Preparation and properties of ceramsite from domestic waste incineration slag sludge
-
摘要:
目的 城市生活垃圾焚烧后产生较多的炉渣泥废弃物,尝试通过将炉渣泥烧制成陶粒,起到合理处置炉渣泥的作用。 方法 根据粒径大小从炉渣中分离出的炉渣泥,与粉煤灰、石英粉和高岭土按照质量比3∶3∶3∶1的配比制作成球形颗粒,放入马弗炉中烧结。按照GB/T 17342.1测试陶粒性能,并对陶粒微观形态、晶体结构和重金属浸出等进行测定。 结果 炉渣泥中有2种重金属超标,分别为镉和锌。生活垃圾焚烧炉渣泥陶粒在烧制温度为1 175 ℃时,所得陶粒堆积密度和抗压强度有较大增长,1 h吸水率下降。烧结时间在10~15 min时,陶粒1 h吸水率变化幅度最大。预热温度过高,预热时间过长,不利于陶粒产生良好膨胀效果。在最佳烧制工艺条件下,所制得的陶粒堆积密度为783 kg·m−3,抗压强度为7.9 MPa,1 h吸水率为9.8%,符合轻集料GB/T 17431.1的国家标准。最佳工艺烧制的陶粒重金属镉和锌的浸出质量浓度分别为0.006 5和0.511 7 mg·L−1,远低于炉渣泥本身镉和锌的浸出质量浓度。通过生活垃圾焚烧炉渣泥制作陶粒,实验室中制作陶粒的成本为28.0元·m−3,根据市场陶粒价格,每立方米的陶粒可获取102.0元利润。 结论 最佳烧制工艺的烧结温度为1 175 ℃,烧结时间为15 min,预热温度为400 ℃,预热时间为20 min。陶粒的性质和重金属浸出含量符合国家标准。图6表5参28 Abstract:Objective This study attempts to prepare ceramsite from slag and sludge, which is produced in the incineration of municipal solid waste, so as to achieve a reasonable disposal of the slag and sludge. Method The slag sludge separated from the slag according to the particle size was made into spherical particles with fly ash, quartz powder and kaolin in a mass ratio of 3∶3∶3∶1, and then sintered in a muffle furnace. The properties of ceramsite were tested according to GB/T 17342.1, and the microscopic morphology, crystal structure and heavy metal leaching of ceramsite were measured. Result Two heavy metals in slag sludge exceeded the standard, namely cadmium and zinc. At 1 175 ℃, the bulk density and compressive strength of the obtained ceramsite particles increased significantly, and the water absorption rate decreased in 1 h. When the sintering time was 10−15 min, the water absorption of ceramsite varied greatly in 1 h. Excessive preheating temperature and preheating time were not conducive to good expansion effect of ceramsite. Under the optimum firing conditions, the bulk density of the ceramsite obtained was 783 kg·m−3, the compressive strength was 7.9 MPa, and the water absorption rate in 1 h was 9.8%, conforming to the national standard of GB/T 17431.1 for lightweight aggregates. The leaching contents of cadmium and zinc in the ceramsite particles fired by the optimal process were 0.006 5 and 0.511 7 mg·L−1 respectively, which were far lower than the leaching contents of cadmium and zinc in the slag sludge itself. The cost of producing ceramsite from domestic waste incineration slag sludge in the laboratory was 28.0 yuan·m−3, and according to the market price of ceramsite, a profit of 102.0 yuan·m−3 of ceramsite could be generated. Conclusion The optimal sintering process includes a sintering temperature of 1 175 ℃, a sintering time of 15 min, a preheating temperature of 400 ℃, and a preheating time of 20 min. The properties and heavy metal leaching content of ceramsite meet national standards. [Ch, 6 fig. 5 tab. 28 ref.] -
Key words:
- domestic waste incineration slag /
- ceramsite /
- slag sludge /
- heavy metal /
- leaching toxicity
-
表 1 炉渣泥与粉煤灰主要成分的质量百分比
Table 1. Mass percentage of main components of slag sludge and fly ash
材料 质量百分比/% SiO2 Al2O3 CaO Fe2O3 MgO Na2O 炉渣泥 13.70 6.46 53.61 7.39 2.73 1.57 粉煤灰 53.97 31.15 4.01 4.16 1.01 0.89 表 2 陶粒试验设计
Table 2. Ceramsite experimental design
样品编号 烧结温度/℃ 烧结时间/min 预热温度/℃ 预热时间/min 样品编号 烧结温度/℃ 烧结时间/min 预热温度/℃ 预热时间/min 1 1 125 15 400 20 9 1 200 15 300 20 2 1 150 15 400 20 10 1 200 15 400 20 3 1 175 15 400 20 11 1 200 15 500 20 4 1 200 15 400 20 12 1 200 15 600 20 5 1 200 5 400 20 13 1 200 15 400 0 6 1 200 10 400 20 14 1 200 15 400 10 7 1 200 15 400 20 15 1 200 15 400 20 8 1 200 20 400 20 16 1 200 15 400 30 表 3 炉渣泥重金属质量分数的变化
Table 3. Chang of heavy metal content of slag sludge
判定依据 质量分数/(mg·kg-1) Cr Cu Cd Pb As Hg Zn Ni 本研究 24.4 864 43.7 406 32.1 0.088 3360 72.5 GB 4284—2018 1000.0 1500 15.0 1000 75.0 15.000 3000 200.0 判定 达标 达标 超标 达标 达标 达标 超标 达标 表 4 陶粒最佳烧制条件下的各项指标
Table 4. Various indexes of ceramsite under the best firing conditions
研究方法 堆积密度/
(kg·m−3)抗压强
度/MPa1 h吸
水率/%表观密度/
(kg·m−3)本研究陶粒 783 7.9 9.8 1 524.8 市场陶粒 417 5.3 4.2 − GB/T 17431.1—2010 700~800 ≥4.0 ≤10.0 − 说明:−表示没有相关数据或标准。 表 5 陶粒重金属浸出质量浓度
Table 5. Leaching content of heavy metals in ceramsite
名称 质量浓度/(mg·L−1) Cd Zn 炉渣泥 0.730 0 32.300 0 陶粒 0.006 5 0.511 7 市场陶粒 0.002 3 1.321 5 GB/T 5083.3—2007 1.000 0 100.000 0 -
[1] 唐伟, 郑思伟, 何平, 等. 杭州市城市生活垃圾处理主要温室气体及VOCs排放特征[J]. 环境科学研究, 2018, 31(11): 1883 − 1890. doi: 10.13198/j.issn.1001-6929.2018.03.41 TANG Wei, ZHENG Siwei, HE Ping, et al. Characteristics of main greenhouse gas and VOCs emissions from municipal solid waste disposal in Hangzhou City [J]. Research of Environmental Sciences, 2018, 31(11): 1883 − 1890. doi: 10.13198/j.issn.1001-6929.2018.03.41 [2] LI Junxia, DONG Zhili, YANG Enhua. Strain hardening cementitious composites incorporating high volumes of municipal solid waste incineration fly ash [J]. Construction &Building Materials, 2017, 146: 183 − 191. [3] SABBAS T, POLETTINI A, POMI R, et al. Management of municipal solid waste incineration residue [J]. Waste Management, 2003, 23(1): 61 − 88. doi: 10.1016/S0956-053X(02)00161-7 [4] 张涛, 赵增增. 城市生活垃圾焚烧炉渣在混凝土中的应用研究[J]. 环境污染与防治, 2014, 36(4): 65 − 69. doi: 10.3969/j.issn.1001-3865.2014.04.013 ZHANG Tao, ZHAO Zengzeng. Reutilization of municipal solid waste incinerator bottom ash as concrete aggregates [J]. Environmental Pollution &Control, 2014, 36(4): 65 − 69. doi: 10.3969/j.issn.1001-3865.2014.04.013 [5] 薛国强, 陆聪, 顾欢达, 等. 垃圾焚烧炉渣在道路基层中的应用实验及数值分析[J]. 科学技术与工程, 2018, 18(11): 148 − 155. doi: 10.3969/j.issn.1671-1815.2018.11.023 XUE Guoqiang, LU Cong, GU Huanda, et al. Experimental and numerical analysis of municipal solid waste incineration bottom ash used in road base [J]. Science Technology and Engineering, 2018, 18(11): 148 − 155. doi: 10.3969/j.issn.1671-1815.2018.11.023 [6] 芦会杰, 张旭, 刘欣艳. 北京市生活垃圾焚烧炉渣重金属特性及其来源分析[J]. 环境化学, 2018, 37(9): 1971 − 1977. doi: 10.7524/j.issn.0254-6108.2018011903 LU Huijie, ZHANG Xu, LIU Xinyan. Composition and source apportionment of heavy metals in bottom ash from a municipal solid waste incinerator in Beijing [J]. Environment Chemistry, 2018, 37(9): 1971 − 1977. doi: 10.7524/j.issn.0254-6108.2018011903 [7] 王妍, 张成梁, 苏昭辉, 等. 城市生活垃圾焚烧炉渣的特性分析[J]. 环境工程, 2019, 37(7): 172 − 177. doi: 10.13205/j.hjgc.201907031 WANG Yan, ZHANG Chengliang, SU Zhaohui, et al. Analysis characteristics of municipal solid waste incineration bottom ashes [J]. Environment Engineering, 2019, 37(7): 172 − 177. doi: 10.13205/j.hjgc.201907031 [8] FRANCISCA F M, GLATSTEIN D A. Environmental application of basic oxygen furnace slag for the removal of heavy metals from leachates [J/OL]. Journal of Hazardous Materials, 2020, 384: 121294[2022-08-01]. doi: 10.1016/j.jhazmat.2019.121294. [9] HAN Yan, CAO Yun, WANG Hong, et al. Lightweight aggregate obtained from municipal solid waste incineration bottom ash sludge (MSWI-BAS) and its characteristics affected by single factor of sintering mechanism [J]. Journal of the Air &Waste Management Association, 2019, 70(2): 180 − 192. [10] WANG Zhulai, XUE Qi, LIN Zizeng, et al. Research progress of patent application for preparation of ceramsite from solid waste [J]. Applied Chemical Industry, 2018, 47(11): 2455 − 2458. [11] 岳敏. 污泥的粉煤灰调理和污泥陶粒的制备及应用研究[D]. 济南: 山东大学, 2011. YUE Min. Sludge Conditioning with Fly-ash and Preparation and Application of Ceramsite [D]. Ji’nan: Shandong University, 2011. [12] RILEY C M. Relation of chemical properties to the bloating of clays [J]. Journal of the American Ceramic Society, 1951, 34(4): 121 − 128. doi: 10.1111/j.1151-2916.1951.tb11619.x [13] MI Hongcheng, YI Longsheng, WU Qian, et al. Preparation of high-strength ceramsite from red mud, fly ash, and bentonite [J]. Ceramics International, 2021, 47(13): 18218 − 18229. doi: 10.1016/j.ceramint.2021.03.141 [14] LI Xiaoguang, WANG Panqi, QIN Jinyi, et al. Mechanical properties of sintered ceramsite from iron ore tailings affected by two-region structure [J/OL]. Construction and Building Materials, 2020, 240: 117919[2022-08-01]. doi: 10.1016/j.conbuildmat.2019.117919. [15] FAN Chuanhe, QIAN Jueshi, YANG Yun, et al. Green ceramsite production via calcination of chromium contaminated soil and the toxic Cr(VI) immobilization mechanisms [J/OL]. Journal of Cleaner Production, 2021, 315: 128204[2022-08-01]. doi: 10.1016/j.jclepro.2021.128204. [16] HU Lanyu, MA Jianlong, YUE Yang, et al. Fixation stability of glass matrix co-existent with crystal phases for heavy metals formed by high-temperature vitrification [J]. Environmental Science and Pollution Research, 2021, 28(11): 13660 − 13670. doi: 10.1007/s11356-020-11586-2 [17] PENG Weihua, GUI Herong, HE Wenli, et al. Experimental study on leaching characteristics of heavy metals in fly ash and fiber ceramsite [J]. Journal of Safety and Environment, 2013, 13(3): 54 − 57. [18] 罗立群, 涂序, 周鹏飞. 污泥陶粒的制备与应用动态[J]. 中国矿业, 2018, 27(11): 151 − 157. doi: 10.12075/j.issn.1004-4051.2018.11.026 LUO Liqun, TU Xu, ZHOU Pengfei. Preparation and application of sludge ceramsite prepared from sludge [J]. China Mining Magazine, 2018, 27(11): 151 − 157. doi: 10.12075/j.issn.1004-4051.2018.11.026 [19] 力国民, 常鑫, 朱保顺, 等. 烧结温度对添加复合助剂制备莫来石-刚玉基陶粒支撑剂性能的影响[J]. 人工晶体学报, 2018, 47(9): 1850 − 1854. doi: 10.3969/j.issn.1000-985X.2018.09.016 LI Guomin, CHANG Xin, ZHU Baoshun, et al. Influence of sintering temperature on performance of mullite-corundum proppant prepared by adding compound additive [J]. Journal of Synthetic Crystals, 2018, 47(9): 1850 − 1854. doi: 10.3969/j.issn.1000-985X.2018.09.016 [20] 林子增, 黄瑛, 谢文理. 污泥陶粒制备工艺烧结温度影响研究[J]. 功能材料, 2013, 44(增刊 1): 89 − 93. LIN Zizeng, HUANG Ying, XIE Wenli. Study on the effects of sintering temperature on the quality of sludge ceramsite [J]. Journal of Functional Materials, 2013, 44(suppl 1): 89 − 93. [21] ZHAO Lina, HU Min, MUSLIM H, et al. Co-utilization of lake sediment and blue-green algae for porous lightweight aggregate (ceramsite) production [J/OL]. Chemosphere, 2022, 287(2): 132145[2022-08-01]. doi: 10.1016/j.chemosphere.2021.132145. [22] CHEN Jia, CHEN Tiejun, ZHANG Yimin. Effect of temperature system on properties and microstructure of roasting ceramsites prepared with vanadium tailings [J]. Metal Mine, 2014, 457(7): 172 − 176. [23] SHAO Yingying, SHAO Yanqiu, ZHANG Weiyi, et al. Preparation of municipal solid waste incineration fly ash-based ceramsite and its mechanisms of heavy metal immobilization [J]. Waste Management, 2022, 143: 54 − 60. doi: 10.1016/j.wasman.2022.02.021 [24] YANG Huifen, LU Linfei, JIANG Beiping, et al. Effcet of anthracite on preparation of ceramsite using red mud [J]. Applied Mechanics and Materials, 467: 3 − 7. [25] HUANG Chenghao, YUAN Nannan, HE Xiaosong, et al. Ceramsite made from drinking water treatment residue for water treatment: a critical review in association with typical ceramsite making [J/OL]. Journal of Environmental Management, 2023, 328: 117000[2022-08-01]. doi: 10.1016/j.jenvman.2022.117000. [26] BAO Teng, CHEN Tianhu, QING Chengsong, et al. Development and application of Palygorskite porous ceramsite in a biological aerated filter (BAF) [J]. Desalination and Water Treatment, 2014, 57(4): 1 − 14. [27] LI Pengwei, LUO Shaohua, ZHANG Lin, et al. Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment [J]. Separation and Purification Technology, 2021, 276: 119380[2022-08-01]. doi: 10.1016/j.seppur.2021.119380. [28] ZHAO Hailong, LIU Fang, LIU Hanqiao, et al. Comparative life cycle assessment of two ceramsite production technologies for reusing municipal solid waste incinerator fly ash in China [J]. Waste Management, 2020, 113: 447 − 455. doi: 10.1016/j.wasman.2020.06.016 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220518

计量
- 文章访问数: 25
- 被引次数: 0