同位素技术在林产品产地溯源和掺假鉴别中的应用研究进展 . 浙江农林大学学报, 2018, 35(5): 968-974. doi: 10.11833/j.issn.2095-0756.2018.05.023
    [9] 王志超, 竹万宽, 杜阿朋.  尾巨桉旱雨两季树干液流特征分析 . 浙江农林大学学报, 2017, 34(2): 319-325. doi: 10.11833/j.issn.2095-0756.2017.02.016
    [10] 王帆, 江洪, 牛晓栋.  大气水汽稳定同位素组成在生态系统水循环中的应用 . 浙江农林大学学报, 2016, 33(1): 156-165. doi: 10.11833/j.issn.2095-0756.2016.01.021
    [11] 牛晓栋, 江洪, 王帆.  天目山森林生态系统大气水汽稳定同位素组成的影响因素 . 浙江农林大学学报, 2015, 32(3): 327-334. doi: 10.11833/j.issn.2095-0756.2015.03.001
    [12] 邓静, 陈宇拓.  利用增长量分配模型的杉木林分生长预测建模 . 浙江农林大学学报, 2014, 31(6): 898-904. doi: 10.11833/j.issn.2095-0756.2014.06.011
    [13] 朱秀勤, 范弢, 官威, 覃娜.  滇中岩溶高原滇青冈原生林植物水分利用来源的稳定同位素分析 . 浙江农林大学学报, 2014, 31(5): 690-696. doi: 10.11833/j.issn.2095-0756.2014.05.005
    [14] 赵巍巍, 江洪, 马元丹.  模拟酸雨胁迫对樟树幼苗光合作用和水分利用特性的影响 . 浙江农林大学学报, 2013, 30(2): 179-186. doi: 10.11833/j.issn.2095-0756.2013.02.004
    [15] 谢安强, 洪伟, 吴承祯.  内生真菌对尾巨桉幼苗磷元素吸收的影响 . 浙江农林大学学报, 2013, 30(6): 863-870. doi: 10.11833/j.issn.2095-0756.2013.06.010
    [16] 王晓宁, 徐天蜀, 李毅.  利用ALOS PALSAR双极化数据估测山区森林蓄积量模型 . 浙江农林大学学报, 2012, 29(5): 667-670. doi: 10.11833/j.issn.2095-0756.2012.05.005
    [17] 王东, 龚伟, 胡庭兴, 陈宏志, 王景燕, 李小平.  施肥对巨桉幼树生长及生物固碳量的影响 . 浙江农林大学学报, 2011, 28(2): 207-213. doi: 10.11833/j.issn.2095-0756.2011.02.006
    [18] 郝建, 陈厚荣, 王凌晖, 秦武明, 曾冀, 张明慧.  尾巨桉纯林土壤浸提液对4种作物的生理影响 . 浙江农林大学学报, 2011, 28(5): 823-828. doi: 10.11833/j.issn.2095-0756.2011.05.024
    [19] 高丹, 胡庭兴, 万雪, 唐天云, 陈良华.  巨桉枯落物化感物质的研究 . 浙江农林大学学报, 2008, 25(2): 191-194.
    [20] 马焕成, 吴延熊, 陈德强, JackA.McConchie.  元谋干热河谷人工林水分平衡分析及稳定性预测 . 浙江农林大学学报, 2001, 18(1): 41-45.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220481

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023//1

计量
  • 文章访问数:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-23
  • 录用日期:  2022-11-02
  • 修回日期:  2022-10-30
  • 网络出版日期:  2022-12-07

雷州半岛尾巨桉人工林水分利用来源的旱雨季差异

doi: 10.11833/j.issn.2095-0756.20220481
    基金项目:  广东省自然科学基金项目(2021A1515010560);广东省林业科技创新项目(2018KJCX014);广东湛江桉树林生态系统国家定位观测研究站运行项目;林业生态网络监测平台项目
    作者简介:

    王志超(ORCID: 0000-0003-3945-3755),助理研究员,从事生态水文研究。E-mail: wzc2254@163.com

    通信作者: 杜阿朋(ORCID: 0000-0001-7010-5674),副研究员,博士,从事森林生态学研究。E-mail: dapzj@163.com
  • 中图分类号: S715

摘要:   目的  探讨桉树人工林适应季节性干旱的水分利用来源策略,为桉树产业的可持续经营管理和水资源高效利用提供数据支持。  方法  以雷州半岛分布面积最大的尾巨桉Eucalyptus urophylla×E. grandis为研究对象,通过测定旱雨季典型月份尾巨桉木质部水、各土层土壤水和地下水的氢稳定同位素值(δD)和氧稳定同位素值(δ18O),并利用贝叶斯混合模型(MixSIAR)量化尾巨桉旱雨季对各土层土壤水或地下水的利用比例,深入探讨了尾巨桉旱雨季水分利用来源的差异。  结果  当地大气降水存在明显的蒸发富集现象,且其δ18O呈明显的雨季偏负,旱季偏正的季节变化规律;各月土壤含水量均随深度的加深而增加最后趋于稳定,旱季土壤含水量显著(P<0.05)小于雨季,且越接近地表差异越大。尾巨桉在雨季主要利用0~40和40~100 cm土层的土壤水,利用比例分别为28.0%和24.3%,而旱季主要利用150~200 cm土层的土壤水和地下水,利用比例分别为29.9%和22.6%。旱季大量降水后,土壤水分尤其是浅层土壤水得到大量补充,尾巨桉对0~40和40~100 cm土层土壤水的利用比例分别提高了111.4%和10.3%,对100~150、150~200 cm土层土壤水和地下水的利用比例分别降低了3.1%、40.1%和15.9%。  结论  尾巨桉面对环境可利用水资源的变化,具有灵活多变的水分利用来源策略,这表明尾巨桉对季节性干旱具有较强的适应能力。图5表1参44

English Abstract

王志超, 许宇星, 竹万宽, 杜阿朋. 雷州半岛尾巨桉人工林水分利用来源的旱雨季差异[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220481
引用本文: 王志超, 许宇星, 竹万宽, 杜阿朋. 雷州半岛尾巨桉人工林水分利用来源的旱雨季差异[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220481
WANG Zhichao, XU Yuxing, ZHU Wankuan, DU Apeng. Difference in water use sources of Eucalyptus urophylla×E. grandis plantation in the Leizhou Peninsula during dry and rainy seasons[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220481
Citation: WANG Zhichao, XU Yuxing, ZHU Wankuan, DU Apeng. Difference in water use sources of Eucalyptus urophylla×E. grandis plantation in the Leizhou Peninsula during dry and rainy seasons[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220481

返回顶部

目录

    /

    返回文章
    返回