Genetic variation and effect of growth and branching traits in full-sib families of Schima superba
-
摘要:
目的 揭示木荷Schima superba F1代全同胞家系的生长与分枝性状的遗传变异规律,为木荷科学育种提供依据。 方法 以2015年在浙江龙泉营建的4 × 4半双列交配设计的木荷全同胞家系测定林为研究对象,对木荷亲本组合生长与分枝性状的遗传变异参数、一般配合力(GCA)和特殊配合力(SCA)等进行分析。 结果 6年生木荷全同胞家系间的生长和分枝性状存在极显著差异(P<0.01)。生长和分枝性状的变异系数为20%~53%。木荷的生长和分枝性状受较强的遗传控制(全同胞遗传率为0.86~0.93),其中,生长性状的父本遗传率更高,受基因加性和显性效应共同控制;分枝性状的母本遗传率更高,受基因加性效应控制。相关分析表明:木荷全同胞子代生长和分枝性状存在极显著的表型相关(r=0.20~0.87,P<0.01),胸径生长与一级分枝数、枝下高呈极显著遗传相关(r=0.67~0.70, P<0.01)。生长和分枝性状的GCA和SCA效应均达到显著(P<0.05)和极显著(P<0.01)水平。根据GCA和SCA的结果,认为SY42和LC31为优良亲本,SY42×LC31组合具有速生性状的特殊配合力效应,初选的6株优良全同胞子代可作为2代育种亲本材料。 结论 6年生木荷全同胞家系生长和分枝性状受较强遗传控制,生长性状父本控制力更强,分枝性状母本控制力更强。根据生长性状和分枝性状分别对亲本进行选配,可以得到速生优质的超级亲本组合。图1表7参27 Abstract:Objective This study aims to reveal the heredity and variation of the growth and branching traits of the full-sib families of Schima superba and provide reference for scientific breeding. Method Taking a 4 × 4 half diallel mating design that was conducted in Longquan of Zhejiang Province in 2015 as the research object, the genetic variation parameters, general combining ability (GCA), and special combining ability (SCA) of the growth and branching characters were analyzed. Result The growth and branching traits differed significantly across the 6-year-old full-sib families (P<0.01). The coefficient of variation for the growth and branching traits ranged from 20% to 53%. The growth and branching traits were under strong genetic control, and the heritability of full-sib families was 0.86−0.93. The paternal heritability of the growth traits was higher, which was jointly controlled by gene additive and dominant effects. The maternal heritability of branching traits was higher, which was controlled by gene additive effect. The correlation analysis showed that there was a significant phenotypic correlation between the growth and branching traits (r=0.20−0.87, P<0.01), and there was a significant genetic correlation between DBH growth and bole height and primary branch number (r=0.67−0.70, P<0.01). The GCA and SCA effects of the growth and branching traits reached significant (P<0.05) and extremely significant (P<0.01) levels. According to the results of GCA and SCA, SY42 and LC31 were considered as excellent parents, and SY42 × LC31 combination had special combining ability with fast-growing characters. In addition, the six super-crossing progenies could be used as parent materials for the second-generation breeding. Conclusion The growth and branching traits of full-sib families of S. superba are under strong genetic control, with stronger paternal control over growth traits and stronger maternal control over branching traits. Parents can be selected according to the growth and branching traits, and the super parent combination with fast growth and high quality can be obtained. [Ch, 1 fig. 7 tab. 27 ref.] -
Key words:
- full-sib families /
- half diallel /
- heritability /
- combining ability /
- Schima superba
-
表 1 参试亲本来源
Table 1. The source of parent of S. superba
产地 编号 纬度(N) 经度(E) 海拔/m 年龄/a 树高/m 胸径/cm 福建建瓯 JO8 26°57′ 118°22′ 141 25 16 21.3 JO32 26°57′ 118°22′ 141 25 15 19.2 福建连城 LC31 25°13′ 116°32′ 800 40 15 34.0 江西上犹 SY42 25°42′ 114°01′ 483 28 16 23.5 表 2 4×4半双列组合设计表
Table 2. 4×4 semi-diallel combination design
母本 父本 JO32 LC31 SY42 JO8 JO32 LC31 × SY42 × × JO8 × × × 说明:×表示亲本的杂交组合 表 3 木荷全同胞子代的生长与分枝性状的方差分析
Table 3. ANOVA analysis of growth and branching traits of crossing progeny
项目 胸径/cm 树高/m 冠幅/m 枝下高/m 一级分枝数 最大分枝角/(°) 最大分枝粗/cm 均值 4.87 4.27 2.24 0.43 23.87 80.90 2.13 变幅 0.90~9.70 0.70~7.60 0.35~3.80 0.10~1.30 4.00~46.00 30.00~120.00 0.60~7.80 变异系数/% 39.17 31.47 28.66 47.84 35.05 19.59 52.77 均方 母本(随机) 13.70** 9.76** 5.82** 0.33** 838.43** 4 814.07** 18.71** 父本(随机) 17.46** 14.82** 3.27** 0.30** 63.11 166.41 6.18** 重复(固定) 165.23** 80.55** 14.94** 0.12* 1 611.67** 378.52 15.29** 组合(随机) 3.89** 4.40** 0.20 0.03 26.96** 50.96 1.65 组合×重复(随机) 1.72** 1.52** 0.25** 0.03 98.65** 258.87 1.71** 残差 0.29 0.31 0.12 0.04 24.36 186.55 0.75 说明:**表示P<0.01;*表示P<0.05。母本、父本、重复、组合、组合×重复的自由度分别为2、2、4、5、20 表 4 木荷全同胞子代生长与分枝性状的遗传率估算
Table 4. Heritability estimation of growth and branching traits of crossing progeny of S. superba
性状 母本遗传率 父本遗传率 全同胞遗传率 单株遗传率 性状 母本遗传率 父本遗传率 全同胞遗传率 单株遗传率 胸径 0.72 0.78 0.93 0.79 一级分枝数 0.97 0.57 0.86 0.70 树高 0.55 0.70 0.86 0.50 最大分枝角 0.98 0.69 0.91 0.94 枝下高 0.91 0.90 0.88 0.76 最大分枝粗 0.91 0.73 0.89 0.77 表 5 木荷生长分枝性状的配合力方差分析及方差分量
Table 5. Analysis and variance components of combining ability for growth and branching traits of crossing progeny of S. superba
变异来源 胸径 树高 冠幅 枝下高 一级分枝数 最大分枝角 最大分枝粗 一般配合力 0.28** 0.27** 0.12** 0.010 2** 8.55** 45.87** 0.33** 特殊配合力 0.19* 0.18* 0.02 0.001 6 12.15** 43.92** 0.08 机误 0.05 0.05 0.01 0.000 9 1.87 4.97 0.02 加性分量∶显性分量 1.0∶1.4 1.0∶1.6 11∶1.0 12.3∶1.0 1.0∶10 1.0∶20.0 5.0∶1.0 说明:一般配合力和特殊配合力的自由度分别为3和2。 **表示P<0.01;*表示P<0.05 表 6 木荷全同胞子代生长和分枝性状的表型相关系数与遗传相关系数
Table 6. Phenotypic and genetic correlation coefficients of growth and branching traits of crossing progeny of S. superba
性状 胸径 树高 冠幅 枝下高 一级分枝数 最大分枝角 最大分枝粗 胸径 0.87** 0.78* 0.02 0.67** 0.20** 0.49** 树高 0.87** 0.74** 0.03 0.65** 0.24** 0.40** 冠幅 0.30 0.64* 0.15 0.42** 0.06 0.67** 枝下高 0.61* −0.13 0.56 −0.11 −0.02 0.13 一级分枝数 0.70* 0.47 −0.32 −0.61* 0.43** 0.05 最大分枝角 0.09 0.01 −0.33 −0.30 0.77* −0.22** 最大分枝粗 0.05 0.45 0.85** 0.51 −0.64* −0.83** 说明:对角线以上为表型相关系数;对角线以下为遗传相关系数。 **表示极显著相关(P<0.01);*表示显著相关(P<0.05) 表 7 木荷不同亲本及组合配合力估算
Table 7. Variance effects of combining ability of different parents and combinations of S. superba
变异来源 胸径 树高 冠幅 枝下高 一级分枝数 最大分枝角 最大分枝粗 一般配合力 JO8 −0.26 −0.40 −0.29 −0.09 2.07 −0.47 −0.25 SY42 0.17 0.30 0.16 0.07 5.69 −0.04 −0.05 LC31 0.44 0.33 0.25 −0.03 −4.89 0.52 0.13 JO32 −0.35 −0.23 −0.12 0.05 −2.88 −0.01 0.17 母本一般配合力 LC31 −0.02 −0.05 0.06 0.04 −4.97 −9.99 0.47 SY42 0.01 0.23 0.17 0.05 2.84 6.95 −0.02 JO8 0.01 −0.18 −0.23 −0.08 2.13 3.04 −0.45 父本一般配合力 JO32 −0.34 −0.10 0.07 0.08 −4.25 −6.47 0.38 LC31 −0.01 0.05 0.13 −0.02 −0.49 2.22 0.10 SY42 −0.50 −0.28 −0.11 0.04 −0.56 3.59 −0.33 特殊配合力 JO8×SY42 −0.02 −0.03 −0.05 0.05 −2.30 −5.22 0.15 JO8×LC31 −0.27 −0.33 −0.10 −0.05 −0.20 1.38 −0.20 JO8×JO32 0.28 0.27 0.05 0.00 2.60 3.83 0.05 SY42×LC31 0.33 0.32 0.05 −0.05 2.60 3.88 0.05 SY42×JO32 −0.32 −0.28 −0.10 0.00 −0.20 1.33 −0.20 LC31×JO32 0.03 0.02 0.05 0.00 −2.40 −5.17 0.15 说明:组合编号所表示亲本见表1 -
[1] 欧阳芳群, 祁生秀, 范国霞, 等. 青海云杉自由授粉家系遗传变异与基于BLUP的改良代亲本选择[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 53 − 59. OUYANG Fangqun, QI Shengxiu, FAN Guoxia, et al. Genetic variation and improved parents selection of open pollination families of Picea crassifolia Kom. basing one BLUP method [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(6): 53 − 59. [2] 王明庥. 林木育种学概论[M]. 北京: 中国林业出版社, 1989. WANG Mingxiu. Introduction to Forest Breeding Science [M]. Beijing: China Forestry Publishing House, 1989. [3] SPRAQUE O K, TATUM L A. General verses specific combining ability in single crosses of corn [J]. Journal of the American Society of Agronomy, 1942, 34: 923 − 932. doi: 10.2134/agronj1942.00021962003400100008x [4] JONES G, LIZINIEWICV M, ADAMOPOULOS S, et al. Genetic parameters of stem and wood traits in full-sib silver birch families[J/OL]. Forests, 2021, 12(2): 159[2022-09-10]. doi: 10.3390/f12020159. [5] MUNEERA PARVEEN A B, MUTHUPANDI M, KUMAR N, et al. Quantitative genetic analysis of wood property traits in biparental population of Eucalyptus camaldulensis × E. tereticornis [J]. Journal of Genetics, 2021, 100(46): 1 − 11. [6] VÁZQUEZ-GONZÁLEZ C, GOLDAR L X, ALÍA R, et al. Genetic variation in resin yield and covariation with tree growth in maritime pine [J/OL]. Forest Ecology and Managemen, 2021, 482(2)[2022-09-10]. doi: 10.1016/j.foreco.2020.118843. [7] 李力, 施季森, 陈孝丑, 等. 杉木两水平双列杂交亲本配合力分析[J]. 南京林业大学学报, 2000, 24(5): 9 − 13. LI Li, SHI Jisen, CHEN Xiaochou, et al. Combining ability analyses of parents in two-level diallel cross experiment of Chinese fir [J]. Journal of Nanjing Forestry University, 2000, 24(5): 9 − 13. [8] 齐明. 杉木育种中 GCA 与 SCA 的相对重要性[J]. 林业科学研究, 1996, 9(5): 498 − 503. doi: 10.3321/j.issn:1001-1498.1996.05.010 QI Ming. Relative importance of GCA and SCA in genstic breeding of Chinese fir [J]. Forest Research, 1996, 9(5): 498 − 503. doi: 10.3321/j.issn:1001-1498.1996.05.010 [9] 赵奋成, 张应中, 李宪政, 等. 湿地松半双列子代遗传分析[J]. 林业科学研究, 2001, 14(6): 641 − 647. doi: 10.3321/j.issn:1001-1498.2001.06.009 ZHAO Fencheng, ZHANG Yingzhong, LI Xianzheng, et al. Genetic analysis of half diallel progeny of slash pine [J]. Forest Research, 2001, 14(6): 641 − 647. doi: 10.3321/j.issn:1001-1498.2001.06.009 [10] 曹士晗, 张桂芹, 赵兴江, 等. 水曲柳种子园半双列杂交配合力测定初报[J]. 林业科技, 2013, 38(5): 22 − 24. doi: 10.3969/j.issn.1001-9499.2013.05.008 CAO Shihan, ZHNAG Guiqin, ZHAO Xingjiang, et al. The determination of half diallel cross combining ability of Fraxinus mandshurica seed orchard [J]. Forestry Science &Technology, 2013, 38(5): 22 − 24. doi: 10.3969/j.issn.1001-9499.2013.05.008 [11] 沈乐, 徐建民, 李光友, 等. 尾叶桉与巨桉杂种F1代生长性状遗传分析[J]. 林业科学, 2019, 55(7): 68 − 76. doi: 10.11707/j.1001-7488.20190707 SHEN Le, XU Jianmin, LI Guangyou, et al. Genetic parameters for growth traits in Eucalyptus urophylla×E. grandis F1 crossings [J]. Scientia Silvae Sinicae, 2019, 55(7): 68 − 76. doi: 10.11707/j.1001-7488.20190707 [12] 辛娜娜, 张蕊, 范辉华, 等. 5年生木荷生长和形质性状的家系变异和选择[J]. 林业科学研究, 2014, 27(3): 316 − 322. doi: 10.13275/j.cnki.lykxyj.2014.03.004 XIN Nana, ZHANG Rui, FAN Huihua, et al. Family variation and selection of growth and quality characteristics of 5-year-old Schima superba seedlings [J]. Forest Research, 2014, 27(3): 316 − 322. doi: 10.13275/j.cnki.lykxyj.2014.03.004 [13] 辛娜娜, 张蕊, 徐肇友, 等. 木荷F1代育种群体遗传多样性分析[J]. 林业科学研究, 2015, 28(3): 332 − 338. doi: 10.3969/j.issn.1001-1498.2015.03.005 XIN Nana, ZHANG Rui, XU Zhaoyou, et al. Genetic diversity among breeding parents of Schima superba revealed by SSR [J]. Forest Research, 2015, 28(3): 332 − 338. doi: 10.3969/j.issn.1001-1498.2015.03.005 [14] 王云鹏, 张蕊, 周志春, 等. 木荷优树自由授粉家系早期生长性状遗传变异动态规律[J]. 林业科学, 2020, 56(9): 77 − 86. doi: 10.11707/j.1001-7488.20200909 WANG Yunpeng, ZHANG Rui, ZHOU Zhichun, et al. Dynamic patterns of genetic variation in early growth traits of the open-pollinated families of Schima superba plus tree [J]. Scientia Silvae Sinicae, 2020, 56(9): 77 − 86. doi: 10.11707/j.1001-7488.20200909 [15] 徐肇友, 王云鹏, 肖纪军, 等. 不同产地木荷优树无性系表型多样性[J]. 东北林业大学学报, 2021, 49(2): 5 − 10, 17. doi: 10.13759/j.cnki.dlxb.2021.02.002 XU Zhaoyou, WANG Yunpeng, XIAO Jijun, et al. Phenotypic diversity analysis of Schima superba superior clones from different locations [J]. Journal of Northeast Forestry University, 2021, 49(2): 5 − 10, 17. doi: 10.13759/j.cnki.dlxb.2021.02.002 [16] 王云鹏, 张蕊, 周志春, 等. 10年生木荷生长和材性性状家系变异及选择[J]. 南京林业大学学报 (自然科学版), 2020, 44(5): 85 − 92. WANG Yunpeng, ZHANG Rui, ZHOU Zhichun, et al. A variation and selection of growth and wood traits for 10-year-old Schima superba [J]. Journal of Nanjing Forestry University (Natural Sciences), 2020, 44(5): 85 − 92. [17] YANG Hanbo, ZHANG Rui, SONG Ping, et al. The floral biology, breeding system and pollination efficiency of Schima superba Gardn. et Champ. (Theaceae)[J/OL]. Forests, 2017, 8(11)[2022-09-10]. doi: 10.3390/f8100404. [18] 翟虎渠, 王建康. 应用数量遗传[M]. 2版. 北京: 中国农业科学技术出版社, 2007. ZHAI Huqu, WANG Jiankang. Applied Quantitative Inheritance [M]. 2nd Ed. Beijing: China Agricultural Science and Technology Press, 2007. [19] 朱之悌. 林木遗传学基础[M]. 北京: 中国林业出版社, 1990. ZHU Zhiti. Genetic Basis of Forest Trees [M]. Beijing: China Forestry Publishing House, 1990. [20] 谭小梅, 金国庆, 周志春. 马尾松3代种质苗高生长参数的配合力分析[J]. 林业科学研究, 2011, 24(5): 663 − 667. doi: 10.13275/j.cnki.lykxyj.2011.05.015 TAN Xiaomei, JIN Guoqing, ZHOU Zhichun. Combining ability analysis on seedling shoot elongation and growth parameters for the third generation germplasm of Pinus massoniana [J]. Forest Research, 2011, 24(5): 663 − 667. doi: 10.13275/j.cnki.lykxyj.2011.05.015 [21] 赵颖, 周志春, 金国庆. 马尾松苗木生长和根系性状的GCA/SCA及磷素环境影响[J]. 林业科学, 2009, 45(6): 27 − 33. doi: 10.3321/j.issn:1001-7488.2009.06.006 ZHAO Ying, ZHOU Zhichun, JIN Guoqing. GCA/SCA of seedling growth and root parameters in Pinus massoniana and the phosphorus environment influence [J]. Scientia Silvae Sinicae, 2009, 45(6): 27 − 33. doi: 10.3321/j.issn:1001-7488.2009.06.006 [22] 董虹妤, 刘青华, 周志春, 等. 马尾松子代生长杂种优势与亲本配合力、遗传距离的相关性[J]. 林业科学, 2017, 53(2): 65 − 75. doi: 10.11707/j.1001-7488.20170208 DONG Hongyu, LIU Qinghua, ZHOU Zhichun, et al. Correlation between heterosis in the growth of progeny and combining ability and genetic distance of the parents for Pinus massoniana [J]. Scientia Silvae Sinicae, 2017, 53(2): 65 − 75. doi: 10.11707/j.1001-7488.20170208 [23] YANG Yong, SUN Miao, LI Shanshan, et al. Germplasm resources and genetic breeding of Paeonia: a systematic review[J/OL]. Horticulture Research, 2020, 7(1): 107[2022-09-10]. doi: org/10.1038/s41438-020-0332-2. [24] 金国庆, 秦国峰, 刘伟宏, 等. 马尾松测交系杂交子代生长性状遗传分析[J]. 林业科学, 2008, 44(1): 70 − 76. doi: 10.11707/j.1001-7488.20080112 JIN Guoqing, QIN Guofeng, LIU Weihong, et al. Genetic analysis of growth traits on tester strain progeny of Pinus massoniana [J]. Scientia Silvae Sinicae, 2008, 44(1): 70 − 76. doi: 10.11707/j.1001-7488.20080112 [25] 刘青华, 金国庆, 储德裕, 等. 基于马尾松测交系子代的生长、干形和木材密度的配合力分析[J]. 南京林业大学学报(自然科学版), 2011, 35(2): 8 − 14. LIU Qinghua, JIN Guoqing, CHU Deyu, et al. Genetic analysis on combining ability of growth, stem form and wood basic density of Pinus massoniana by testcross mating design [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2011, 35(2): 8 − 14. [26] 张振, 金国庆, 余启新, 等. 马尾松三代测定林抽梢性状的遗传效应及与针叶氮磷钾养分的遗传相关[J]. 林业科学, 2017, 53(8): 26 − 34. doi: 10.11707/j.1001-7488.20170804 ZHANG Zhen, JIN Guoqing, YU Qixin, et al. Genetic effects of shoot growth and its genetic correlation with N, P and K contents in needles of the third generation trial plantation of Pinus massoniana [J]. Scientia Silvae Sinicae, 2017, 53(8): 26 − 34. doi: 10.11707/j.1001-7488.20170804 [27] 齐明, 王海蓉, 叶金俊, 等. 杉木全双列杂交试验的遗传分析及优良品种的选择[J]. 林业科技通讯, 2019(12): 8 − 11. QI Ming, WANG Hairong, YE Jinjun, et al. Cunninghamia lanceolata, complete diallel cross experiment of genetic analysis and the selection of good varieties [J]. Forest Science and Technology, 2019(12): 8 − 11. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220634

计量
- 文章访问数: 42
- 被引次数: 0