-
当前,树体高大、通风透光性差和管理粗放是导致针叶树种种子园采种难和雌球花花量不足的重要原因,制约着林木种子园的精细化经营和管理[1]。截顶影响营养物质流向和分配,促进结实母枝更新,是植株达到矮化效应的重要方法,对实现“果园式”林木种子园具有重要指导意义[2−3]。国外学者对花旗松Pseudotsuga menziesii进行夏季截顶和修枝后发现:虽然树冠体积减少了,但是枝条上雌雄球花密度显著增加,通过调控栽植间距,提高了单位面积球果产量[4];国内学者研究表明:截冠可提高樟子松Pinus sylvestris var. mongholica壮龄母树的产量和种子质量[3];对马尾Pinus massoniana截顶处理后发现:中产和高产无性系的雌球花量能提高20%以上[1]。
赤霉素(GAs)被认为是一种重要的双萜类植物生长调节剂,参与松树球花分化与茎伸长等许多重要的生长发育过程[5−6]。FERNÁNDEZ等[7]对辐射松Pinus radiata不同组织中内源GAs测定后发现:GA3在营养芽和雄球花中质量分数较高但比较稳定,而GA4则差异明显,推测GA4可能与它们的发育调节有关。赤霉素等激素比值的变化可表征树体内激素的不同吸收或运转规律。较高水平的Z型细胞分裂素和较低水平的脱落酸(ABA)及其代谢产物可能与雌球花的形成有关,在顶芽发育过程中GA和ABA往往表现出拮抗作用,外源注射GA4/7使顶梢ABA合成减少或通过其他途径加速了ABA代谢产物的分解,进而降低顶芽内源ABA及ABA分解代谢的主导产物ABA葡萄糖酯(ABA-ge)的质量分数,改变了它们的比值,进而提高雌球花的分化能力,增加雌球花的数量,但其机制尚不清楚[8−9]。
研究表明:外界因素首先通过植株内源激素质量分数及其比值的变化对生长和成花起作用[10]。营养芽转变为生殖芽也是植株体内各种激素在时间和空间上相互作用产生的综合结果,取决于促进和抑制开花这2类激素的平衡[11]。植物顶芽会抑制侧芽的发生,去除顶芽或抑制顶端优势则会促进侧芽的产生。截顶可通过抑制植株顶端优势形成,影响植株体内生长素和细胞分裂素的合成与再分配。在生产上,许多针叶树正是利用截顶与修枝、植物生长调节剂诱导等措施控制树体的生殖与营养生长平衡[12−13]。马尾松是中国南方主要的速生丰产优质用材树种和最重要的脂用树种[14],其雌球花多分布于主枝或侧枝顶端,生殖芽和营养芽都由新生枝梢产生,其生理状态与花芽分化密切相关[15−20]。因此,本研究采用盆栽控制试验,以高产的马尾松无性系为试材,在花原基形成前期设置生产上常用的截顶和赤霉素诱导试验,研究树体内源激素质量分数及其比值的变化和平衡,以期为马尾松结实母树的树体管理提供理论指导和技术支持。
-
与S1时期相比,到S3时期时,T1和T2处理后H1处的枝长增长量分别比NT高181.55%和119.31% (P<0.05),枝粗增长量分别高出NT的35.78%和9.17% (P<0.05);H2处的枝长和枝粗增长量分别比NT高的150.45%和111.49% (P<0.05)。T1处理下的枝长和枝粗增长量略高于T2处理,但差异不显著(表1)。截顶后第2年,T1与T2处理的标准枝雌球花密度均显著高于NT,其中,T1处理H1处的雌球花密度较NT增加126.00%,T2处理H1和H2处的雌球花密度较NT分别增加82.67%和 66.52%。说明截顶削弱了顶端优势,促进下层结实母枝的生长和结实层下移,雌球花密度增加。
表 1 截顶和赤霉素诱导处理对雌球花密度和枝生长的影响
Table 1. Effect of top pruning and gibberellin induction on female cones density and branch growth
处理 H1 H2 H3 枝长净增
长量/cm枝粗净增
长量/cm雌球花密度/
(个·枝−1)枝长净增
长量/cm枝粗净增
长量/cm雌球花密度/
(个·枝−1)枝长净增
长量/cm枝粗净增
长量/cm雌球花密度/
(个·枝−1)NT 2.33±0.11 d 1.09±0.08 b 1.50±0.06 c 2.22±0.10 c 0.87±0.03 c 2.33±0.09 c 9.33±0.26 ab 1.66±0.09 a 2.94±0.13 b NT+G100 5.26±0.16 bc 1.03±0.06 b 2.93±0.12 ab 3.89±0.13 b 1.76±0.09 ab 3.17±0.15 ab 11.80±0.31 a 1.69±0.09 a 4.50±0.19 a NT+G200 8.42±0.25 a 1.18±0.09 ab 3.27±0.16 a 6.22±0.18 a 1.76±0.10 ab 3.39±0.16 ab 9.67±0.28 ab 1.06±0.04 ab 4.67±0.21 a NT+G400 6.14±0.17 b 1.56±0.11 a 2.67±0.10 ab 5.22±0.14 ab 2.01±0.12 a 3.33±0.16 ab 12.33±0.33 a 1.04±0.03 ab 3.33±0.15 b T1 6.56±0.18 b 1.48±0.09 a 3.39±0.16 a - - - - - - T2 5.11±0.14 bc 1.19±0.07 ab 2.74±0.11 ab 5.56±0.15 ab 1.84±0.11 ab 3.88±0.18 a - - - 说明:同列不同小写字母表示处理间差异显著(P<0.05);-表示无此项。 在S3时期,截顶与赤霉素处理相比,除T1和T2处理H1处的枝长增长量显著(P<0.05)低于NT+G200处理外,T1与T2处理的雌球花密度与NT+G100、NT+G200、NT+G400处理结果差异均不显著;T1和T2处理其他轮枝处的枝长和枝粗增长量与GA4/7各处理间差异不显著。说明截顶和赤霉素处理均促进了马尾松结实母枝生长和雌球花形成。
-
在S1时期,与NT相比,T1和T2处理的针叶IAA质量分数分别下降11.24%和9.62%,T2处理的IAA质量分数高于T1处理,但随着截顶程度的加重而降低(图1A);T1和T2处理的GA7质量分数分别下降0.27%和1.26% (图1B),GA4分别下降9.36%和12.62% (图1C),ZR分别下降23.38%和18.77% (图1D),而ABA分别增加15.09%和8.15%,T1处理的ABA质量分数高于T2处理(图1E),但T1和T2处理两者间差异不显著。
图 1 截顶及GA4/7诱导对不同时期主要激素质量分数及其比值变化的影响
Figure 1. Effect of top pruning and GA4/7 induction on changes in the content of major hormones and their ratios at different periods
在S2时期,无论截顶与否,针叶IAA、GA7、GA4和ZR质量分数均较S1时期增加,其中,T1处理的IAA、GA7、GA4和ZR质量分数分别增加了1.21、1.21、0.92和0.80 ng·g−1,T2处理分别增加了1.45、0.77、0.86和0.76 ng·g−1,显著高于NT处理的增加量(0.30、24.67、0.04和0.11 ng·g−1,P<0.05),截顶处理后ABA质量分数较S1时期降低,其中,T1和T2处理分别降低52.97和48.06 ng·g−1。说明受截顶影响,在之后1个月时间,IAA、GA7、GA4和ZR质量分数呈恢复增长变化,其质量分数在S2时期并未受截顶强度加重显著降低。
在S3时期,与S2时期相比,T1和T2处理下针叶IAA、GA7、GA4和ZR质量分数下降,其中,T1处理分别下降6.32%、7.21%、46.03%和30.04%,T2处理分别下降6.52%、5.52%、42.16%和28.03%;与S1时期相比,T1处理的针叶IAA、GA7、GA4和ZR质量分数分别增加7.34%、2.08%、2.65%和1.58%,T2处理分别增加9.30%、0.55%、4.32%和0.76%;而T1和T2处理的针叶ABA质量分数较S1和S2时期持续降低。
由图1F看出:在S1时期,T1和T2处理的(IAA+GA7+GA4+ZR)/ABA比值较低,分别为7.22和7.61,均低于NT (8.33),而在S2时期,T1和T2处理的(IAA+GA7+GA4+ZR)/ABA比值迅速增加,分别为11.32和11.23,均高于NT (10.21),进一步印证了在花原基形成前期实施截顶,内源激素的比值显著下降,在花原基形成期间,生长促进型激素恢复增长,抑制型激素下降,内源激素的比值显著增加。
-
由图1A~D可知:在S1时期,T1和T2处理的针叶IAA、GA7、GA4和ZR质量分数显著低于NT+G100、NT+G200和NT+G400处理,而ABA质量分数显著增加 (P<0.05),其中,T1处理下的IAA、GA7、GA4和ZR质量分数分别比GA4/7处理低38.25%~56.39%、24.05%~27.06%、73.91%~101.09%和47.39%~76.31%,ABA质量分数比GA4/7处理高15.92%~27.52%;T2处理下的IAA、GA7、GA4和ZR质量分数分别比GA4/7处理低35.77%~53.59%、25.30%~29.17%、80.79%~109.04%和40.08%~67.56%,ABA质量分数则比GA4/7处理高10.53%~22.88%。
在S1~S3期间,NT+G100、NT+G200和NT+G400处理的IAA质量分数逐渐降低,马尾松针叶GA7、GA4和ZR质量分数均先增加后降低,S3时期的激素质量分数低于S1时期,ABA则先降低后增加;截顶与GA4/7诱导后主要激素质量分数的变化趋势不同,T1和T2处理的马尾松针叶IAA、GA7、GA4和ZR质量分数均为先增加后降低,但是,S3时期的激素高于S1时期,ABA则为持续降低。从图1F可看出:在S2时期,NT+G400处理的(IAA+GA7+GA4+ZR)/ABA比值最高,比NT+G200、NT+G100、T2和T1处理依次高5.97%、12.34%、20.67%和21.64%。
-
由图2A可知:在花原基形成前期截除顶梢,T1和T2处理的马尾松针叶IAA质量分数呈先降低后增加的趋势,到第16天时比NT高33.33%~45.45%。截顶后针叶的GA7质量分数趋势变化不显著,T1处理和T2处理的针叶GA7质量分数也均无显著性差异(图2B)。截顶后马尾松针叶的GA4质量分数呈显著下降 (P<0.05),在第10天达到最低,并比NT处理显著低24.26%~35.32% (P<0.05),之后逐渐增加(图2C)。T1和T2处理的马尾松针叶ZR质量分数均比NT处理显著低4.39%~57.65% (P<0.05),而T1和T2处理间差异不显著(图2D)。说明截顶处理打破了马尾松原有的激素平衡,使针叶中的IAA和GA4生长促进型激素出现短期内先下降后升高的现象。T1和T2处理的ABA质量分数呈降低趋势,但始终高于NT处理(图2E)。在第1~4天时,T1和T2处理马尾松针叶的SA质量分数急剧上升,之后逐渐下降,至第16天时,与NT处理差异不显著(图2F)。
-
在不同高度处,未截顶的马尾松针叶IAA质量分数从高到低依次为H3、H2、H1,T2处理IAA质量分数为H2大于H1;在第10天之后,T1处理H1处的针叶IAA质量分数显著高于T2处理(图2A,P<0.05)。在第13天之后,未截顶H3处的马尾松针叶GA7质量分数与H2和H1处相比差异不显著(图2B),T2处理H1处针叶GA7质量分数和H1处差异不显著,未截顶的针叶GA4质量分数从高到低依次为 H3、H2、H1,T2处理GA4质量分数为H2大于H1,T1处理H1处针叶的GA4质量分数在截顶后第10天低于T2处理,之后逐渐高于T2处理(图2C)。未截顶的ZR质量分数从高到低依次为 H3、H2、H1,T2处理针叶的ZR质量分数在H2处最高,T1处理H1处的ZR质量分数始终最低(图2D)。说明截顶强度影响着不同轮枝处针叶的IAA、GA4和ZR激素质量分数。未截顶的ABA质量分数从高到低依次为H1、H2、H3,T2处理ABA质量分数为H1大于H2,T1处理H1处的针叶ABA质量分数比T2处理高2.85%~7.84% (图2E)。未截顶时,SA质量分数在H1、H2和H3处差异不显著,随截顶程度的加重,在第1~13天,T1处理H1处的SA质量分数比T2处理H1处显著高1.88%~90.88% (P<0.05,图2F)。
Effects of top pruning and exogenous hormone application on endogenous hormone content and female bulb formation in Pinus massoniana
-
摘要:
目的 探究截除顶梢及植物生长调节剂诱导后马尾松Pinus massoniana内源激素质量分数变化对新枝生长与雌球花形成的影响。 方法 采用盆栽控制试验,以3年生209号马尾松无性系为试材,设置保留1层轮枝(T1)、保留2层轮枝(T2)、未截顶(NT)、未截顶+100 mg·L−1赤霉素 (GA4/7) (NT+G100)、未截顶+200 mg·L−1GA4/7(NT+G200)和未截顶+400 mg·L−1GA4/7 (NT+G400) 等6个处理,测定花原基形成前期(S1)、花原基形成期(S2)和花原基形成后期(S3)的针叶内源激素质量分数及其比值的变化,研究各处理对雌球花密度和枝生长的影响。 结果 与NT相比,T1处理的雌球花密度、枝长和枝粗分别增加126.00%、181.55%和35.78%,T2处分别理增加66.52%~82.67%、119.31%~150.45%和9.17%~111.49%;与GA4/7各处理相比,截顶处理后,除第1层轮枝处的枝长增长量显著(P<0.05)低于NT+G200处理外,T1和T2处理的雌球花密度、枝长与枝粗增长量与GA4/7其他处理间差异不显著。在S1时期,与NT相比, T1和T2处理的针叶吲哚乙酸(IAA)质量分数分别显著(P<0.05)下降11.24%和9.62%,脱落酸(ABA)质量分数显著(P<0.05)增加15.09%和8.15%,GA7、GA4、玉米素核苷(ZR)质量分数下降,但差异不显著,(IAA+GA7+GA4+ZR)/ABA比值分别为7.22和7.61;在S2时期,T1和T2处理下的针叶IAA、GA7、GA4和ZR质量分数均较S1时期增加,ABA质量分数降低,(IAA+GA7+GA4+ZR)/ABA比值升高;在S3时期,所测激素质量分数均较S2时期降低。截顶与GA4/7诱导后主要激素质量分数的变化趋势不同。在S1至S3时期,GA4/7诱导后的IAA质量分数逐渐降低,GA7、GA4和ZR质量分数先增加后降低,ABA质量分数则先降低后增加。在截顶后20 d内,IAA、GA7、GA4和ZR质量分数呈先降低后增加的恢复特征,ABA质量分数呈持续下降的动态变化,截顶强度影响着不同轮枝处针叶IAA、GA4、ABA和ZR激素质量分数的变化。 结论 在花原基形成前期实施截顶和GA4/7处理均可促进马尾松结实母枝更新和雌球花形成,与针叶内源激素质量分数的变化密切相关。图2表1参32 Abstract:Objective This study is to investigate the effects of the change in endogenous hormone content on the growth of new branches and formation of female cones in Pinus massoniana after top pruning and hormone induction. Method A pot control experiment was conducted using a 3-year-old clone 209 of P. massoniana as the test material. Six treatments were set up, including retaining one layer of branches (T1), retaining two layers of branches (T2), no top pruning (NT), no top pruning + 100 mg·L−1 GA4/7 (NT+G100), no top pruning + 200 mg·L−1 GA4/7 (NT+G200) and no top pruning + 400 mg·L−1 GA4/7 (NT+G400) to measure the changes in the content and ratio of endogenous hormones in conifers at the early stage of flower primordium formation (S1), the stage of flower primordium formation (S2) and the late stage of flower primordium formation (S3). The effects on female cone density and branch growth were studied. Result Compared with NT, the female cone density, branch length and branch diameter of T1 treatment increased by 126.00%, 181.55% and 35.78%, respectively, while those of T2 treatment increased by 66.52%−82.67%, 119.31%−150.45% and 9.17%−111.49%, respectively. Compared with GA4/7 treatments, there was no significant difference in the growth of female cone density, branch length and branch diameter between T1 and T2 treatments and other treatments with GA4/7 after top pruning, except that the growth of branch length at the first layer was significantly lower than that of NT+G200 treatment. In S1 period, compared with NT, the content of indoleacetic acid (IAA) in the needles of T1 and T2 treatments decreased significantly by 11.24% and 9.62% (P<0.05), the content of abscisic acid (ABA) increased significantly by 15.09% and 8.15% (P<0.05), and the content of GA7, GA4 and zeatin nucleoside (ZR) in the needles decreased significantly, but the difference was not significant, with (IAA+GA7+GA4+ZR)/ABA ratios of 7.22 and 7.61 respectively. At S2 stage, the contents of IAA, GA7, GA4 and ZR in needles treated with T1 and T2 increased compared with that in S1 stage, while the content of ABA decreased, and the ratio of (IAA+GA7+GA4+ZR)/ABA increased. At S3 stage, the measured hormone content was lower than that in S2 stage. The change trend of the main hormone content after top pruning and GA4/7 induction was different. From S1 to S3, IAA content gradually decreased after GA4/7 induction, GA7, GA4 and ZR content first increased and then decreased, and ABA content first decreased and then increased. Within 20 days after top pruning, IAA, GA7, GA4 and ZR contents decreased first and then increased, while the ABA content decreased continuously. The intensity of top pruning affected the changes of IAA, GA4, ABA and ZR hormone contents in needles at different whorls. Conclusion Both top pruning and GA4/7 treatment at the early stage of flower primordium formation can promote the regeneration of fruiting mother branches and the formation of female cones in P. massoniana, which is closely related to the change of endogenous hormone content in needles. [Ch, 2 fig. 1 tab. 32 ref.] -
Key words:
- top pruning /
- Pinus massoniana /
- female cones /
- endogenous hormones /
- floral primordium formation
-
表 1 截顶和赤霉素诱导处理对雌球花密度和枝生长的影响
Table 1. Effect of top pruning and gibberellin induction on female cones density and branch growth
处理 H1 H2 H3 枝长净增
长量/cm枝粗净增
长量/cm雌球花密度/
(个·枝−1)枝长净增
长量/cm枝粗净增
长量/cm雌球花密度/
(个·枝−1)枝长净增
长量/cm枝粗净增
长量/cm雌球花密度/
(个·枝−1)NT 2.33±0.11 d 1.09±0.08 b 1.50±0.06 c 2.22±0.10 c 0.87±0.03 c 2.33±0.09 c 9.33±0.26 ab 1.66±0.09 a 2.94±0.13 b NT+G100 5.26±0.16 bc 1.03±0.06 b 2.93±0.12 ab 3.89±0.13 b 1.76±0.09 ab 3.17±0.15 ab 11.80±0.31 a 1.69±0.09 a 4.50±0.19 a NT+G200 8.42±0.25 a 1.18±0.09 ab 3.27±0.16 a 6.22±0.18 a 1.76±0.10 ab 3.39±0.16 ab 9.67±0.28 ab 1.06±0.04 ab 4.67±0.21 a NT+G400 6.14±0.17 b 1.56±0.11 a 2.67±0.10 ab 5.22±0.14 ab 2.01±0.12 a 3.33±0.16 ab 12.33±0.33 a 1.04±0.03 ab 3.33±0.15 b T1 6.56±0.18 b 1.48±0.09 a 3.39±0.16 a - - - - - - T2 5.11±0.14 bc 1.19±0.07 ab 2.74±0.11 ab 5.56±0.15 ab 1.84±0.11 ab 3.88±0.18 a - - - 说明:同列不同小写字母表示处理间差异显著(P<0.05);-表示无此项。 -
[1] 郑一, 张含国, 张振, 等. 矮化对马尾松雌球花发生及枝梢生长的影响[J]. 东北林业大学学报, 2021, 49(10): 1 − 5. ZHENG Yi, ZHANG Hanguo, ZHANG Zhen, et al. Effect of dwarfing on occurrence of female strobilus of Pinus massoniana and its effect on branch growth [J]. Journal of Northeast Forestry University, 2021, 49(10): 1 − 5. [2] 王福森, 李树森, 李晶, 等. 樟子松无性系种子园矮化处理对结实及种子品质的影响[J]. 东北林业大学学报, 2017, 45(5): 26 − 28. WANG Fusen, LI Shusen, LI Jing, et al. Effects of dwarfing treatment of clonal seed orchard on seed and seed quality of Pinus sylvestris var. mongolica [J]. Journal of Northeast Forestry University, 2017, 45(5): 26 − 28. [3] 阎雄飞, 曹存宏, 袁小琴, 等. 截冠处理对种子园樟子松壮龄母树结实的影响[J]. 北京林业大学学报, 2019, 41(8): 48 − 56. YAN Xiongfei, CAO Cunhong, YUAN Xiaoqin, et al. Effects of top pruning on seed setting of aged mother trees in orchard of Pinus sylvestris var. mongolica [J]. Journal of Beijing Forestry University, 2019, 41(8): 48 − 56. [4] KOLPAK S E, SMITH J, ALBRECHT M J, et al. High-density miniaturized seed orchards of Douglas-fir [J]. New Forests, 2015, 46: 121 − 140. [5] 杨凯, 谷会岩. 红松果林从幼龄到开花阶段林木体内激素动态变化[J]. 林业科学, 2005, 41(5): 33 − 37. YANG Kai, GU Huiyan. Dynamic changes of hormone in the plants from teneral stage to hossomphase Pinus koraiensis fruit forests [J]. Scientia Silvae Sinicae, 2005, 41(5): 33 − 37. [6] 杨钧贺, 刘畅, 钮世辉, 等. 茎部形成层赤霉素在植物生长发育中的调控作用[J]. 北京林业大学学报, 2019, 41(7): 68 − 74. YANG Junhe, LIU Chang, NIU Shihui, et al. Regulatory effect of stem cambium gibberellin on plant growth and development [J]. Journal of Beijing Forestry University, 2019, 41(7): 68 − 74. [7] FERNÁNDEZ H, FRAGA M F, BERNARD P, et al. Quantification of GA1, GA3, GA4, GA7, GA9, and GA20 in vegetative and male cone buds from juvenile and mature trees of Pinus radiata [J]. Plant Growth Regulation, 2004, 40: 185 − 188. [8] NAMBARA E, MARION-POLL A. Abscisic acid biosynthesis and catabolism [J]. Annual Review of Plant Biology, 2005, 56: 165 − 185. [9] KONG Lisheng, PATRICK V D, ZAHARIA I. Effects of stem-injected gibberellins and 6-benzylaminopurine on phytohormone profiles and cone yield in two lodgepole pine genotypes [J]. Trees, 2018, 32(3): 765 − 775. [10] 李洪娜, 许海港, 任饴华, 等. 不同施氮水平对矮化富士苹果幼树生长、氮素利用及内源激素含量的影响[J]. 植物营养与肥料学报, 2015, 21(5): 1304 − 1311. LI Hongna, XU Haigang, REN Yihua, et al. Effect of different N application rates on plant growth, 15N-urea utilization and hormone content of dwarf apple trees [J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(5): 1304 − 1311. [11] THOMAS L D, DAVID W P, STEWART B R. Correlation of endogenous gibberellin acid with initiation of mango shoot growth [J]. Journal of Plant Growth Regulation, 2001, 20: 308 − 315. [12] WEI Chunhua, ZHU Chunyu, YANG Liping, et al. A point mutation resulting in a 13 bp deletion in the coding sequence of Cldf leads to a GA-deficient dwarf phenotype in watermelon [J/OL]. Horticulture Research, 2019, 6: 132[2022-11-14]. doi: 10.1038/s41438-019-0213-8. [13] 殷东生, 吴海波, 张建瑛, 等. 环剥和去叶对红松雌球果和枝生长及不同组织和器官中养分含量的影响[J]. 应用生态学报, 2019, 30(11): 3671 − 3680. YIN Dongsheng, WU Haibo, ZHANG Jianying, et al. Effects of girdling and defoliation on the growth of female cones and branches and nutrient content in different tissues and organs of Pinus koraiensis [J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3671 − 3680. [14] 季孔庶, 徐立安, 王登宝, 等. 中国马尾松遗传改良研究历程与成就[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 10 − 22. JI Kongshu, XU Li’an, WANG Dengbao, et al. Progresses and achievements of genetic improvement on masson pine (Pinus massoniana) in China [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(6): 10 − 22. [15] 杨章旗. 马尾松不同年龄产脂量及松香组分分析[J]. 林业科学, 2014, 50(6): 147 − 151. YANG Zhangqi. Comparative study on the resin yield and rosin components of Pinus massoniana superior provenances among different ages [J]. Scientia Silvae Sinicae, 2014, 50(6): 147 − 151. [16] 谭小梅, 金国庆, 张一, 等. 截干矮化马尾松二代无性系种子园开花结实的遗传变异[J]. 东北林业大学学报, 2011, 39(4): 39 − 42. TAN Xiaomei, JIN Guoqing, ZHANG Yi, et al. Genetic variation of flowering and fruiting in dwarfed second-generation clonal seed orchard of Pinus massoniana [J]. Journal of Northeast Forestry University, 2011, 39(4): 39 − 42. [17] CASTILLO-LLANQUE F, RAPOPORT H F. Relationship between reproductive behavior and new shoot development in 5-year-old branches of olive trees (Olea europaea L. ) [J]. Trees, 2011, 25: 823 − 832. [18] 闫师杰, 郭李维, 吴彩娥, 等. 高效液相色谱法同时测定鸭梨种子中3种内源激素[J]. 分析化学, 2010, 38(6): 843 − 847. YAN Shijie, GUO Liwei, WU Cai’e, et al. Simultaneous determination of three kinds of endogenous hormones content in seeds of post-harvest yali pear by high performance liquid chromatography [J]. Chinesese Journal of Analytical Chemistry, 2010, 38(6): 843 − 847. [19] 王辉, 顾文亮, 庄辉发, 等. 不同外源激素对香草兰花芽分化的影响[J]. 热带农业科学, 2016, 36(11): 72 − 76. WANG Hui, GU Wenliang, ZHUANG Huifa, et al. Effects of plant external hormones on flower bud differentiation of vanilla [J]. Chinese Journal of Tropical Agriculture, 2016, 36(11): 72 − 76. [20] 邵苗苗, 朱亚艳, 秦雪, 等. 不同激素处理对马尾松花芽分化过程中营养物质含量的影响[J]. 陕西林业科技, 2014(1): 10 − 13, 17. SHAO Miaomiao, ZHU Yayan, QIN Xue, et al. Effect of different hormone treatments on nutrients concentration during flower budding period of Pinus massoniana [J]. Shaanxi Forest Science and Technology, 2014(1): 10 − 13, 17. [21] LANGE P W, RONDE C E, BREDENKAMP B V. The effects of different intensities of pruning on the growth of Pinus radiata in south Africa [J]. South African Forestry Journal, 1987, 143: 30 − 36. [22] 陈虎, 张明慧, 卢开成, 等. 修剪强度对马尾松成年种子园母树的影响[J]. 福建林业科技, 2017, 44(1): 38 − 42. CHEN Hu, ZHANG Minghui, LU Kaicheng, et al. Effect of different pruning intensity in the seed orchard of Pinus massoniana L. trees [J]. Journal of Fujian Forestry Science and Technology, 2017, 44(1): 38 − 42. [23] HAN S U, KANG K S, KIM C S, et al. Effect of top-pruning in a clonal seed orchard of Pinus koraiensis [J]. Annals of Forest Research, 2008, 51: 155 − 156. [24] 曲波, 张微, 陈旭辉, 等. 植物花芽分化研究进展[J]. 中国农学通报, 2010, 26(24): 109 − 114. QU Bo, ZHANG Wei, CHEN Xuhui, et al. Research progress of flower bud differentiation mechanism of plant [J]. Chinese Agricultural Science Bulletin, 2010, 26(24): 109 − 114. [25] MEIJÓN M, CAÑAL M J, FERNÁNDEZ H, et al. Hormonal profile in vegetative and floral buds of azalea: levels of polyamines, gibberellins, and cytokinins [J]. Journal of Plant Growth Regulation, 2010, 30: 74 − 82. [26] ALVAREZ S, MARSH E L, SCHROEDER S G, et al. Metabolomic and proteomic changes in the xylem sap of maize under drought [J]. Plant Cell and Environment, 2008, 31(3): 325 − 340. [27] SCHACHTMAN D P, GOODGER J Q. Chemical root to shoot signaling under drought [J]. Trends in Plant Science, 2008, 13(6): 281 − 287. [28] KONG Lisheng, von ADERKAS P, OWEN S J, et al. Comparison of endogenous cytokinins, ABA and metabolites during female cone differentiation in low and high cone-producing genotypes of lodgepole pine [J]. Trees, 2011, 25: 1103 − 1110. [29] KONG Lisheng, von ADERKAS P, ZAHARIA I, et al. Analysis of phytohormone profiles during male and female cone initiation and early differentiation in long-shoot buds of lodgepole pine [J]. Journal of Plant Growth Regulation, 2012, 31: 478 − 489. [30] SHEARER R C, STOEHR M U, WEBBE J E, et al. Seed cone production enhanced by injecting 38-year-old Larix occidentalis Nutt with GA4/7 [J]. New Forests, 1999, 18(3): 289 − 300. [31] ALMQVIST C. Timing of GA4/7 application and the flowering of Pinus sylvestris grafts in the greenhouse [J]. Tree Physiology, 2003, 23(6): 413 − 418. [32] NEILSEN W A, PINKARD E A. Effects of green pruning on growth of Pinus radiata [J]. Canadian Journal of Forest Research, 2003, 33(11): 2067 − 2073. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220768