留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同竹龄和部位对毛竹纤维形态及结晶度的影响

牛思杰 王娜 崔百祥 王传贵 武恒 张双燕

李清香, 张明如, 顾翠花, 等. 长柱紫茎的花部特征与繁育系统[J]. 浙江农林大学学报, 2022, 39(4): 830-837. DOI: 10.11833/j.issn.2095-0756.20210563
引用本文: 牛思杰, 王娜, 崔百祥, 等. 不同竹龄和部位对毛竹纤维形态及结晶度的影响[J]. 浙江农林大学学报, 2023, 40(2): 446-452. DOI: 10.11833/j.issn.2095-0756.20220749
LI Qingxiang, ZHANG Mingru, GU Cuihua, et al. Floral syndrome and breeding system of Stewartia rostrata[J]. Journal of Zhejiang A&F University, 2022, 39(4): 830-837. DOI: 10.11833/j.issn.2095-0756.20210563
Citation: NIU Sijie, WANG Na, CUI Baixiang, et al. Effects of different ages and positions on fiber morphology and crystallinity of Phyllostachys edulis[J]. Journal of Zhejiang A&F University, 2023, 40(2): 446-452. DOI: 10.11833/j.issn.2095-0756.20220749

不同竹龄和部位对毛竹纤维形态及结晶度的影响

DOI: 10.11833/j.issn.2095-0756.20220749
基金项目: 安徽高校自然科学研究项目(KJ2020A0130);国家林业和草原局北京市共建竹藤科学与技术重点实验室开放基金项目(ICBR-2020-10)
详细信息
    作者简介: 牛思杰(ORCID: 0000-0003-1524-158X),从事竹木材高效加工与利用研究。E-mail: sijieniu@icloud.com
    通信作者: 张双燕(ORCID: 0000-0002-3201-7179),副教授,博士,从事生物质材料性质及应用研究。E-mail: zsyhj-2006@163.com
  • 中图分类号: S781

Effects of different ages and positions on fiber morphology and crystallinity of Phyllostachys edulis

  • 摘要:   目的  研究竹龄与部位对毛竹Phyllostachys edulis纤维形态及结晶度的影响,为实现毛竹在制浆造纸、竹纺织品等工业生产中的高效选材利用提供基础数据。  方法  采用纤维离析法,借助普通光学显微镜,测定纤维形态;通过Segal法计算相对结晶度。  结果  竹龄主要影响竹材的纤维长度,纤维长度随竹龄的增长而增大,且80%的纤维长度为1 000~2 500 µm,属长纤维。轴向高度对毛竹材纤维形态的影响较小,纤维壁腔比、长宽比在3个取样部位间差异显著(P<0.05),但未有明显变化规律;轴向上,不同位置纤维长度未见显著差异。径向纤维长度从大到小依次为竹肉、近竹青、近竹黄;结晶度与竹龄无明显关系,径向上由近竹黄到近竹青呈现递增趋势。在影响竹材纤维形态的因子中,竹龄贡献率最大,影响最为明显。  结论  毛竹纤维形态受竹龄影响最大,受径向取样部位影响明显,轴向高度影响较小,所有部位纤维可用于工业生产,建议将竹龄作为原材料筛选的优先指标。图6表6参22
  • 植物繁育系统是指直接影响后代遗传组成的所有有性特征,包括花部特征、开放式样、花各性器官寿命长短,自交亲和程度与交配系统等[1]。作为植物重要的繁殖器官,花内部器官发育和外部形态特征与植物的传粉效率、交配方式密不可分。因此,系统研究植物的花部特征和繁育系统有助于理解其繁殖过程限制因子的生态效应,对生物多样性保育具有重要价值[2]

    长柱紫茎Stewartia rostrata为山茶科Theaceae紫茎属Stewartia的落叶灌木或小乔木,主要分布于浙江西北部、安徽南部及西部、江西北部及湖南东部,地理分布较为狭窄。花白繁茂,花瓣多带有形状、颜色不一的红斑,树干造型多样;集中开花,观赏价值极高,在园林绿地应用潜力巨大。近年来,由于人类干扰频繁和自然环境恶化,长柱紫茎的野外生存受到极大的威胁,迫切需要开展保育生物学系列研究。实地调查发现:尽管盛花期花量极大,但长柱紫茎群落下层幼苗稀少,天然更新不良,与同属的濒危植物紫茎Stewartia sinensis衰退型种群结构类似[34]。紫茎属木本植物幼苗幼树稀少,其原因可能涉及群落环境(如植物间竞争排斥关系、植物与传粉昆虫关系)与非生物环境(如阴雨天气的出现)的限制作用、种子发芽受阻、花部特征与繁育系统影响传粉过程造成种子发育质量不良等。已有研究表明[5]:紫茎的种子发芽率无论是实验室还是圃地最高仅为10%,甚至为0。长柱紫茎和紫茎在同属中亲缘关系最为接近,形态特征、生物学特性有许多相近之处,推测此2个种的繁育过程受阻有相似之处。

    目前,紫茎属已有研究集中于群落结构[4]、繁殖技术[5]、种子发芽[6]、植物种分类[7]及系统发育[8]等方面,未发现有关紫茎属特别是长柱紫茎花部特征、传粉过程的限制因素、繁育系统所属类型等的报道。繁育系统类型是否对长柱紫茎结实率和种子败育产生影响,其衰退型种群结构是否与其繁育系统类型有关,生境自然条件变化是否影响传粉昆虫的行为,从而影响繁殖成功率;这些都是当前亟待深入研究的科学问题。为此,本研究以长柱紫茎为材料,通过观察(测)长柱紫茎花部特征和昆虫访花特性、测定花粉活力和柱头可授性、测算杂交指数和花粉胚珠比等,深入揭示其繁殖过程限制因素的影响,为紫茎属种群更新、人工扩繁及园林推广应用提供科学依据,为紫茎属的濒危植物致濒机制研究提供思路。

    研究地浙江农林大学东湖校区(30°15′28″N,119°43′35″E)海拔101.3 m,属于中亚热带季风气候,四季分明,年平均气温为16.1 ℃,全年降水量为1 628.6 mm,年降水日为154 d,无霜期为236 d。研究地周边地带性植被为亚热带常绿阔叶林。选择3 a生长柱紫茎为材料,株高为2.5~3.0 m。研究时间为2021年4—6月。

    1.2.1   开花动态

    于花蕾期随机选取30朵花挂牌标记,每天16:00观察直至单花开放;开花当天及开花第2天8:00—18:00连续观察,每隔2 h定点观测1次并拍照,之后每天观测1次。观察花的开花动态,记录单花结构、花朵大小和形状、雄雌蕊位置形态变化、花瓣颜色、苞片颜色、萼片颜色、花药开裂时间等,直至花部萎蔫[9]

    1.2.2   花部形态特征

    于盛花期,在15株植株上随机选取30朵发育良好的花,测定花部结构参数,记录花冠直径、苞片长宽、花瓣长宽、萼片长宽、子房直径及长度等数据。

    1.3.1   花粉离体培养

    随机采集当天开放花朵的花粉,设置5种蔗糖质量浓度(0、5、10、15、20 g·L−1)处理,于25 ℃下培养6 h后观察并统计花粉萌发率。

    1.3.2   花粉活力测定

    随机采集当天开放花朵的花粉,分别采用2,3,5-氯化三苯基四氮唑(TTC)染色法、碘-碘化钾(I2-KI)染色法,筛选最适蔗糖质量浓度培养6 h后测定花粉活力,以加热致死的花粉作对照,每个处理3次重复。在光学显微镜下随机选取3个视野统计着色花粉数,每个视野花粉数不少于100粒[10]

    1.3.3   花粉萌发率测定

    选取开放前1 d至开放后第3天的花朵,每个阶段选取10朵,测定最适蔗糖质量浓度培养下的花粉活力,以加热致死的花粉为对照。在光学显微镜下观察统计花粉萌发率,每视野内花粉数不少于100粒。

    随机选取开放前1 d至开放后7 d的花朵,将柱头放在凹面载玻片上,完全浸泡于质量分数3%的过氧化氢(H2O2)溶液中,30 min后在体式显微镜下观察,若有气泡产生则表明柱头有活性,反之则无[11]

    随机选取不同植株的20朵即将开放的花蕾,记录每朵花的雄蕊数。随机选取1个花药,用解剖针将花药捣碎,蒸馏水定容至1 mL,吸取1 µL液体在光学显微镜下统计花粉数量;每朵花选取3个花药,重复3次,取平均数乘雄蕊数再乘1 000得出单花花粉量。解剖相对应的子房,统计胚珠数[12]。根据CRUDEN[13]标准,计算花粉胚珠比(单花花粉总数/单花胚珠数,P/O);并由此判断长柱紫茎繁育系统类型。

    按照DAFNI[14]标准,通过杂交指数(OCI)评判繁育系统类型。用游标卡尺测定花冠直径;观察记录花药开裂时间与柱头可授期,雌雄蕊是否同时成熟;记录花药与柱头之间的相对空间关系。

    随机选择5株长柱紫茎,于晴天9:00—17:00连续观察访花昆虫。每株长柱紫茎选择10朵花,每2 h观察1次,每天观察5次,记录访花昆虫的种类和访花时间[15]

    2.1.1   开花动态

    长柱紫茎居群花期为5月初至5月中下旬,约17 d (2021年5月1—17日),单花花期2 d。5月1日该居群的第1朵花开放,5月8日单日开花最多,占总开花数的15%,达到盛花期,5月13日进入末花期。

    长柱紫茎单花开放过程分为花蕾期(苞片、萼片包裹花蕾)、初展期(花药、柱头显露)、盛放期(花瓣平展)、凋落期(花瓣枯萎)及坐果期(子房膨大结实) 5个过程(图1)。具体的,①花蕾期(图1A和B),苞片、萼片呈绿色,紧紧包裹花蕾。临近开放时,绿色的苞片和萼片从基部向边缘转为紫红色,同时向外伸展,逐渐显现出花苞。花苞顶部受光影响,呈现红斑。②初展期(图1C),单花花瓣展开,花药和柱头显露,弯曲的花丝慢慢伸展高出柱头。③盛放期(图1D),花瓣完全平展,雄蕊高于柱头伸展,柱头反向弯曲,呈5裂。④凋落期(图1E和F),花瓣枯萎、脱落,开放24~32 h后,花药逐渐由橘黄色变为淡棕色,花冠极易掉落,柱头萎蔫,萼片和苞片逐渐收缩,花朵直径变小。⑤坐果期(图1G和H),子房膨大,萼片和苞片再逐渐展开,由红色转为绿色,果实由绿色转为棕色,逐渐木质化。

    图 1  长柱紫茎的开花动态
    Figure 1  Flowering dynamics of S. rostrata
    2.1.2   花部形态特征

    长柱紫茎的平均单花直径为(50.2±11.7) mm (表1),花瓣5枚,白色,边缘裂状,有1~3枚花瓣带红斑(图1K);每花具1对叶状苞片(图1J-1),披针叶形,开花时基部由绿色转为紫红色;萼片5枚(图1J-2);雄蕊50~84枚,长17~19 mm,花丝黄色呈线形,基部连合成短管,花丝的连合处不及花丝长度的1/3(图1J-4),花药橘黄色,干后变为淡棕色;雌蕊1枚,长14~16 mm,柱头呈5裂(图1J-5),花朵盛开时花丝高于柱头;子房5室,每室4枚胚珠,稀2~3枚,中轴胎座。

    表 1  长柱紫茎的花部形态特征
    Table 1  Flower characteristics of S. rostrata
    花器官平均值±标准误花器官平均值±标准误花器官平均值±标准误
    花梗长/mm 5.2±1.4 萼片宽/mm 8.8±2.2 带斑的花瓣宽/mm 19.6±2.9
    花冠直径/mm 50.2±11.7 花瓣数/枚 5±0 雄蕊数/枚 64.9±11.8
    苞片数/片 2±0 花瓣长/mm 28.5±3.7 雄蕊长/mm 17.5±1.5
    苞片长/mm 15.5±4.2 花瓣宽/mm 20.0±3.1 胚珠数/枚 18.6±2.4
    苞片宽/mm 9.4±2.4 花斑长/mm 8.9±2.8 雌蕊长度/mm 14.2±1.1
    萼片数/枚 5±0 花斑宽/mm 8.2±2.7 子房直径/mm 5.0±0.7
    萼片长/mm 15.2±3.3 带斑的花瓣长/mm 20.2±5.7 子房长/mm 3.7±0.5
    下载: 导出CSV 
    | 显示表格
    2.2.1   花粉离体培养的适宜蔗糖质量浓度

    在无蔗糖培养基下,长柱紫茎花粉萌发率仅为13.7%;随着培养基蔗糖质量浓度的增加,花粉萌发率增大,在15 g·L−1出现峰值,为69.3%。当蔗糖质量浓度为20 g·L−1时,花粉萌发率降至33.3%。因此,15 g·L−1的蔗糖培养基为最适培养基(图2)。

    图 2  不同蔗糖质量浓度对长柱紫茎花粉活力的 影响
    Figure 2  Effects of different sucrose concentrations on pollen viability
    2.2.2   不同方法测定花粉活力

    采用I2-KI染色,活力较强的花粉会呈现蓝黑色,但在操作时,易混入杂质,视野中观察到的蓝黑色不够明显,不利于计数。采用TTC染色,有活力的花粉会呈现红色;但观察到大部分花粉未变红,说明TTC染色不利于测定长柱紫茎的花粉活力。因此,TTC染色法和I2-KI染色法均不适合长柱紫茎花粉活力的测定。实际研究中,与TTC染色法和I2-KI染色法相比,花粉离体培养下,花粉会萌发较长的花粉管,更有利于观察。

    2.2.3   不同开放时间花粉萌发率

    采用15g·L−1的蔗糖培养基培养花粉,由图3可知:开放前1 d,花粉萌发率较高,为49.3%,开花当天花粉活力最高,为65.0%。之后花粉活力逐渐下降,到第3天,已降至11.7%。

    图 3  不同时间下长柱紫茎花粉活力
    Figure 3  Pollen germination rate of S. rostrata tested in different time

    图4可知:开放前1 d长柱紫茎花药尚未开裂,柱头合拢,呈白色,可授性弱。开放1~2 d,柱头逐渐张开,具有较强可授性,之后可授性逐渐增强。到第3天柱头开始萎蔫,由白色转变为棕黄色,可授性强。在开放的第4天,柱头完全展开,向外反卷呈5裂,呈棕黄色、萎蔫皱巴的状态,此时花粉活性最强。之后,柱头可授性逐渐下降,到第7天,柱头基本失去可授性。

    图 4  长柱紫茎开花过程中柱头可授性
    Figure 4  Changes in stigma receptivity of S. rostrata during flowering process

    根据统计结果,长柱紫茎花粉数为(1 618 666.7±254 775.4)粒,胚珠数为(18.6±2.4)枚,花粉/胚珠比(P/O)为2 108.0~195 525.0,平均为87 025.1。依照CRUDEN的标准,判断长柱紫茎的繁育系统属于专性异交。

    依照DAFNI的评判标准,测算长柱紫茎的杂交指数。长柱紫茎成熟花朵的花冠直径平均为50.24 mm,大于6 mm,记为3。雌雄蕊在成熟时间上一致,记为0;在花蕾期,长柱紫茎的柱头高于雄蕊,当花朵完全盛开时,雄蕊高于雌蕊,柱头和花药存在空间分离,记为1。因此,OCI结果为4,说明长柱紫茎的繁育类型属于以异交为主,需要传粉者,部分自交亲和。

    长柱紫茎上观察到的访花昆虫有熊蜂Bombus sp.、中华蜜蜂Apis cerana、黑带食蚜蝇Episyrphus balteatus、叶甲Chrysomelidae和日本弓背蚁Camponotus japonicus等,有效传粉者主要为熊蜂,其他种类出现频率低或进行无效传粉(图5)。长柱紫茎的开花高峰为7:00—11:00,昆虫的访花时间也集中在这段时间。黑带食蚜蝇在同一朵花上同一部位停留超过20 s,舔食花蜜,但数量较少,传粉作用不佳(图5A)。熊蜂单次访花时间为2~5 s,访花频率很高,在较短时间内频繁地在多朵花间逗留。访花时喜欢头部向下,整个身体钻入花冠筒,身上的绒毛黏附花粉量大,与柱头接触面积大,可有效传粉(图5B)。中华蜜蜂与熊蜂行为相似,但出现频率不及熊蜂,且体积小,能够黏附到的花粉少(图5C)。叶甲外壳光滑,花粉难以黏附。偶见1只在花冠上停留较长时间,与柱头未进行有效接触,传粉贡献小(图5D)。日本弓背蚁的足部和腹部会黏附花粉,徘徊逗留,偶尔实现有效传粉(图5E)。

    图 5  长柱紫茎的访花昆虫
    Figure 5  Insect visitors of S. rostrata

    花部特征包含花部构成(结构、颜色、气味等)和开放式样(开花数目、大小及类型等),因此可以从花部特征、开放式样解析植物与传粉者的生态依存关系。植物为了与传粉者的行为习惯相适应而使其花部形态结构、颜色等逐步进化[16]。对于蜂类,白色和黄色是可见花色。长柱紫茎花冠白色,平均直径达(50.2±11.7) mm,花丝黄色,颜色耀眼,同时平展的花冠为传粉昆虫提供停靠点,符合蜂媒花特征,此类花部特征与四川牡丹Paeonia decomposita一致[17]。同一物种内不同个体或居群间花色差异即花色多态性,传粉者的偏好因为花色差异造成访花频率的差异[18]。长柱紫茎的白色花瓣上常出现红色,推测是为适应单一的传粉媒介而进化出的特征,以便增加对其他类昆虫的吸引力,从而提高传粉效率[19]

    在强大的选择压力下,很多植物形成了“大量、集中开放”的开花模式,有利于吸引访花昆虫在短时间大量、密集表达访花行为,从而增加传粉机会[20]。长柱紫茎花期为5—6月,属于浙江的梅雨季节,阴雨天气极大地减少了传粉昆虫的活动。长柱紫茎集中开花,持续开花时间短,日均开花数量多,有利于提高繁殖成功率。此开花式样呈现的特征与山茶科Theaceae濒危植物金花茶Camellia nitidissima的研究结果一致[21]。长柱紫茎的有效传粉者主要为熊蜂,在阴雨天气熊蜂频繁地在同一植株上访花,且开花植株又少,原生境植株间相距较远,不利于花粉在植株间传播,结果增加同株异花授粉的可能性,降低接受花粉的质量,从而影响长柱紫茎的结实率。

    参照CRUDEN[13]所述标准,长柱紫茎的繁育系统为专性异交。长柱紫茎P/O极高,达87 025.1,意味着长柱紫茎更加趋向于远交;但根据DAFNI[14]的标准,长柱紫茎OCI为4,判断其繁育系统为异交为主,部分自交亲和,需要传粉者。长柱紫茎开花后雄蕊逐渐伸长,最后花药高于柱头,且花蕾期有花药散粉现象,因此长柱紫茎的花部特征增加了自花授粉的可能性。在自然界中,绝大部分被子植物倾向于自交与异交结合的混合交配模式,只有极少数利用单一交配模式完成授粉[22]。综合得出:长柱紫茎的繁育系统属于倾向于异交的混合交配系统,当其异株(异花)授粉受阻时,可表现为自交亲和,自交是长柱紫茎适应长期阴雨环境的繁殖保障策略,此种混合交配系统与流苏树Chionanthus retusus相似[23]

    有效的传粉过程包含大量有活力的花粉、可授期的柱头及有效传粉媒介[24]三大要素。长柱紫茎平均雄蕊数为(64.9±11.8)枚,单花平均花粉量多达(1 618 666.7±254 775.4)粒,为传粉昆虫提供丰厚的报酬,且花粉黏附力强,易被传粉昆虫携带,为异交授粉提供了充足的物质保障,故花粉数量不是其繁殖受限的原因。柱头可授期长,达7 d,在第3和第4天达到最强活力,为实施人工授粉的最佳时期。柱头5裂增加传粉表面积和柱头可授期长为异花授粉提供了基本保障,有利于提高传粉效率和结实率,此现象与陈雄伟等[25]观测紫背天葵Begonia fimbristipula的结果一致。当天开花的花朵保持最强活力(65.0%),随着开花时间增加,花粉活力显著下降,到第2天仅38.3%,第3天降至11.7%。观察发现长柱紫茎大多数花朵寿命很短,开花损失率高,花粉强活力和较强柱头可授性仅1 d的相遇期,严重影响花朵的传粉效率。无论授粉与否,长柱紫茎在开花24~32 h后,花冠和雄蕊都存在易脱落的现象,脱落后花粉迅速失活,大大减少了受精的可能性[26]。推测已授粉花朵脱落可能与营养资源限制有关,减少繁殖成本[27];未授粉花朵可能通过短寿命减小花展示程度,从而减少同株异花传粉的概率[28]

    P/O是衡量植物对雄性资源分配量的指标[29],高P/O值可能是对传粉效率低造成柱头接受的花粉量少、质量低的补偿[30],多样化的传粉媒介有利于提高授粉成功率。长柱紫茎授粉受限可能与传粉者的种类、数量有关。长柱紫茎的主要传粉昆虫熊蜂,飞行距离远,访花频率高,多朵花之间穿梭,携带花粉量大,有效地进行异花传粉,但其他昆虫传粉效率较低,有效传粉媒介单一。长柱紫茎花粉离开花朵后迅速失活,不利于传粉昆虫远距离完成植株之间的传粉,因此居群间的基因不能充分交流[31]

    综上所述,长柱紫茎花冠白色和花丝黄色,与蜂类传粉特性相适应,为典型蜂媒花;传粉受阴雨天气影响,集中开花模式是对恶劣天气的有效适应,但传粉昆虫单一。开花24~32 h,花冠和雄蕊都极易脱落从而导致花粉迅速失活。以上因素限制了长柱紫茎的繁殖。集中开花模式、花粉量大、柱头5裂及可授期长等花部特征是长柱紫茎维持繁殖成功的基本保障。长柱紫茎繁育系统属于以异交为主,需要传粉者,当其授粉受阻时,可表现为自交亲和,自交是长柱紫茎适应长期阴雨天气的繁殖策略。

  • 图  1  取样部位示意图

    Figure  1  Schematic diagram of sampling position

    图  2  纤维形态测试取样流程

    Figure  2  Sampling process for fiber morphology test

    图  3  不同竹龄毛竹的纤维壁腔比

    Figure  3  Wall cavity ratio of Ph. edulis in different ages

    图  4  不同竹龄毛竹的纤维长度

    Figure  4  Fiber length of Ph. edulis in different ages

    图  5  不同竹龄毛竹材的纤维长宽比

    Figure  5  Fiber length width ratio of Ph. edulis in different ages

    图  6  不同竹龄毛竹的X射线衍射图谱

    Figure  6  X-ray diffraction patterns of Ph. edulis in different radial directions      

    表  1  采集试样的基本情况

    Table  1.   Basic information of sample collection

    取样部位不同竹龄取样位置/竹节不同竹龄取样壁厚/mm
    2 a4 a6 a2 a4 a6 a
    16~126~116~1211.0711.2912.02
    213~1712~1613~1710.479.0610.32
    318~2117~2018~218.918.859.58
      说明:取样部位1、2、3表示竹材由下至上不同部位,具体见图1
    下载: 导出CSV

    表  2  毛竹轴向纤维形态差异

    Table  2.   Differences of Ph. edulis in axial fiber morphology

    取样
    部位
    竹龄2 a竹龄4 a竹龄6 a
    纤维壁腔比纤维长度/µm纤维长宽比纤维壁腔比纤维长度/µm纤维长宽比纤维壁腔比纤维长度/µm纤维长宽比
    14.90±0.15 a1 787.04±34.14 AB114.29±2.82 a6.30±0.16 a1 810.21±28.98 a133.62±2.98 A7.91±0.18 A1 854.00±27.22 a146.71±3.05 a
    24.90±0.16 a1 754.41±29.25 A117.58±2.99 a7.31±0.13 b1 769.81±33.86 a149.43±3.83 B8.70±0.18 B1 884.01±29.88 a134.47±3.00 b
    35.69±0.14 b1 864.93±29.80 B133.02±3.01 b7.11±0.14 b1 852.12±32.62 a158.67±3.69 B8.10±0.14 A1 894.12±31.17 a143.75±3.35 ab
    平均值5.161 802.13121.636.911 810.71147.248.241 877.38141.64
      说明:数据为平均值±标准误。取样部位1、2、3所表示的具体位置见图1。小写字母表示数据符合方差齐性检验,两两比较为邦弗伦尼法;大写字母表示数据不符合方差齐性检验,两两比较为塔姆黑尼法。同列不同字母表示不同取样部位差异显著(P<0.05)
    下载: 导出CSV

    表  3  毛竹径向纤维形态差异

    Table  3.   Differences of Ph. edulis in radial fiber morphology

    取样部位
    (竹黄~竹青)
    竹龄2 a竹龄4 a竹龄6 a
    纤维壁腔比纤维长度/µm纤维长宽比纤维壁腔比纤维长度/µm纤维长宽比纤维壁腔比纤维长度/µm纤维长宽比
    A5.07±0.18 A1 694.74±36.84 a123.87±3.61 ab6.93±0.20 a1 714.09±43.21 a142.49±4.29 a9.09±0.23 a1 863.92±36.82 ab147.69±4.27 ac
    B6.49±0.19 B1 712.21±40.33 a112.47±3.94 a7.02±0.18 a1 935.47±40.85 b153.03±4.97 a7.63±0.19 b1 884.41±38.23 ab144.30±3.84 abc
    C4.84±0.22 A1 852.63±41.17 ab129.04±3.79 b7.11±0.21 a1 822.00±42.29 ab153.07±5.00 a7.84±0.22 b1 973.08±36.44 a151.02±4.28 c
    D4.49±0.16 A1 824.75±39.29 ab125.15±4.20 ab6.81±0.16 a1 765.08±38.28 ab145.83±4.59 a7.83±0.20 b1 865.71±38.70 ab133.26±3.57 ab
    E4.93±0.19 A1 926.29±41.19 b117.60±3.60 ab6.67±0.19 a1 817.60±39.88 ab141.76±4.11 a8.13±0.23 a1 799.77±38.56 b132.32±4.09 b
      说明:数据为平均值±标准误。取样部位A~E表示的具体位置见图2。小写字母表示数据符合方差齐性检验,两两比较为邦弗伦尼法;大写字母表示数据不符合方差齐性检验,两两比较为塔姆黑尼法。同列不同字母表示不同取样部位差异显著(P<0.05)
    下载: 导出CSV

    表  4  主成分各因子提取载荷平方和

    Table  4.   Each factor extracts the sum of squares of the load

    成分方差百分比/%累计贡献率/%
    竹龄    30.00430.004
    轴向取样部位22.43152.435
    径向取样部位16.75769.192
    下载: 导出CSV

    表  5  不同竹龄毛竹轴向纤维结晶度差异

    Table  5.   Relative crystallinity of Ph. edulis in the axial direction under different ages

    竹龄/a不同轴向高度纤维素结晶度/%
    123平均值
    238.7540.2339.4639.48
    438.6639.9940.5139.72
    638.5240.5239.6839.59
      说明:1、2、3表示取样部位,具体位置见图1
    下载: 导出CSV

    表  6  不同竹龄毛竹径向纤维结晶度差异

    Table  6.   Relative crystallinity of Ph. edulis in radial direction under different ages

    竹龄/a竹壁径向位置纤维素结晶度/%
    ABCDE
    236.6938.3238.8140.0742.50
    433.4737.8939.4642.9144.88
    635.7037.3939.0742.4242.84
      说明: A~E表示取样部位,具体位置见图2
    下载: 导出CSV
  • [1] 王晓明, 王建和. 我国竹资源综合开发利用的现状分析[J]. 浙江林学院学报, 1993, 10(1): 86 − 92.

    WANG Xiaoming, WANG Jianhe. Status analysis of comprehensive developing and utilization of bamboo resources in recent years in China [J]. Journal of Zhejiang Forestry College, 1993, 10(1): 86 − 92.
    [2] 刘娇, 周爱萍, 盛宝璐, 等. 温度对重组竹短期受压蠕变性能的影响[J]. 林业工程学报, 2021, 6(2): 64 − 69.

    LIU Jiao, ZHOU Aiping, SHENG Baolu, et al. Effect of temperature on short-term compression creep property of bamboo scrimber [J]. Journal of Forestry Engineering, 2021, 6(2): 64 − 69.
    [3] 国家林业和草原局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社, 2019.

    State Forestry and Grassland Administration. China Forest Resources Report (2014−2018) [M]. Beijing: China Forestry Press, 2019.
    [4] 李媛媛, 张双燕, 王传贵, 等. 毛竹采伐剩余物的化学成分、纤维形态及纸浆性能[J]. 浙江农林大学学报, 2019, 36(2): 219 − 226.

    LI Yuanyuan, ZHANG Shuangyan, WANG Chuangui, et al. Chemical composition, fiber morphology, and pulping properties of logging residues in Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2019, 36(2): 219 − 226.
    [5] 吴杉杉, 吴婧怡. 新形势下如何更好对竹文化体育资源进行保护性开发[J]. 林产工业, 2020, 57(10): 97 − 99.

    WU Shanshan, WU Jingyi. How to take better protective development of bamboo culture and sports resources under the new situation [J]. Forest Products Industry, 2020, 57(10): 97 − 99.
    [6] WANG Xinzhou, CHENG Dali, HUANG Xianai, et al. Effect of high-temperature saturated steam treatment on the physical, chemical, and mechanical properties of Moso bamboo [J/OL]. Journal of Wood Science, 2020, 66: 52[2022-11-15]. doi: 10.1186/s10086-020-01899-8.
    [7] 蔡燚, 王宝金, 官洁茹, 等. 金寨毛竹纤维形态及化学成分[J]. 东北林业大学学报, 2020, 48(2): 81 − 86.

    CAI Yi, WANG Baojin, GUAN Jieru, et al. Fiber morphology and chemical composition of moso bamboo from Jinzhai [J]. Journal of Northeast Forestry University, 2020, 48(2): 81 − 86.
    [8] 李荣荣, 贺楚君, 彭博, 等. 毛竹材不同部位纤维形态及部分物理性能差异[J]. 浙江农林大学学报, 2021, 38(4): 854 − 860.

    LI Rongrong, HE Chujun, PENG Bo, et al. Differences in fiber morphology and partial physical properties in different parts of Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2021, 38(4): 854 − 860.
    [9] 夏旭光, 姚文斌, 俞伟鹏, 等. 非均匀竹材各单层顺纹抗压弹性模量的测定[J]. 竹子学报, 2018, 37(4): 49 − 55.

    XIA Xuguang, YAO Wenbin, YU Weipeng, et al. The measurement of the parallel grain compression MOE of each layer of non-uniform bamboo [J]. Journal of Bamboo Research, 2018, 37(4): 49 − 55.
    [10] 彭博, 王传贵, 张双燕. 四川两种竹材理化性质及纤维形态分析[J]. 世界竹藤通讯, 2018, 16(3): 15 − 19.

    PENG Bo, WANG Chuangui, ZHANG Shuangyan. Analysis of physical & chemical properties and fiber configuration of 2 species of bamboos from Sichuan Province [J]. World Bamboo and Rattan, 2018, 16(3): 15 − 19.
    [11] 杨淑敏, 江泽慧, 任海青, 等. 利用X-射线衍射法测定竹材纤维素结晶度[J]. 东北林业大学学报, 2010, 38(8): 75 − 77.

    YANG Shumin, JIANG Zehui, REN Haiqing, et al. Determination of crystallinity of bamboo cellulose by X-ray diffraction [J]. Journal of Northeast Forestry University, 2010, 38(8): 75 − 77.
    [12] MURPHY R J, ALVIN K L. Varation in fiber wall structure in bamboo [J]. IAWA Bulletin, 1992, 13(4): 403 − 410.
    [13] ITOH T. Lignification of bamboo (Phyllostachys heterocycla Mitf. ) during its growth [J]. Holzforschung, 1990, 44(3): 191 − 200.
    [14] 刘波. 毛竹发育过程中细胞壁形成的研究[D]. 北京: 中国林业科学研究院, 2008.

    LIU Bo. Formation of Cell Wall in Developmental Culms of Phyllostachys pubescens [D]. Beijing: Chinese Academy of Forestry, 2008.
    [15] 吴金凤, 周学政, 黄治, 等. 竹纤维润胀性能的测定方法及其应用[J]. 造纸科学及技术, 2021, 40(6): 1 − 5.

    WU Jinfeng, ZHOU Xuezheng, HUANG Zhi, et al. Test method of bamboo fiber swelling characteristic and its application [J]. Paper Science and Technology, 2021, 40(6): 1 − 5.
    [16] 杨金燕. 几种病虫害对杨树木材材质的影响[D]. 哈尔滨: 东北林业大学, 2002.

    YANG Jinyan. The Influence of Several Disease and Insect on Wood Quality of Populus [D]. Harbin: Northeast Forest University, 2002.
    [17] 王倩, 李建成. 竹纤维水泥基材料的物理力学性能研究[J]. 建材世界, 2022, 43(5): 9 − 13.

    WANG Qian, LI Jiancheng. Study on physical and mechanical properties of bamboo fiber cement-based materials [J]. Building Materials World, 2022, 43(5): 9 − 13.
    [18] 朱海龙. 美洲黑杨NL351和2-2的KP法蒸煮、氧脱木质素特性研究[D]. 南京: 南京林业大学, 2014.

    ZHU Hailong. Study on Delignification Properties of Populus deltoides NL351 and 2-2 in KP Pulping and Oxygen Delignification [D]. Nanjing: Nanjing Forest University, 2014.
    [19] 王曙光, 普晓兰, 丁雨龙, 等. 云南箭竹纤维形态变异规律[J]. 浙江林学院学报, 2009, 26(4): 528 − 532.

    WANG Shuguang, PU Xiaolan, DING Yulong, et al. Morphological differences of Fargesia yunnanensis fibers [J]. Journal of Zhejiang Forestry College, 2009, 26(4): 528 − 532.
    [20] 马灵飞, 马乃训. 毛竹材材性变异的研究[J]. 林业科学, 1997, 33(4): 356 − 364.

    MA Lingfei, MA Naixun. Study on the variation of wood properties of Phyllostachys pubescens [J]. Scientia Silvae Sinicae, 1997, 33(4): 356 − 364.
    [21] 王鹏程, 代永刚, 汪佑宏, 等. 竹龄对梁山慈竹纤维形态特征的影响[J]. 安徽农业大学学报, 2018, 45(5): 853 − 860.

    WANG Pengcheng, DAI Yonggang, WANG Youhong, et al. Effect of age on the fiber morphological characteristics of Dendrocalamus farinosus [J]. Journal of Anhui Agricultural University, 2018, 45(5): 853 − 860.
    [22] 黄建辉, 陈灵芝. 北京百花山附近杂灌丛的化学元素含量特征[J]. 植物生态学与地植物学学报, 1991, 15(3): 224 − 233.

    HUANG Jianhui, CHEN Lingzhi. Chemical element content characteristics of the shrubs near Baihua Mountain in Beijing [J]. Acta Phytoecologica et Geobotanica Sinica, 1991, 15(3): 224 − 233.
  • [1] 胡晓军, 田泽, 徐云杰, 管珣.  铣削参数对毛竹切削力及维管束纤维提取质量的影响 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240536
    [2] 李荣荣, 贺楚君, 彭博, 王传贵.  毛竹材不同部位纤维形态及部分物理性能差异 . 浙江农林大学学报, 2021, 38(4): 854-860. doi: 10.11833/j.issn.2095-0756.20200649
    [3] 卜柯丽, 傅卢成, 王灵杰, 栗青丽, 王柯杨, 马元丹, 高岩, 张汝民.  毛竹茎秆快速生长期PeATG1/PeATG4基因表达分析 . 浙江农林大学学报, 2020, 37(1): 43-50. doi: 10.11833/j.issn.2095-0756.2020.01.006
    [4] 尹焕焕, 刘青华, 周志春, 万雪琴, 余启新, 丰忠平.  马尾松无性系木材基本密度和纤维形态的变异及选择 . 浙江农林大学学报, 2020, 37(6): 1186-1192. doi: 10.11833/j.issn.2095-0756.20190720
    [5] 李聪聪, 潘彪, 王慧, 黄利斌.  引种美国红橡的纤维形态、微纤丝角及结晶度 . 浙江农林大学学报, 2020, 37(1): 158-164. doi: 10.11833/j.issn.2095-0756.2020.01.021
    [6] 李媛媛, 张双燕, 王传贵, 方徐勤.  毛竹采伐剩余物的化学成分、纤维形态及纸浆性能 . 浙江农林大学学报, 2019, 36(2): 219-226. doi: 10.11833/j.issn.2095-0756.2019.02.002
    [7] 赵丽华, 黄程鹏, 王悦悦, 黄张婷.  毛竹植硅体微观形态及稳定性的扫描电镜初探 . 浙江农林大学学报, 2018, 35(6): 1177-1181. doi: 10.11833/j.issn.2095-0756.2018.06.023
    [8] 张磊, 谢锦忠, 张玮, 冀琳珂, 陈胜, 丁中文.  模拟干旱环境下毛竹对伐桩注水的生理响应 . 浙江农林大学学报, 2017, 34(4): 620-628. doi: 10.11833/j.issn.2095-0756.2017.04.007
    [9] 李黎, 宋帅杰, 方小梅, 杨丽芝, 邵珊璐, 应叶青.  高温干旱及复水对毛竹实生苗保护酶和脂质过氧化的影响 . 浙江农林大学学报, 2017, 34(2): 268-275. doi: 10.11833/j.issn.2095-0756.2017.02.010
    [10] 李秀云, 陈晓沛, 徐英武, 曹友志.  毛竹生长过程中纤维素合成酶基因的时空表达和功能预测 . 浙江农林大学学报, 2017, 34(4): 565-573. doi: 10.11833/j.issn.2095-0756.2017.04.001
    [11] 黄梦雪, 张文标, 张晓春, 余文军, 李文珠, 刘贤淼, 戴春平, 汪孙国.  毛竹材玻璃化转变温度的影响因素 . 浙江农林大学学报, 2015, 32(6): 897-902. doi: 10.11833/j.issn.2095-0756.2015.06.011
    [12] 张凤雪, 徐英武, 张智俊, 肖冬长, 王超莉, 屈亚平.  毛竹KDO8PS的原核表达纯化及晶体生长 . 浙江农林大学学报, 2014, 31(4): 515-520. doi: 10.11833/j.issn.2095-0756.2014.04.004
    [13] 李晓平, 吴章康, 张聪杰.  烟秆纤维部分物理性能在纵向上的变异特性 . 浙江农林大学学报, 2013, 30(4): 548-551. doi: 10.11833/j.issn.2095-0756.2013.04.014
    [14] 赵佳美, 胡勇庆, 钱少平, 李冰, 钱俊.  五节芒茎秆微观构造及结晶度研究 . 浙江农林大学学报, 2012, 29(3): 426-430. doi: 10.11833/j.issn.2095-0756.2012.03.016
    [15] 苏文会, 范少辉, 彭颖, 俞友明, 张大鹏.  车筒竹、箣竹和越南巨竹竹材的纤维形态与组织比量 . 浙江农林大学学报, 2011, 28(3): 386-390. doi: 10.11833/j.issn.2095-0756.2011.03.007
    [16] 李晓平, 周定国, 周绪斌, 王伟, 邵颐.  蓖麻秆显微构造和纤维形态的研究 . 浙江农林大学学报, 2009, 26(2): 239-245.
    [17] 王曙光, 普晓兰, 丁雨龙, 万贤崇, 林树燕.  云南箭竹纤维形态变异规律 . 浙江农林大学学报, 2009, 26(4): 528-532.
    [18] 李晓平, 周定国.  温度对稻草部分理化性能的影响 . 浙江农林大学学报, 2007, 24(5): 528-532.
    [19] 吴礼栋, 华文礼, 林陈涛, 胡金根, 廖立洪.  竹腔注射治虫对竹材物理力学性质的影响 . 浙江农林大学学报, 2000, 17(1): 56-58.
    [20] 余学军, 韩红, 田荆祥, 王仁东, 周迎春.  浙江省速生杉木纤维形态及基本密度* . 浙江农林大学学报, 1997, 14(3): 220-224.
  • 期刊类型引用(2)

    1. 蔡艳清,陈玉军,李玫,邓创发,黄烈健. 榄李开花生物学和繁育系统. 植物研究. 2024(01): 152-160 . 百度学术
    2. 何淼,张紫馥,臧帅彤,尹雪,孟儒,孙颖. 辽吉侧金盏花的开花特性和繁育系统. 东北林业大学学报. 2023(03): 54-59 . 百度学术

    其他类型引用(4)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220749

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/2/446

图(6) / 表(6)
计量
  • 文章访问数:  951
  • HTML全文浏览量:  111
  • PDF下载量:  83
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-02-01
  • 录用日期:  2023-01-18
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2023-04-20

不同竹龄和部位对毛竹纤维形态及结晶度的影响

doi: 10.11833/j.issn.2095-0756.20220749
    基金项目:  安徽高校自然科学研究项目(KJ2020A0130);国家林业和草原局北京市共建竹藤科学与技术重点实验室开放基金项目(ICBR-2020-10)
    作者简介:

    牛思杰(ORCID: 0000-0003-1524-158X),从事竹木材高效加工与利用研究。E-mail: sijieniu@icloud.com

    通信作者: 张双燕(ORCID: 0000-0002-3201-7179),副教授,博士,从事生物质材料性质及应用研究。E-mail: zsyhj-2006@163.com
  • 中图分类号: S781

摘要:   目的  研究竹龄与部位对毛竹Phyllostachys edulis纤维形态及结晶度的影响,为实现毛竹在制浆造纸、竹纺织品等工业生产中的高效选材利用提供基础数据。  方法  采用纤维离析法,借助普通光学显微镜,测定纤维形态;通过Segal法计算相对结晶度。  结果  竹龄主要影响竹材的纤维长度,纤维长度随竹龄的增长而增大,且80%的纤维长度为1 000~2 500 µm,属长纤维。轴向高度对毛竹材纤维形态的影响较小,纤维壁腔比、长宽比在3个取样部位间差异显著(P<0.05),但未有明显变化规律;轴向上,不同位置纤维长度未见显著差异。径向纤维长度从大到小依次为竹肉、近竹青、近竹黄;结晶度与竹龄无明显关系,径向上由近竹黄到近竹青呈现递增趋势。在影响竹材纤维形态的因子中,竹龄贡献率最大,影响最为明显。  结论  毛竹纤维形态受竹龄影响最大,受径向取样部位影响明显,轴向高度影响较小,所有部位纤维可用于工业生产,建议将竹龄作为原材料筛选的优先指标。图6表6参22

English Abstract

李清香, 张明如, 顾翠花, 等. 长柱紫茎的花部特征与繁育系统[J]. 浙江农林大学学报, 2022, 39(4): 830-837. DOI: 10.11833/j.issn.2095-0756.20210563
引用本文: 牛思杰, 王娜, 崔百祥, 等. 不同竹龄和部位对毛竹纤维形态及结晶度的影响[J]. 浙江农林大学学报, 2023, 40(2): 446-452. DOI: 10.11833/j.issn.2095-0756.20220749
LI Qingxiang, ZHANG Mingru, GU Cuihua, et al. Floral syndrome and breeding system of Stewartia rostrata[J]. Journal of Zhejiang A&F University, 2022, 39(4): 830-837. DOI: 10.11833/j.issn.2095-0756.20210563
Citation: NIU Sijie, WANG Na, CUI Baixiang, et al. Effects of different ages and positions on fiber morphology and crystallinity of Phyllostachys edulis[J]. Journal of Zhejiang A&F University, 2023, 40(2): 446-452. DOI: 10.11833/j.issn.2095-0756.20220749
  • 竹材是一种高效再生的绿色资源,具有生长面积广、生长速度快、经济价值高等优势,是木材的优质替代品,目前已广泛应用在车厢底板、制浆造纸、工程家具等不同领域[12]。第九次全国森林资源清查结果表明:中国竹材年产量占世界总量的1/3,位居全球之首[3]。近20 a来竹资源的利用及人造板行业的发展,使得竹资源的利用集中在以毛竹Phyllostachys edulis为主的大径级竹材,使毛竹成为工业应用中最普遍的竹种[46]。然而毛竹材具有梯度特性,各个部位的纤维形态不相同,在生产中利用率低。如何优质高效的利用竹材,已成为行业内亟待解决的突出问题。深入了解毛竹的梯度结构,分析各部位纤维形态差异,对毛竹的高效利用具有重要价值。

    蔡燚等[7]对3~5年生毛竹纤维形态及化学成分进行测试分析发现:毛竹的纤维形态优于一般的阔叶材,属于长纤维类,是优良的制浆造纸原料。李荣荣等[8]研究认为:毛竹不同部位的纤维形态和部分物理性能存在一定差异,毛竹竹黄、竹肉与竹青的纤维长度和宽度存在显著差异,且不同长度的纤维占比和纤维长宽比亦存在差异。夏旭光等[9]对不同部位的竹材进行力学测试表明:单层竹青与单层竹黄的弹性模量有极大差异,两者模量比值最大可达201%,最小为173%。综上所述,梯度结构决定了毛竹材各部位纤维形态及力学特性,直接影响竹纤维的生产工艺及成品性能。鉴于此,本研究选用不同竹龄的毛竹为研究对象,探究不同竹龄不同取样部位的纤维形态和结晶度差异,为毛竹材的合理高效利用提供理论依据。

    • 在安徽省六安市金寨县青山镇分别选取竹龄为2、4、6 a的毛竹各3株。根据GB/T 15780—1995《竹材物理力学性质试验方法》选取适合的毛竹材。如图1所示:将选好的毛竹材沿根部截断,去枝备用。在距离地约1.00 m的整竹节处向上截取1.50 m为第1段(离地1.75 m),标记为1,后每1.20 m截取第2段(离地3.25 m)、第3段(离地4.30 m),标记为2、3,去除竹节,气干至含水率为12%~15%,备用。样株取样信息见表1

      图  1  取样部位示意图

      Figure 1.  Schematic diagram of sampling position

      表 1  采集试样的基本情况

      Table 1.  Basic information of sample collection

      取样部位不同竹龄取样位置/竹节不同竹龄取样壁厚/mm
      2 a4 a6 a2 a4 a6 a
      16~126~116~1211.0711.2912.02
      213~1712~1613~1710.479.0610.32
      318~2117~2018~218.918.859.58
        说明:取样部位1、2、3表示竹材由下至上不同部位,具体见图1

      冰乙酸购于江苏省强盛功能化学股份有限公司,质量分数为30%的过氧化氢溶液购于上海振企精细化学品有限公司。

    • 制样流程如图2所示:将气干状态的竹材用砂盘砂带机砂去除试样的竹黄和竹青部分,随后用破篾机将竹材径向均分为5等份,依次标记为A (近竹黄)、B、C、D、E (近竹青)。再将分好类的竹片切成小火柴棒状,大小为1 mm (长)×1 mm (宽)×30 mm (高)。

      图  2  纤维形态测试取样流程

      Figure 2.  Sampling process for fiber morphology test

      采用富兰克林离析法获取不同竹龄和不同部位的竹纤维。具体步骤:将不同竹龄和部位的竹片劈成火柴棒状,取制备好的试样3根放入小试管中,倒入配好的冰乙酸和过氧化氢(体积比1∶1)溶液10 mL,用水浴锅加热,温度为60~70 ℃;加热至试样呈白色后,用蒸馏水反复冲洗至小木棒上的药品完全干净,在试管中到入适量蒸馏水,用玻璃棒搅拌至纤维分离,保鲜膜封闭试管口备用。利用正置荧光显微镜测量纤维形态特征,测定毛竹材的纤维长度、宽度、腔径和壁厚,并计算纤维长宽比及壁腔比[10]。每组样品随机测量50根纤维。

    • 取不同竹龄和部位的毛竹试样,研磨,筛选大于100目的粉末,置于烘箱(103±2) ℃烘至绝干备用。采用XD6多晶X射线衍射仪进行测定。测试参数:Cu-Ka靶,管电压40 kV,管电流30 mA,波长λ为1.540 566 nm,样品扫描角度为5°~40°,扫描速率为4°·min−1。通过Segal法计算相对结晶度[11]。每组样品制备15个结晶度样品,各扫描3次,取平均值。相对结晶度(Cr)计算公式为Cr=(ImIx)/Im×100%。其中:Im为晶体衍射角的极大强度;Ix为2$ \theta $=18°时非结晶背景衍射时的强度。

    • 图3可知:竹材纤维壁腔比随竹龄增长而增加,在竹龄6 a时达到峰值。竹龄2 a的毛竹82.1%纤维壁腔比集中在6.00,仅有不到0.8%的纤维壁腔比大于12.00;竹龄4和6 a的毛竹纤维壁腔比均在7.00附近达到顶峰,其中竹龄4 a的毛竹纤维壁腔比极值为16.97,而竹龄6 a的毛竹壁腔比极值为20.33。纤维细胞壁厚是影响纤维壁腔比的1个重要因素,竹纤维细胞和基本薄壁组织的细胞存在多层结构,由厚层与薄层相互交织而成,其中次生壁在细胞壁结构中占比最多[1213]。毛竹纤维细胞通常在出笋至1 a内,壁层数量明显增加,形成3~6层次生壁;1~6 a间,壁层增加速度减缓,6 a时达到顶峰,形成6~11层次生壁;随后壁层数量随竹龄的增长逐渐回落[14]。因此,竹龄6 a的毛竹壁腔比明显大于其他年份。

      图  3  不同竹龄毛竹的纤维壁腔比

      Figure 3.  Wall cavity ratio of Ph. edulis in different ages

      纤维长度主要影响纤维的交织能力,纤维长度越长,其纠缠其他纤维的节点就越多,纤维交织能力越好,纤维间结合力越强。纤维长度是衡量纸浆造纸品质的重要指标,在一定范围内,纤维越长,纸张撕裂度、抗张强度、耐破度和耐折度就越大[1516]。而对竹纤维水泥基材料而言,短纤维在水泥基材料中较长纤维分布更均匀,密实性高,孔隙率低,干表观密度更大,则更宜选取壁腔比小、纤维长度较短的原竹纤维[17]。纤维可以分为长度≤900 µm的短纤维,长度为900~1 600 µm的中等纤维,长度>1 600 µm的长纤维[18]。在工业生产中应选择相对应的纤维长度,以提高产品质量与材料利用率。

      图4可知:毛竹纤维长度在竹龄为2~6 a时相对稳定,随着竹龄的增长,纤维细胞缓慢发育,纤维长度呈现小幅增长。其中,竹龄2 a的毛竹纤维长度分布在1 600 µm附近最多,占比22.13%;竹龄4 和6 a 的毛竹纤维长度分别在1 700、2 000 µm达到峰值;竹龄2 a的毛竹纤维有3%的样本纤维长度小于1 000 µm,而竹龄4 和6 a 的仅为1.8%与0.8%。

      图  4  不同竹龄毛竹的纤维长度

      Figure 4.  Fiber length of Ph. edulis in different ages

      细而长的纤维能增加纸张的强度,而长宽比低于45则不适用于造纸原材料[19]。竹龄2和6 a的毛竹纤维长宽比频数峰值均在120 (图5),分布相对集中稳定,而竹龄4 a的毛竹纤维长宽比多集中于160,这表明竹龄为2~6 a的毛竹纤维均可用于制浆造纸行业。

      图  5  不同竹龄毛竹材的纤维长宽比

      Figure 5.  Fiber length width ratio of Ph. edulis in different ages

    • 表2可知:竹龄2 a毛竹的第3段纤维形态与第1段、第2段有明显差异。其中,第3段的纤维长度更长,长宽比更大,但其纤维壁腔比也随之增加,综合比较并无明显的制浆优势。竹龄4和6 a的毛竹纤维壁腔比均在第2段取样处最大,竹龄4 a毛竹的第2段纤维长度最短,竹龄6 a的毛竹第2段纤维长宽比最小,总体并未呈现明显变化规律。马灵飞等[20]研究表明:竹材纤维长宽比在轴向上并未存在显著关系,且竹龄的影响很小。蔡燚等[7]认为毛竹的纤维长宽比在轴向高度上呈现先减小后增加再减小的趋势,并在5.5 m处达最大值。以上研究与本研究在取样重合区间和测定数据等方面相符。

      表 2  毛竹轴向纤维形态差异

      Table 2.  Differences of Ph. edulis in axial fiber morphology

      取样
      部位
      竹龄2 a竹龄4 a竹龄6 a
      纤维壁腔比纤维长度/µm纤维长宽比纤维壁腔比纤维长度/µm纤维长宽比纤维壁腔比纤维长度/µm纤维长宽比
      14.90±0.15 a1 787.04±34.14 AB114.29±2.82 a6.30±0.16 a1 810.21±28.98 a133.62±2.98 A7.91±0.18 A1 854.00±27.22 a146.71±3.05 a
      24.90±0.16 a1 754.41±29.25 A117.58±2.99 a7.31±0.13 b1 769.81±33.86 a149.43±3.83 B8.70±0.18 B1 884.01±29.88 a134.47±3.00 b
      35.69±0.14 b1 864.93±29.80 B133.02±3.01 b7.11±0.14 b1 852.12±32.62 a158.67±3.69 B8.10±0.14 A1 894.12±31.17 a143.75±3.35 ab
      平均值5.161 802.13121.636.911 810.71147.248.241 877.38141.64
        说明:数据为平均值±标准误。取样部位1、2、3所表示的具体位置见图1。小写字母表示数据符合方差齐性检验,两两比较为邦弗伦尼法;大写字母表示数据不符合方差齐性检验,两两比较为塔姆黑尼法。同列不同字母表示不同取样部位差异显著(P<0.05)
    • 影响纤维强度即纤维力学性能的主要因素是纤维壁腔比。纤维壁腔比越小,表示纤维细胞壁越薄,胞腔越大,纤维柔韧性越好,但过小的纤维壁腔比会导致纤维的力学性能变差,在工业加工过程中,纤维细胞易产生塌陷或弯折,降低力学强度与交织能力。

      表3可知:随着竹龄的增加,毛竹径向上各部位的纤维壁腔比均有所增加;各竹龄毛竹径向部位由A~E纤维壁腔比变化不显著。除竹龄4 a毛竹A、B的2个取样部位之间,其他竹龄相邻取样部位的纤维长度之间差异均不显著,而纤维长度在径向上的变化明显,但趋势相对缓和;竹材纤维长度在径向上存在显著变异规律(P<0.05),竹龄4和6 a毛竹均在B~D部位最大,这与王鹏程等[21]的研究结论一致。竹龄2 a毛竹的纤维长度总体呈增加趋势,在D部位处小幅下降。竹龄4和6 a竹材的各部位纤维长宽比均为130~180,符合纺织行业对于日用纤维制品选材的标准。

      表 3  毛竹径向纤维形态差异

      Table 3.  Differences of Ph. edulis in radial fiber morphology

      取样部位
      (竹黄~竹青)
      竹龄2 a竹龄4 a竹龄6 a
      纤维壁腔比纤维长度/µm纤维长宽比纤维壁腔比纤维长度/µm纤维长宽比纤维壁腔比纤维长度/µm纤维长宽比
      A5.07±0.18 A1 694.74±36.84 a123.87±3.61 ab6.93±0.20 a1 714.09±43.21 a142.49±4.29 a9.09±0.23 a1 863.92±36.82 ab147.69±4.27 ac
      B6.49±0.19 B1 712.21±40.33 a112.47±3.94 a7.02±0.18 a1 935.47±40.85 b153.03±4.97 a7.63±0.19 b1 884.41±38.23 ab144.30±3.84 abc
      C4.84±0.22 A1 852.63±41.17 ab129.04±3.79 b7.11±0.21 a1 822.00±42.29 ab153.07±5.00 a7.84±0.22 b1 973.08±36.44 a151.02±4.28 c
      D4.49±0.16 A1 824.75±39.29 ab125.15±4.20 ab6.81±0.16 a1 765.08±38.28 ab145.83±4.59 a7.83±0.20 b1 865.71±38.70 ab133.26±3.57 ab
      E4.93±0.19 A1 926.29±41.19 b117.60±3.60 ab6.67±0.19 a1 817.60±39.88 ab141.76±4.11 a8.13±0.23 a1 799.77±38.56 b132.32±4.09 b
        说明:数据为平均值±标准误。取样部位A~E表示的具体位置见图2。小写字母表示数据符合方差齐性检验,两两比较为邦弗伦尼法;大写字母表示数据不符合方差齐性检验,两两比较为塔姆黑尼法。同列不同字母表示不同取样部位差异显著(P<0.05)

      表4可知:在影响毛竹纤维形态的不同因子中,竹龄占比最大,贡献率为34.004%。因此,在工业生产过程中建议优先考虑竹龄因素,以达到高效合理的原竹利用。

      表 4  主成分各因子提取载荷平方和

      Table 4.  Each factor extracts the sum of squares of the load

      成分方差百分比/%累计贡献率/%
      竹龄    30.00430.004
      轴向取样部位22.43152.435
      径向取样部位16.75769.192
    • 结晶度作为描述纤维素分子结构的重要参数,与木质素、纤维素和半纤维素(简称三大素)密切相关。在毛竹生长过程中结晶度的变化规律和三大素含量的变化是一致的,随竹龄增加呈现波动趋势[22]。由图6可知:不同竹龄毛竹的纤维素晶型一致,无明显差异。竹龄2、4、6 a毛竹的结晶度相似,分别为39.48%、39.72%、39.59%(表5)。

      图  6  不同竹龄毛竹的X射线衍射图谱

      Figure 6.  X-ray diffraction patterns of Ph. edulis in different radial directions      

      表 5  不同竹龄毛竹轴向纤维结晶度差异

      Table 5.  Relative crystallinity of Ph. edulis in the axial direction under different ages

      竹龄/a不同轴向高度纤维素结晶度/%
      123平均值
      238.7540.2339.4639.48
      438.6639.9940.5139.72
      638.5240.5239.6839.59
        说明:1、2、3表示取样部位,具体位置见图1
    • 不同竹龄毛竹纤维结晶度在轴向上的变化规律也不相同。由表5可知:竹龄2和6 a毛竹的纤维结晶度从大到小依次为第2段、第3段、第1段,而竹龄2 a毛竹的纤维结晶度从大到小依次为第3段、第2段、第1段。

    • 表6可知:3个竹龄毛竹的径向纤维结晶度的变化均为由A到E递增。这是由于纤维细胞数量从竹黄到竹青呈增加趋势,形成纤维素结晶区的比例也随之增加;近竹黄A部位比近竹青E部位的细胞壁更薄且胞间层较多,细胞壁主要由纤维素构成,而胞间层主要由木质素构成。因此,近竹青E处比近竹黄A处有更多的纤维素和更少的木质素,故毛竹从近竹黄A到近竹青E纤维结晶度呈增大趋势。

      表 6  不同竹龄毛竹径向纤维结晶度差异

      Table 6.  Relative crystallinity of Ph. edulis in radial direction under different ages

      竹龄/a竹壁径向位置纤维素结晶度/%
      ABCDE
      236.6938.3238.8140.0742.50
      433.4737.8939.4642.9144.88
      635.7037.3939.0742.4242.84
        说明: A~E表示取样部位,具体位置见图2
    • 毛竹材纤维长度随竹龄的增加呈增大趋势,纤维形态的各项指标在轴向上无显著变化规律,径向上,4和6 a毛竹近竹黄处纤维最短,竹肉纤维最长,近竹青处纤维长度介于两者之间;纤维壁腔比和长宽比径向上变化规律不明显,竹龄对纤维结晶度的影响不显著,取样部位对纤维结晶度的影响显著。这说明在不同领域的应用过程中,竹龄是毛竹材纤维形态最显著的影响因素,在筛选原材料时,应优先考虑竹龄。

参考文献 (22)

目录

/

返回文章
返回