Effects of different ages and positions on fiber morphology and crystallinity of Phyllostachys edulis
-
摘要:
目的 研究竹龄与部位对毛竹Phyllostachys edulis纤维形态及结晶度的影响,为实现毛竹在制浆造纸、竹纺织品等工业生产中的高效选材利用提供基础数据。 方法 采用纤维离析法,借助普通光学显微镜,测定纤维形态;通过Segal法计算相对结晶度。 结果 竹龄主要影响竹材的纤维长度,纤维长度随竹龄的增长而增大,且80%的纤维长度为1 000~2 500 µm,属长纤维。轴向高度对毛竹材纤维形态的影响较小,纤维壁腔比、长宽比在3个取样部位间差异显著(P<0.05),但未有明显变化规律;轴向上,不同位置纤维长度未见显著差异。径向纤维长度从大到小依次为竹肉、近竹青、近竹黄;结晶度与竹龄无明显关系,径向上由近竹黄到近竹青呈现递增趋势。在影响竹材纤维形态的因子中,竹龄贡献率最大,影响最为明显。 结论 毛竹纤维形态受竹龄影响最大,受径向取样部位影响明显,轴向高度影响较小,所有部位纤维可用于工业生产,建议将竹龄作为原材料筛选的优先指标。图6表6参22 Abstract:Objective This study, with an investigation of the influence of bamboo age and position on the morphology and crystallinity of Phyllostachys edulis fiber, is aimed to provide basic data for the the reasonable selection and efficient utilization of Ph. edulis in the production of pulp, paper, bamboo textile and other industrial products. Method With fiber segregation method and common optical microscope measurement method employed, the fiber morphology was determined whereas the relative crystallinity was calculated by Segal method. Result Bamboo age was postively correlated with the fiber length of bamboo, 80% of which was between 1 000 and 2 500 µm, belonging with long fiber. The shape of bamboo fiber was less affected by the axial height of bamboo, and the fiber wall cavity ratio and length width ratio had significant differences among the three sampling positions (P<0.05), but there was no obvious change rule, and the fiber length had no significant difference. In radial direction, the fiber length displayed a significant change rule, which was generally reflected as bamboo medium>bamboo green>bamboo yellow. There was no significant relationship between crystallinity and bamboo age, and there was an increasing trend from near yellow to near green in radial direction. Among the factors affecting bamboo fiber morphology, bamboo age had the largest contribution rate and the most obvious influence. Conclusion The fiber morphology of Ph. edulis was most affected by the bamboo age, significantly affected by the radial sampling position, and less affected by the axial height. All samples could be used in industrial production, and it is recommended to take the bamboo age as the priority index for raw material screening. [Ch. 6 fig. 6 tab. 22 ref.] -
Key words:
- Phyllostachys edulis /
- fiber morphology /
- wall cavity ratio /
- fiber length /
- fiber length width ratio /
- crystallinity
-
表 1 采集试样的基本情况
Table 1. Basic information of sample collection
取样部位 取样位置/竹节 各部位取样壁厚/mm 2 4 6 2 4 6 a 1 6~12 6~11 6~12 11.07 11.29 12.02 2 13~17 12~16 13~17 10.47 9.06 10.32 3 18~21 17~20 18~21 8.91 8.85 9.58 说明:取样部位1、2、3表示竹材由下至上不同部位,具体见图1 表 2 毛竹轴向纤维形态差异
Table 2. Differences of Ph. edulis in axial fiber morphology
取样
部位竹龄2 a 竹龄4 a 竹龄6 a 纤维壁腔比 纤维长度/µm 纤维长宽比 纤维壁腔比 纤维长度/µm 纤维长宽比 纤维壁腔比 纤维长度/µm 纤维长宽比 1 4.90±0.15 a 1 787.04±34.14 AB 114.29±2.82 a 6.30±0.16 a 1 810.21±28.98 a 133.62±2.98 A 7.91±0.18 A 1 854.00±27.22 a 146.71±3.05 a 2 4.90±0.16 a 1 754.41±29.25 A 117.58±2.99 a 7.31±0.13 b 1 769.81±33.86 a 149.43±3.83 B 8.70±0.18 B 1 884.01±29.88 a 134.47±3.00 b 3 5.69±0.14 b 1 864.93±29.80 B 133.02±3.01 b 7.11±0.14 b 1 852.12±32.62 a 158.67±3.69 B 8.10±0.14 A 1 894.12±31.17 a 143.75±3.35 ab 平均值 5.16 1 802.13 121.63 6.91 1 810.71 147.24 8.24 1 877.38 141.64 说明:数据为平均值±标准误。取样部位1、2、3所表示的具体位置见图1。小写字母表示数据符合方差齐性检验,两两比较为邦弗伦尼法;大写字母表示数据不符合方差齐性检验,两两比较为塔姆黑尼法。同列不同字母表示不同取样部位差异显著(P<0.05) 表 3 毛竹径向纤维形态差异
Table 3. Differences of Ph. edulis in radial fiber morphology
取样部位
(竹黄~竹青)竹龄2 a 竹龄4 a 竹龄6 a 纤维壁腔比 纤维长度/µm 纤维长宽比 纤维壁腔比 纤维长度/µm 纤维长宽比 纤维壁腔比 纤维长度/µm 纤维长宽比 A 5.07±0.18 A 1 694.74±36.84 a 123.87±3.61 ab 6.93±0.20 a 1 714.09±43.21 a 142.49±4.29 a 9.09±0.23 a 1 863.92±36.82 ab 147.69±4.27 ac B 6.49±0.19 B 1 712.21±40.33 a 112.47±3.94 a 7.02±0.18 a 1 935.47±40.85 b 153.03±4.97 a 7.63±0.19 b 1 884.41±38.23 ab 144.30±3.84 abc C 4.84±0.22 A 1 852.63±41.17 ab 129.04±3.79 b 7.11±0.21 a 1 822.00±42.29 ab 153.07±5.00 a 7.84±0.22 b 1 973.08±36.44 a 151.02±4.28 c D 4.49±0.16 A 1 824.75±39.29 ab 125.15±4.20 ab 6.81±0.16 a 1 765.08±38.28 ab 145.83±4.59 a 7.83±0.20 b 1 865.71±38.70 ab 133.26±3.57 ab E 4.93±0.19 A 1 926.29±41.19 b 117.60±3.60 ab 6.67±0.19 a 1 817.60±39.88 ab 141.76±4.11 a 8.13±0.23 a 1 799.77±38.56 b 132.32±4.09 b 说明:数据为平均值±标准误。取样部位A~E表示的具体位置见图2。小写字母表示数据符合方差齐性检验,两两比较为邦弗伦尼法;大写字母表示数据不符合方差齐性检验,两两比较为塔姆黑尼法。同列不同字母表示不同取样部位差异显著(P<0.05) 表 4 主成分各因子提取载荷平方和
Table 4. Each factor extracts the sum of squares of the load
成分 方差百分比/% 累计贡献率/% 竹龄 30.004 30.004 轴向取样部位 22.431 52.435 径向取样部位 16.757 69.192 表 5 不同竹龄毛竹轴向纤维结晶度差异
Table 5. Relative crystallinity of Ph. edulis in the axial direction under different ages
竹龄/a 不同轴向高度纤维素结晶度/% 1 2 3 平均值 2 38.75 40.23 39.46 39.48 4 38.66 39.99 40.51 39.72 6 38.52 40.52 39.68 39.59 说明:1、2、3表示取样部位,具体位置见图1 表 6 不同竹龄毛竹径向纤维结晶度差异
Table 6. Relative crystallinity of Ph. edulis in radial direction under different ages
竹龄/a 竹壁径向位置纤维素结晶度/% A B C D E 2 36.69 38.32 38.81 40.07 42.50 4 33.47 37.89 39.46 42.91 44.88 6 35.70 37.39 39.07 42.42 42.84 说明: A~E表示取样部位,具体位置见图2 -
[1] 王晓明, 王建和. 我国竹资源综合开发利用的现状分析[J]. 浙江林学院学报, 1993, 10(1): 86 − 92. WANG Xiaoming, WANG Jianhe. Status analysis of comprehensive developing and utilization of bamboo resources in recent years in China [J]. Journal of Zhejiang Forestry College, 1993, 10(1): 86 − 92. [2] 刘娇, 周爱萍, 盛宝璐, 等. 温度对重组竹短期受压蠕变性能的影响[J]. 林业工程学报, 2021, 6(2): 64 − 69. LIU Jiao, ZHOU Aiping, SHENG Baolu,et al. Effect of temperature on short-term compression creep property of bamboo scrimber [J]. Journal of Forestry Engineering, 2021, 6(2): 64 − 69. [3] 国家林业和草原局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社, 2019. State Forestry and Grassland Administration. China Forest Resources Report(2014−2018) [M]. Beijing: China Forestry Press, 2019. [4] 李媛媛, 张双燕, 王传贵, 等. 毛竹采伐剩余物的化学成分、纤维形态及纸浆性能[J]. 浙江农林大学学报, 2019, 36(2): 219 − 226. LI Yuanyuan, ZHANG Shuangyan, WANG Chuangui,et al. Chemical composition, fiber morphology, and pulping properties of logging residues in Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2019, 36(2): 219 − 226. [5] 吴杉杉, 吴婧怡. 新形势下如何更好对竹文化体育资源进行保护性开发[J]. 林产工业, 2020, 57(10): 97 − 99. WU Shanshan, WU Jingyi. How to take better protective development of bamboo culture and sports resources under the new situation [J]. Forest Products Industry, 2020, 57(10): 97 − 99. [6] WANG Xinzhou, CHENG Dali, HUANG Xianai, et al. Effect of high-temperature saturated steam treatment on the physical, chemical, and mechanical properties of Moso bamboo [J/OL]. Journal of Wood Science, 2020, 66: 52[2022-11-15]. doi: 10.1186/s10086-020-01899-8. [7] 蔡燚, 王宝金, 官洁茹, 等. 金寨毛竹纤维形态及化学成分[J]. 东北林业大学学报, 2020, 48(2): 81 − 86. CAI Yi, WANG Baojin, GUAN Jieru,et al. Fiber morphology and chemical composition of moso bamboo from Jinzhai [J]. Journal of Northeast Forestry University, 2020, 48(2): 81 − 86. [8] 李荣荣, 贺楚君, 彭博, 等. 毛竹材不同部位纤维形态及部分物理性能差异[J]. 浙江农林大学学报, 2021, 38(4): 854 − 860. LI Rongrong, HE Chujun, PENG Bo,et al. Differences in fiber morphology and partial physical properties in different parts of Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2021, 38(4): 854 − 860. [9] 夏旭光, 姚文斌, 俞伟鹏, 等. 非均匀竹材各单层顺纹抗压弹性模量的测定[J]. 竹子学报, 2018, 37(4): 49 − 55. XIA Xuguang, YAO Wenbing, YU Weipeng,et al. The measurement of the parallel grain compression MOE of each layer of non-uniform bamboo [J]. Journal of Bamboo Research, 2018, 37(4): 49 − 55. [10] 彭博, 王传贵, 张双燕. 四川两种竹材理化性质及纤维形态分析[J]. 世界竹藤通讯, 2018, 16(3): 15 − 19. PENG Bo, WANG Chuangui, ZHANG Shuangyan. Analysis of physical & chemical properties and fiber configuration of 2 species of bamboos from Sichuan Province [J]. World Bamboo and Rattan, 2018, 16(3): 15 − 19. [11] 杨淑敏, 江泽慧, 任海青, 等. 利用X-射线衍射法测定竹材纤维素结晶度[J]. 东北林业大学学报, 2010, 38(8): 75 − 77. YANG Shumin, JIANG Zehui, REN Haiqing,et al. Determination of crystallinity of bamboo cellulose by X-ray diffraction [J]. Journal of Northeast Forestry University, 2010, 38(8): 75 − 77. [12] MURPHY R J, ALVIN K L. Varation in fiber wall structure in bamboo [J]. IAWA Bulletin, 1992, 13(4): 403 − 410. doi: 10.1163/22941932-90001296 [13] ITOH T. Lignification of bamboo (Phyllostachys heterocycla Mitf. ) during its growth [J]. Holzforschung, 1990, 44(3): 191 − 200. doi: 10.1515/hfsg.1990.44.3.191 [14] 刘波. 毛竹发育过程中细胞壁形成的研究[D]. 北京: 中国林业科学研究院, 2008. LIU Bo. Formation of Cell Wall in Developmental Culms of Phyllostachys pubescens [D]. Beijing: Chinese Academy of Forestry, 2008. [15] 吴金凤, 周学政, 黄治, 等. 竹纤维润胀性能的测定方法及其应用[J]. 造纸科学及技术, 2021, 40(6): 1 − 5. WU Jinfeng, ZHOU Xuezheng, HUANG Zhi,et al. Test method of bamboo fiber Swelling characteristic and its application [J]. Paper Science and Technology, 2021, 40(6): 1 − 5. [16] 杨金燕. 几种病虫害对杨树木材材质的影响[D]. 哈尔滨: 东北林业大学, 2002. YANG Jinyan. The Influence of Several Disease and Insect on Wood Quality of Populus [D]. Harbin: Northeast Forest University, 2002. [17] 王倩, 李建成. 竹纤维水泥基材料的物理力学性能研究[J]. 建材世界, 2022, 43(5): 9 − 13. WANG Qian, LI Jiancheng. Study on physical and mechanical properties of bamboo fiber cement-based materials [J]. Building Materials World, 2022, 43(5): 9 − 13. [18] 朱海龙. 美洲黑杨NL351和2-2的KP法蒸煮、氧脱木质素特性研究[D]. 南京: 南京林业大学, 2014. ZHU Hailong. Study on Delignification Properties of Populus deltoides NL351 and 2-2 in KP Pulping and Oxygen Delignification [D]. Nanjing: Nanjing Forest University, 2014. [19] 王曙光, 普晓兰, 丁雨龙, 等. 云南箭竹纤维形态变异规律[J]. 浙江林学院学报, 2009, 26(4): 528 − 532. WANG Shuguang, PU Xiaolan, DING Yulong,et al. Morphological differences of Fargesia yunnanensis fibers [J]. Journal of Zhejiang Forestry College, 2009, 26(4): 528 − 532. [20] 马灵飞, 马乃训. 毛竹材材性变异的研究[J]. 林业科学, 1997, 33(4): 356 − 364. MA Lingfei, MA Naixun. Study on the variation of wood properties of Phyllostachys pubescens [J]. Scientia Silvae Sinicae, 1997, 33(4): 356 − 364. [21] 王鹏程, 代永刚, 汪佑宏, 等. 竹龄对梁山慈竹纤维形态特征的影响[J]. 安徽农业大学学报, 2018, 45(5): 853 − 860. WANG Pengcheng, DAI Yonggang, WANG Youhong,et al. Effect of age on the fiber morphological characteristics of Dendrocalamus farinosus [J]. Journal of Anhui Agricultural University, 2018, 45(5): 853 − 860. [22] 黄建辉, 陈灵芝. 北京百花山附近杂灌丛的化学元素含量特征[J]. 植物生态学与地植物学学报, 1991, 15(3): 224 − 233. HUANG Jianhui, CHEN Lingzhi. Chemical element content characteristics of the shrubs near Baihua Mountain in Beijing [J]. Acta Phytoecologica et Geobotanica Sinica, 1991, 15(3): 224 − 233. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220749

计量
- 文章访问数: 14
- 被引次数: 0