留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生活垃圾焚烧炉渣泥陶粒的制备及性能研究

马鹏 张成 宋成芳 曹玉成

马鹏, 张成, 宋成芳, 曹玉成. 生活垃圾焚烧炉渣泥陶粒的制备及性能研究[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220518
引用本文: 马鹏, 张成, 宋成芳, 曹玉成. 生活垃圾焚烧炉渣泥陶粒的制备及性能研究[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220518
MA Peng, ZHANG Cheng, SONG Chengfang, CAO Yucheng. Preparation and properties of ceramsite from domestic waste incineration slag sludge[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220518
Citation: MA Peng, ZHANG Cheng, SONG Chengfang, CAO Yucheng. Preparation and properties of ceramsite from domestic waste incineration slag sludge[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220518

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

生活垃圾焚烧炉渣泥陶粒的制备及性能研究

doi: 10.11833/j.issn.2095-0756.20220518
基金项目: 浙江农林大学科研发展基金(W20200023,L20220224)
详细信息
    作者简介: 马鹏(ORCID: 0009-0008-7766-1129),从事农业废弃物资源化利用研究。E-mail: 2020603021026@stu.zafu.edu.cn
    通信作者: 张成(ORCID: 0000-0003-0272-9041),讲师,博士,从事有机固废污染控制与资源化利用、水环境修复等研究。E-mail: Success.zhang@zafu.edu.cn
  • 中图分类号: X705

Preparation and properties of ceramsite from domestic waste incineration slag sludge

  • 摘要:   目的  城市生活垃圾焚烧后产生较多的炉渣泥废弃物,尝试通过将炉渣泥烧制成陶粒,起到合理处置炉渣泥的作用。  方法  根据粒径大小从炉渣中分离出的炉渣泥,与粉煤灰、石英粉和高岭土按照质量比3∶3∶3∶1的配比制作成球形颗粒,放入马弗炉中烧结。按照GB/T 17342.1测试陶粒性能,并对陶粒微观形态、晶体结构和重金属浸出等进行测定。  结果  炉渣泥中有2种重金属超标,分别为镉和锌。生活垃圾焚烧炉渣泥陶粒在烧制温度为1 175 ℃时,所得陶粒堆积密度和抗压强度有较大增长,1 h吸水率下降。烧结时间在10~15 min时,陶粒1 h吸水率变化幅度最大。预热温度过高,预热时间过长,不利于陶粒产生良好膨胀效果。在最佳烧制工艺条件下,所制得的陶粒堆积密度为783 kg·m−3,抗压强度为7.9 MPa,1 h吸水率为9.8%,符合轻集料GB/T 17431.1的国家标准。最佳工艺烧制的陶粒重金属镉和锌的浸出质量浓度分别为0.006 5和0.511 7 mg·L−1,远低于炉渣泥本身镉和锌的浸出质量浓度。通过生活垃圾焚烧炉渣泥制作陶粒,实验室中制作陶粒的成本为28.0元·m−3,根据市场陶粒价格,每立方米的陶粒可获取102.0元利润。  结论  最佳烧制工艺的烧结温度为1 175 ℃,烧结时间为15 min,预热温度为400 ℃,预热时间为20 min。陶粒的性质和重金属浸出含量符合国家标准。图6表5参28
  • 图  1  不同烧结温度对陶粒性质的影响

    Figure  1  Influence of different sintering temperatures on properties of ceramsite

    图  2  不同烧结时间对陶粒性质的影响

    Figure  2  Effect of different sintering time on properties of ceramsite

    图  3  不同预热温度对陶粒性质的影响

    Figure  3  Effect of different preheating temperatures on properties of ceramsite

    图  4  不同预热时间对陶粒性质的影响

    Figure  4  Influence of different preheating time on properties of ceramsite

    图  5  陶粒烧制前后微观形态对比

    Figure  5  Micromorphological comparison of ceramsite before and after firing

    图  6  陶粒烧制前后矿物组成

    Figure  6  Mineral composition of ceramsite before and after firing

    表  1  炉渣泥与粉煤灰主要成分的质量百分比

    Table  1.   Mass percentage of main components of slag sludge and fly ash

    材料质量百分比/%
    SiO2Al2O3CaOFe2O3MgONa2O
    炉渣泥13.706.4653.617.392.731.57
    粉煤灰53.9731.154.014.161.010.89
    下载: 导出CSV

    表  2  陶粒试验设计

    Table  2.   Ceramsite experimental design

    样品编号烧结温度/℃烧结时间/min预热温度/℃预热时间/min样品编号烧结温度/℃烧结时间/min预热温度/℃预热时间/min
    11 125154002091 2001530020
    21 1501540020101 2001540020
    31 1751540020111 2001550020
    41 2001540020121 2001560020
    51 200540020131 200154000
    61 2001040020141 2001540010
    71 2001540020151 2001540020
    81 2002040020161 2001540030
    下载: 导出CSV

    表  3  炉渣泥重金属质量分数的变化

    Table  3.   Chang of heavy metal content of slag sludge

    判定依据质量分数/(mg·kg-1)
    CrCuCdPbAsHgZnNi
    本研究 24.4 864 43.7 406 32.1 0.088 3360 72.5
    GB 4284—2018 1000.0 1500 15.0 1000 75.0 15.000 3000 200.0
    判定 达标 达标 超标 达标 达标 达标 超标 达标
    下载: 导出CSV

    表  4  陶粒最佳烧制条件下的各项指标

    Table  4.   Various indexes of ceramsite under the best firing conditions

    研究方法堆积密度/
    (kg·m−3)
    抗压强
    度/MPa
    1 h吸
    水率/%
    表观密度/
    (kg·m−3)
    本研究陶粒 783 7.9 9.8 1 524.8
    市场陶粒 417 5.3 4.2
    GB/T 17431.1—2010 700~800 ≥4.0 ≤10.0
      说明:−表示没有相关数据或标准。
    下载: 导出CSV

    表  5  陶粒重金属浸出质量浓度

    Table  5.   Leaching content of heavy metals in ceramsite

     名称质量浓度/(mg·L−1)
    CdZn
    炉渣泥 0.730 0 32.300 0
    陶粒 0.006 5 0.511 7
    市场陶粒 0.002 3 1.321 5
    GB/T 5083.3—2007 1.000 0 100.000 0
    下载: 导出CSV
  • [1] 唐伟, 郑思伟, 何平, 等. 杭州市城市生活垃圾处理主要温室气体及VOCs排放特征[J]. 环境科学研究, 2018, 31(11): 1883 − 1890. doi:  10.13198/j.issn.1001-6929.2018.03.41

    TANG Wei, ZHENG Siwei, HE Ping, et al. Characteristics of main greenhouse gas and VOCs emissions from municipal solid waste disposal in Hangzhou City [J]. Research of Environmental Sciences, 2018, 31(11): 1883 − 1890. doi:  10.13198/j.issn.1001-6929.2018.03.41
    [2] LI Junxia, DONG Zhili, YANG Enhua. Strain hardening cementitious composites incorporating high volumes of municipal solid waste incineration fly ash [J]. Construction &Building Materials, 2017, 146: 183 − 191.
    [3] SABBAS T, POLETTINI A, POMI R, et al. Management of municipal solid waste incineration residue [J]. Waste Management, 2003, 23(1): 61 − 88. doi:  10.1016/S0956-053X(02)00161-7
    [4] 张涛, 赵增增. 城市生活垃圾焚烧炉渣在混凝土中的应用研究[J]. 环境污染与防治, 2014, 36(4): 65 − 69. doi:  10.3969/j.issn.1001-3865.2014.04.013

    ZHANG Tao, ZHAO Zengzeng. Reutilization of municipal solid waste incinerator bottom ash as concrete aggregates [J]. Environmental Pollution &Control, 2014, 36(4): 65 − 69. doi:  10.3969/j.issn.1001-3865.2014.04.013
    [5] 薛国强, 陆聪, 顾欢达, 等. 垃圾焚烧炉渣在道路基层中的应用实验及数值分析[J]. 科学技术与工程, 2018, 18(11): 148 − 155. doi:  10.3969/j.issn.1671-1815.2018.11.023

    XUE Guoqiang, LU Cong, GU Huanda, et al. Experimental and numerical analysis of municipal solid waste incineration bottom ash used in road base [J]. Science Technology and Engineering, 2018, 18(11): 148 − 155. doi:  10.3969/j.issn.1671-1815.2018.11.023
    [6] 芦会杰, 张旭, 刘欣艳. 北京市生活垃圾焚烧炉渣重金属特性及其来源分析[J]. 环境化学, 2018, 37(9): 1971 − 1977. doi:  10.7524/j.issn.0254-6108.2018011903

    LU Huijie, ZHANG Xu, LIU Xinyan. Composition and source apportionment of heavy metals in bottom ash from a municipal solid waste incinerator in Beijing [J]. Environment Chemistry, 2018, 37(9): 1971 − 1977. doi:  10.7524/j.issn.0254-6108.2018011903
    [7] 王妍, 张成梁, 苏昭辉, 等. 城市生活垃圾焚烧炉渣的特性分析[J]. 环境工程, 2019, 37(7): 172 − 177. doi:  10.13205/j.hjgc.201907031

    WANG Yan, ZHANG Chengliang, SU Zhaohui, et al. Analysis characteristics of municipal solid waste incineration bottom ashes [J]. Environment Engineering, 2019, 37(7): 172 − 177. doi:  10.13205/j.hjgc.201907031
    [8] FRANCISCA F M, GLATSTEIN D A. Environmental application of basic oxygen furnace slag for the removal of heavy metals from leachates [J/OL]. Journal of Hazardous Materials, 2020, 384: 121294[2022-08-01]. doi:  10.1016/j.jhazmat.2019.121294.
    [9] HAN Yan, CAO Yun, WANG Hong, et al. Lightweight aggregate obtained from municipal solid waste incineration bottom ash sludge (MSWI-BAS) and its characteristics affected by single factor of sintering mechanism [J]. Journal of the Air &Waste Management Association, 2019, 70(2): 180 − 192.
    [10] WANG Zhulai, XUE Qi, LIN Zizeng, et al. Research progress of patent application for preparation of ceramsite from solid waste [J]. Applied Chemical Industry, 2018, 47(11): 2455 − 2458.
    [11] 岳敏. 污泥的粉煤灰调理和污泥陶粒的制备及应用研究[D]. 济南: 山东大学, 2011.

    YUE Min. Sludge Conditioning with Fly-ash and Preparation and Application of Ceramsite [D]. Ji’nan: Shandong University, 2011.
    [12] RILEY C M. Relation of chemical properties to the bloating of clays [J]. Journal of the American Ceramic Society, 1951, 34(4): 121 − 128. doi:  10.1111/j.1151-2916.1951.tb11619.x
    [13] MI Hongcheng, YI Longsheng, WU Qian, et al. Preparation of high-strength ceramsite from red mud, fly ash, and bentonite [J]. Ceramics International, 2021, 47(13): 18218 − 18229. doi:  10.1016/j.ceramint.2021.03.141
    [14] LI Xiaoguang, WANG Panqi, QIN Jinyi, et al. Mechanical properties of sintered ceramsite from iron ore tailings affected by two-region structure [J/OL]. Construction and Building Materials, 2020, 240: 117919[2022-08-01]. doi:  10.1016/j.conbuildmat.2019.117919.
    [15] FAN Chuanhe, QIAN Jueshi, YANG Yun, et al. Green ceramsite production via calcination of chromium contaminated soil and the toxic Cr(VI) immobilization mechanisms [J/OL]. Journal of Cleaner Production, 2021, 315: 128204[2022-08-01]. doi:  10.1016/j.jclepro.2021.128204.
    [16] HU Lanyu, MA Jianlong, YUE Yang, et al. Fixation stability of glass matrix co-existent with crystal phases for heavy metals formed by high-temperature vitrification [J]. Environmental Science and Pollution Research, 2021, 28(11): 13660 − 13670. doi:  10.1007/s11356-020-11586-2
    [17] PENG Weihua, GUI Herong, HE Wenli, et al. Experimental study on leaching characteristics of heavy metals in fly ash and fiber ceramsite [J]. Journal of Safety and Environment, 2013, 13(3): 54 − 57.
    [18] 罗立群, 涂序, 周鹏飞. 污泥陶粒的制备与应用动态[J]. 中国矿业, 2018, 27(11): 151 − 157. doi:  10.12075/j.issn.1004-4051.2018.11.026

    LUO Liqun, TU Xu, ZHOU Pengfei. Preparation and application of sludge ceramsite prepared from sludge [J]. China Mining Magazine, 2018, 27(11): 151 − 157. doi:  10.12075/j.issn.1004-4051.2018.11.026
    [19] 力国民, 常鑫, 朱保顺, 等. 烧结温度对添加复合助剂制备莫来石-刚玉基陶粒支撑剂性能的影响[J]. 人工晶体学报, 2018, 47(9): 1850 − 1854. doi:  10.3969/j.issn.1000-985X.2018.09.016

    LI Guomin, CHANG Xin, ZHU Baoshun, et al. Influence of sintering temperature on performance of mullite-corundum proppant prepared by adding compound additive [J]. Journal of Synthetic Crystals, 2018, 47(9): 1850 − 1854. doi:  10.3969/j.issn.1000-985X.2018.09.016
    [20] 林子增, 黄瑛, 谢文理. 污泥陶粒制备工艺烧结温度影响研究[J]. 功能材料, 2013, 44(增刊 1): 89 − 93.

    LIN Zizeng, HUANG Ying, XIE Wenli. Study on the effects of sintering temperature on the quality of sludge ceramsite [J]. Journal of Functional Materials, 2013, 44(suppl 1): 89 − 93.
    [21] ZHAO Lina, HU Min, MUSLIM H, et al. Co-utilization of lake sediment and blue-green algae for porous lightweight aggregate (ceramsite) production [J/OL]. Chemosphere, 2022, 287(2): 132145[2022-08-01]. doi:  10.1016/j.chemosphere.2021.132145.
    [22] CHEN Jia, CHEN Tiejun, ZHANG Yimin. Effect of temperature system on properties and microstructure of roasting ceramsites prepared with vanadium tailings [J]. Metal Mine, 2014, 457(7): 172 − 176.
    [23] SHAO Yingying, SHAO Yanqiu, ZHANG Weiyi, et al. Preparation of municipal solid waste incineration fly ash-based ceramsite and its mechanisms of heavy metal immobilization [J]. Waste Management, 2022, 143: 54 − 60. doi:  10.1016/j.wasman.2022.02.021
    [24] YANG Huifen, LU Linfei, JIANG Beiping, et al. Effcet of anthracite on preparation of ceramsite using red mud [J]. Applied Mechanics and Materials, 467: 3 − 7.
    [25] HUANG Chenghao, YUAN Nannan, HE Xiaosong, et al. Ceramsite made from drinking water treatment residue for water treatment: a critical review in association with typical ceramsite making [J/OL]. Journal of Environmental Management, 2023, 328: 117000[2022-08-01]. doi:  10.1016/j.jenvman.2022.117000.
    [26] BAO Teng, CHEN Tianhu, QING Chengsong, et al. Development and application of Palygorskite porous ceramsite in a biological aerated filter (BAF) [J]. Desalination and Water Treatment, 2014, 57(4): 1 − 14.
    [27] LI Pengwei, LUO Shaohua, ZHANG Lin, et al. Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment [J]. Separation and Purification Technology, 2021, 276: 119380[2022-08-01]. doi:  10.1016/j.seppur.2021.119380.
    [28] ZHAO Hailong, LIU Fang, LIU Hanqiao, et al. Comparative life cycle assessment of two ceramsite production technologies for reusing municipal solid waste incinerator fly ash in China [J]. Waste Management, 2020, 113: 447 − 455. doi:  10.1016/j.wasman.2020.06.016
  • [1] 邵晗, 王虎, 王妍, 徐红枫, 苏倩, 刘云根.  岩溶石漠化地区不同利用方式对土壤肥力和重金属质量分数的影响 . 浙江农林大学学报, 2022, 39(3): 635-643. doi: 10.11833/j.issn.2095-0756.20210437
    [2] 杨俊, 王祖辉, 李昂, 胡泊.  武汉乌金港底泥重金属和磷污染特征及清淤深度的确定 . 浙江农林大学学报, 2022, 39(3): 653-661. doi: 10.11833/j.issn.2095-0756.20210467
    [3] 张天然, 郑文革, 章银柯, 黄芳, 李晓璐, 袁楚阳, 于慧, 晏海, 邵锋.  杭州市临安区4种绿地内细颗粒物中重金属污染特征 . 浙江农林大学学报, 2021, 38(4): 737-745. doi: 10.11833/j.issn.2095-0756.20200558
    [4] 彭博, 刘鹏, 王妍, 张叶飞, 杨波.  普者黑流域表层水和沉积物中重金属污染特征及风险评价 . 浙江农林大学学报, 2021, 38(4): 746-755. doi: 10.11833/j.issn.2095-0756.20200547
    [5] 陈爽, 王良恺, 文涛, 毛欣宇, 许明, 邵孝侯.  新型粉煤灰陶粒固定化有效微生物群落对模拟水产养殖废水净化效果 . 浙江农林大学学报, 2020, 37(4): 761-768. doi: 10.11833/j.issn.2095-0756.20190443
    [6] 付勇, 裴建川, 李梅, 王鹏程, 王洁洁.  多壁碳纳米管和重金属镉的细菌毒性及影响机制 . 浙江农林大学学报, 2020, 37(2): 319-324. doi: 10.11833/j.issn.2095-0756.2020.02.017
    [7] 肖继波, 黄志达, 陈玉莹, 瞿倩, 褚淑祎.  高效除磷型底泥陶粒的制备及性能分析 . 浙江农林大学学报, 2019, 36(2): 415-421. doi: 10.11833/j.issn.2095-0756.2019.02.024
    [8] 梁立成, 余树全, 张超, 钱力, 齐鹏.  浙江省永康市城区土壤重金属空间分布及潜在生态风险评价 . 浙江农林大学学报, 2017, 34(6): 972-982. doi: 10.11833/j.issn.2095-0756.2017.06.002
    [9] 张建云, 高才慧, 朱晖, 钟水根, 杨纹砚, 郑均泷, 吴胜春, 单胜道, 王志荣, 张进, 曹志洪, Peter CHRISTIE.  生物质炭对土壤中重金属形态和迁移性的影响及作用机制 . 浙江农林大学学报, 2017, 34(3): 543-551. doi: 10.11833/j.issn.2095-0756.2017.03.021
    [10] 金文奖, 侯平, 张伟, 梁立成, 俞飞.  温州鳌江流域表层底泥及河岸土壤重金属空间分布与生态风险评价 . 浙江农林大学学报, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001
    [11] 张素, 梁鹏, 吴胜春, 张进, 曹志洪.  节能灯产地竹林土壤重金属污染的时空分布特征 . 浙江农林大学学报, 2017, 34(3): 484-490. doi: 10.11833/j.issn.2095-0756.2017.03.014
    [12] 许佳霖, 武帅, 梁鹏, 张进, 吴胜春.  高虹镇稻米中重金属污染状况及健康风险评价 . 浙江农林大学学报, 2017, 34(6): 983-990. doi: 10.11833/j.issn.2095-0756.2017.06.003
    [13] 刘伸伸, 张震, 何金铃, 马友华, 胡宏祥, 张春格.  水生植物对氮磷及重金属污染水体的净化作用 . 浙江农林大学学报, 2016, 33(5): 910-919. doi: 10.11833/j.issn.2095-0756.2016.05.025
    [14] 钟斌, 陈俊任, 彭丹莉, 刘晨, 郭华, 吴家森, 叶正钱, 柳丹.  速生林木对重金属污染土壤植物修复技术研究进展 . 浙江农林大学学报, 2016, 33(5): 899-909. doi: 10.11833/j.issn.2095-0756.2016.05.024
    [15] 晏闻博, 柳丹, 彭丹莉, 李松, 陈俊任, 叶正钱, 吴家森, 王海龙.  重金属矿山生态治理与环境修复技术进展 . 浙江农林大学学报, 2015, 32(3): 467-477. doi: 10.11833/j.issn.2095-0756.2015.03.021
    [16] 胡杨勇, 马嘉伟, 叶正钱, 柳丹, 赵科理.  东南景天Sedum alfredii修复重金属污染土壤的研究进展 . 浙江农林大学学报, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021
    [17] 郭明, 武晓鹏, 孙东海, 周建钟, 张华.  新型基质固相萃取重金属离子分析及残留关联性 . 浙江农林大学学报, 2012, 29(4): 551-557. doi: 10.11833/j.issn.2095-0756.2012.04.011
    [18] 李冬林, 金雅琴, 张纪林, 阮宏华.  秦淮河河岸带典型区域土壤重金属污染分析与评价 . 浙江农林大学学报, 2008, 25(2): 228-234.
    [19] 姜培坤, 徐秋芳, 罗煦钦, 王俊奇.  雷竹笋重金属含量及其与施肥的关系 . 浙江农林大学学报, 2004, 21(4): 424-427.
    [20] 姜培坤, 徐秋芳, 杨芳.  雷竹土壤水溶性有机碳及其与重金属的关系 . 浙江农林大学学报, 2003, 20(1): 8-11.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220518

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/4/1

计量
  • 文章访问数:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-09
  • 修回日期:  2023-03-01
  • 录用日期:  2023-04-03

生活垃圾焚烧炉渣泥陶粒的制备及性能研究

doi: 10.11833/j.issn.2095-0756.20220518
    基金项目:  浙江农林大学科研发展基金(W20200023,L20220224)
    作者简介:

    马鹏(ORCID: 0009-0008-7766-1129),从事农业废弃物资源化利用研究。E-mail: 2020603021026@stu.zafu.edu.cn

    通信作者: 张成(ORCID: 0000-0003-0272-9041),讲师,博士,从事有机固废污染控制与资源化利用、水环境修复等研究。E-mail: Success.zhang@zafu.edu.cn
  • 中图分类号: X705

摘要:   目的  城市生活垃圾焚烧后产生较多的炉渣泥废弃物,尝试通过将炉渣泥烧制成陶粒,起到合理处置炉渣泥的作用。  方法  根据粒径大小从炉渣中分离出的炉渣泥,与粉煤灰、石英粉和高岭土按照质量比3∶3∶3∶1的配比制作成球形颗粒,放入马弗炉中烧结。按照GB/T 17342.1测试陶粒性能,并对陶粒微观形态、晶体结构和重金属浸出等进行测定。  结果  炉渣泥中有2种重金属超标,分别为镉和锌。生活垃圾焚烧炉渣泥陶粒在烧制温度为1 175 ℃时,所得陶粒堆积密度和抗压强度有较大增长,1 h吸水率下降。烧结时间在10~15 min时,陶粒1 h吸水率变化幅度最大。预热温度过高,预热时间过长,不利于陶粒产生良好膨胀效果。在最佳烧制工艺条件下,所制得的陶粒堆积密度为783 kg·m−3,抗压强度为7.9 MPa,1 h吸水率为9.8%,符合轻集料GB/T 17431.1的国家标准。最佳工艺烧制的陶粒重金属镉和锌的浸出质量浓度分别为0.006 5和0.511 7 mg·L−1,远低于炉渣泥本身镉和锌的浸出质量浓度。通过生活垃圾焚烧炉渣泥制作陶粒,实验室中制作陶粒的成本为28.0元·m−3,根据市场陶粒价格,每立方米的陶粒可获取102.0元利润。  结论  最佳烧制工艺的烧结温度为1 175 ℃,烧结时间为15 min,预热温度为400 ℃,预热时间为20 min。陶粒的性质和重金属浸出含量符合国家标准。图6表5参28

English Abstract

马鹏, 张成, 宋成芳, 曹玉成. 生活垃圾焚烧炉渣泥陶粒的制备及性能研究[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220518
引用本文: 马鹏, 张成, 宋成芳, 曹玉成. 生活垃圾焚烧炉渣泥陶粒的制备及性能研究[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220518
MA Peng, ZHANG Cheng, SONG Chengfang, CAO Yucheng. Preparation and properties of ceramsite from domestic waste incineration slag sludge[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220518
Citation: MA Peng, ZHANG Cheng, SONG Chengfang, CAO Yucheng. Preparation and properties of ceramsite from domestic waste incineration slag sludge[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220518

返回顶部

目录

    /

    返回文章
    返回