留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土地利用和气候变化对青海省雪豹潜在适宜生境的影响

王祥福 李愿会 王维枫 孙杰杰 王倩 董文婷 王荣女 杨娅琪

贾玉洁, 刘云根, 杨思林, 等. 面向Sentinel-2A影像的大理市土地利用分类方法适用性研究[J]. 浙江农林大学学报, 2022, 39(6): 1350-1358. DOI: 10.11833/j.issn.2095-0756.20220134
引用本文: 王祥福, 李愿会, 王维枫, 等. 土地利用和气候变化对青海省雪豹潜在适宜生境的影响[J]. 浙江农林大学学报, 2024, 41(3): 526-534. DOI: 10.11833/j.issn.2095-0756.20230259
JIA Yujie, LIU Yungen, YANG Silin, et al. Applicability of land use classification method in Dali City based on Sentinel-2A image[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1350-1358. DOI: 10.11833/j.issn.2095-0756.20220134
Citation: WANG Xiangfu, LI Yuanhui, WANG Weifeng, et al. Impact of land use and climate change on potential suitable habitats of snow leopards (Panthera uncia) in Qinghai Province[J]. Journal of Zhejiang A&F University, 2024, 41(3): 526-534. DOI: 10.11833/j.issn.2095-0756.20230259

土地利用和气候变化对青海省雪豹潜在适宜生境的影响

DOI: 10.11833/j.issn.2095-0756.20230259
基金项目: 国家林业和草原局西北调查规划院2021年科技创新项目 (XBJ-KJCX-2021-16)
详细信息
    作者简介: 王祥福(ORCID: 0000-0003-3176-3820),高级工程师,从事森林生态学研究。E-mail: wxf5378@163.com
    通信作者: 李愿会(ORCID: 0009-0005-3387-6687),教授级高级工程师,从事森林生态学研究。E-mail: nwinventory@sina.com
  • 中图分类号: Q958;S718.6

Impact of land use and climate change on potential suitable habitats of snow leopards (Panthera uncia) in Qinghai Province

  • 摘要:   目的  模拟不同气候情景下高寒山地珍稀动物适宜生境变化,对探究天然林资源保护工程前后土地利用变化对高寒山地珍稀动物的影响具有重要的实践意义。  方法  选取对雪豹 Panthera uncia分布可能存在影响的22个环境变量,分别利用2000和2020年土地利用数据代表天然林资源保护工程实施前后土地利用类型变化的情况,运用最大熵模型 (MaxEnt) 模拟雪豹适生区的分布变化,并对未来RCP 4.5和RCP 8.5等2种气候情景下2050年的雪豹潜在适宜生境进行模拟。  结果  天然林资源保护工程实施之前,雪豹在青海省的高适生区面积为11.79万 km2,中适生区面积为11.96万 km2,低适生区面积为22.96万 km2,总适宜性分布面积为46.71万 km2(占研究区域面积的64.7%)。天然林资源保护工程实施之后,雪豹的高、中、低适生区分别为11.78、11.77、24.14万 km2,总适生区面积共增加到了47.69万 km2(占研究区域面积的66.0%)。未来场景模拟结果显示:至2050年,青海省雪豹适宜生境总体上呈现出收缩聚拢的趋势,其高、中、低适宜生境面积相较于2020年都出现了一定程度的下降。其中,适宜生境在RCP 4.5和RCP 8.5情景下分别减少0.14和0.72万 km2,而中高适宜生境面积减少0.32和0.49万 km2  结论  相比2000年,2020年土地利用发生了变化,雪豹适宜生境略有增加,天然林资源保护工程并未导致雪豹适宜生境的明显扩张。气候变暖可能对雪豹的适宜生境产生负面影响。建议加强雪豹活动监测,提前制定气候变化下雪豹等濒危野生动物的保护策略。表3参42
  • 土地利用是城市发展规划及资源开发利用的关键信息,同时也是区域土地利用变化研究的重要基础[1]。然而高原山区的遥感影像自动分类相比其他地形区而言,传统的遥感分类方法在分类精度上受各方面因素影响,难以满足研究需求[2]。传统的监督分类方法和非监督分类方法,是基于像元的数理统计法,地物分类时考虑的主要为像元的光谱信息,对遥感影像的形状、纹理及空间关系等利用不够充分[3],容易发生“同物异谱”和“同谱异物”。近年来,国内外许多学者尝试利用不同类型遥感影像来提高土地利用分类精度,在遥感影像的使用上多以Landsat和Modis系列的中低分辨率数据为主,分类精度经常受到影像空间分辨率的限制,在地物破碎的区域提取草地、水塘和小规模村庄等时存在较大的局限性[4]。近年来采用高分辨率卫星作为实验数据的分类研究逐年增多[5-7],高分辨率影像可利用清晰的地物几何特征和纹理等信息,具有覆盖范围大、重访周期短、定量化探测等优点,但影像成本较高,获取难度较大[8]。哨兵二号遥感卫星最高的空间分辨率可达10 m,与传统遥感数据相比,Sentinel-2A遥感数据新增加的4个红边波段与叶绿素含量关系紧密[9]。在地物提取分类研究领域中,近年来有众多学者运用红边波段进行湿地提取[10]、作物识别[11]、地物类型划分[12]等方面的研究,均取得了较好的效果。随着计算机和3S技术的发展,遥感研究的逐渐深入,新的分类方法不断涌现,如多重滤波[13]、面向对象分类法[14]、模糊分类法[15]、随机森林分类法[16]、神经网络法[17]等。尽管这些分类方法在不同程度上均提高了分类精度,然而在分类结果中依然存在着或多或少的“椒盐效应”[18]。本研究以云南省大理市为研究区域,以Sentinel-2A遥感影像为数据源,提出一种面向对象特征与决策树规则相结合的分类方法,依靠多维遥感信息复合技术,充分利用地物的光谱特征[19]、几何结构和纹理等提高遥感影像在大理市不同土地利用类型的区分效果,可探索提高高原山区分类精度的有效途径。

    云南省大理市地处云贵高原,大理州中部,25°25′~25°58′N,99°58′~100°27′E,总面积为1 815 km2,基础海拔1 000 m以上,地面起伏较大,地形以山地为主,其中山地面积为1 278.8 km2,山区、半山区面积达70.5%。总体特征是西北高,东南低,四周高,中间低。研究区地处盆地,中部是洱海,被四周的高山环抱,西部是苍山,东侧为马尾山,四周山坡均朝向洱海。

    本研究使用的Sentinel-2数据源通过欧空局的哥白尼数据中心下载,辅助数据包括2.5 m天地图影像数据和从地理空间数据云获取的大理市行政边界矢量数据。利用欧洲航天局(ESA)官方提供的SNAP软件和sen2cor插件对下载的原始影像进行大气校正,得到L2A级数据,采用最近邻插值法将波段重采样为10 m分辨率,基于ENVI软件对其进行几何校正。因高原山区云雾较多,为降低影像云覆盖对分类精度影响,将2020年1月1日至12月31日大理市Sentinel-2A影像最小云量进行年度多时相合成,通过大理市行政边界矢量数据对遥感影像数据进行裁剪。

    土地利用分类标准在参照GB/T 21010—2017《土地利用现状分类标准》[20]的基础上结合高原山区各方面特征,将研究区分为七大类,选出准确可靠的7个类型样本,进行样本间的分离度计算,计算结果如表1所示。

    表 1  各种类型地物样本组合的Jeffries-Matusita距离
    Table 1  Jeffries Matusita distance of various types of feature sample combinations
    土地利用类型分离度土地利用类型分离度
    林地-农田 1.953 农田-其他 1.994
    林地-水体 2.000 水体-草地 1.993
    林地-草地 1.895 水体-建设用地 2.000
    林地-建设用地 1.998 水体-冰川积雪 1.998
    林地-冰川积雪 1.995 水体-其他 1.996
    林地-其他 1.994 草地-建设用地 1.996
    农田-水体 1.983 草地-冰川积雪 1.997
    农田-草地 1.894 草地-其他 1.996
    农田-建设用地 1.993 建设用地-冰川积雪 1.992
    农田-冰川积雪 1.993 建设用地-其他 1.983
    冰川积雪-其他 1.990
    下载: 导出CSV 
    | 显示表格
    2.3.1   决策树分类模型粗分类

    为能充分利用基于像素和面向对象分类方法优势,组合方法已被广泛应用于土地利用分类领域[21]。QUEST决策树从运算速度和分类精度方面均衡考量,优于其他决策树方法[22]。利用面向对象特征的遥感分类方法,可结合研究对象的光谱、形状、纹理、空间关系等不同属性信息,将相同性质的像元组成为基本处理单元“对象”完成分类[23]。对研究区各地物类型的光谱特征、纹理特征和几何特征分析后,以第3绿光波段、第8近红外波段、第4红波段和第11短波红外为特征波段,再提取农田、草地、冰川积雪和其他等4个不同类别地类的面向对象特征,根据各特征建立分类规则进行建模。构建面向对象特征与QUEST决策树相结合的分类模型,如图1所示。

    图 1  分类模型流程图
    Figure 1  Flow chart of classification model

    ①水体区域提取。基于研究区实地情况,本研究采取归一化差异水体指数(NDWI)方法[24]将研究区水体部分划分出来。根据对样本数据的初步分析以及人工判读,先将QUEST决策树分类条件设置为NDWI>0.4125。②植被区域提取。因为Sentinel-2数据的优势是在红边范围含有3个波段的数据,且研究区是典型的高原山区,全域植被覆盖率较高,所以归一化植被指数(NDVI)能从影像中更加有效地提取植被区域[25]。以此为基础将决策树分类条件设置为NDVI>0.312 5,可将植被区域与非植被区域分离开,且不与水体区域混淆。再通过设置NDVI指数范围阙值,进一步将植被中的农田、草地分类条件设置为0.312 5<NDVI<0.654 3,林地则设置为0.654 3<NDVI<1.000 0。③非植被区域提取。将研究区的水体和植被两大类提取成功后,其余部分则为非植被区域。为了进一步将建筑用地从非植被区域提取出来,在前几步的基础上又计算了归一化建筑指数(NDBI),并将QUEST决策树分类条件设置为NDBI>0,发现此时可将研究区大部分建设用地从非植被区域提取出来。

    2.3.2   面向对象特征的细分类

    面向对象可充分利用各对象的各类特征信息,本研究使用了面向对象的光谱特征、几何特征和纹理特征,其定义如表2所示。

    表 2  面向对象特征定义表
    Table 2  Object oriented feature definition
    类别特征定义和公式
    光谱特征 光谱均值   斑块内像素光谱均值
    纹理特征 纹理特征   灰度共生矩阵(GLCM,包括5×5卷积模板内的均值、方差、同质性、熵值、对比度、二阶矩、相关性)
    几何特征 面积     斑块总面积
    延伸率    最大直径与最小直径比值
    矩形形状参数 矩形形状度量值(Rect)=面积/(最大直径×最小直径)
    下载: 导出CSV 
    | 显示表格

    本研究采用多尺度分割算法进行影像分割,共设置了一个分割层次,主要目的是将农田与草地、冰川积雪与其他进行区分。在确保影像分类精度的前提下进行多次实验,最终结果表明:分割尺度设置为30较为适宜,此时,各个分类对象均有较好的可分离性,且各个对象内部的同质性较高。再根据相邻对象的纹理特征和内部一致性确定归并尺度,对分割好的原始影像进行迭代归并,进一步完成相邻同类对象的归并。经多次实验,确定的归并尺度为65最为适宜。①草地与农田的面向对象特征。草地与农田相比,具有规则的几何形状,同时,草地与农田的光谱均值也有一定差异。所以,可将农田的对象筛选条件设置为:面积>3 000 m2,矩形形状参数>0.3,光谱均值>3 000 nm,余下不满足设定的农田筛选条件的地区为草地。②冰川积雪与其他的面向对象特征。其他用地类型延伸率较小且形状不规则,光谱均值也有较大差异,而冰川积雪大都分布于苍山高海拔地区,且连续性高,面积较大。所以为将两者区分开来,设定其他用地的筛选条件为:延伸率<3.5,1 210 nm<光谱均值(第4波段)<1 360 nm,1 225 nm<光谱均值(第3波段)<1 335 nm,1 400 nm<光谱均值(第2波段)<1 465 nm ,符合该条件的区域可判定为其他用地,余下不满足设定条件的则为冰川积雪。

    本研究还运用了最大似然分类法、ISODATA法与面向对象特征决策树法进行比较。ISODATA法分类与最大似然法均未引入面向对象特征,ISODATA法使用ENVI 5.3软件,选择IsoData分类器,预设22个类别和最大迭代次数为10进行分类计算,最后通过目视识别分类结果合并为本研究的7个类别。最大似然法基于ENVI 5.3软件使用ROIS方法定义7类训练样本进行分类。面向对象特征决策树分类使用IDL8.5结合ENVI 5.3编程实现。

    为了检验研究区影像分类解译结果的可信度,通过野外调查和2.5 m精度的天地图相结合的方式目视判读检验研究区各个样本点的真实土地利用类别,采用误差矩阵方法进行检验。在研究区内利用ArcGIS软件随机生成500个检验样本点,各地类验证点个数如表3所示。

    表 3  各地类验证点个数
    Table 3  Number of verification points of each class
    土地利用类型天地图验证点个数野外调查验证点个数
    水体  945
    林地  6858
    建设用地546
    农田  6718
    草地  898
    冰川积雪130
    其他  164
    下载: 导出CSV 
    | 显示表格

    将3个分类结果与同期高分辨率天地图影像进行叠加对比(图2):ISODATA法相比前2种方法虽然显示结果较差,但具有明显特征的地物基本都能被识别出来,冰川积雪与建筑用地因光谱特征类似,从而产生了部分混淆。最大似然分类和面向对象决策树分类得到的研究区地物分布与天地图影像显示结果基本一致。但是,由于高原山区草地和部分农田分布较为破碎,且研究区地表植被覆盖度较高,所以利用最大似然方法提取的某些林地、草地和面积较小的农田会产生部分混淆。而面向对象决策树分类由于构建特征指数将不同地物差异放大,且引入了面向对象特征,更有利于决策规则的制定,所以提取的结果在空间表现上相比与其他分类方法更合理。

    图 2  基于不同分类方法得到的大理市2020年土地利用类型示意图
    Figure 2  Land use type map of Dali City in 2020 based on different classification methods

    对3种土地利用分类方法各地类的面积进行统计,并与欧空局公布的2020年10 m分辨率土地利用数据进行验证对比。结果如图3所示:面向对象特征的决策树法提取的研究区内林地面积最大,其次是农田、草地、水体、建设用地和冰川积雪,面积最小的为其他用地:3种分类方法中此方法结果与研究区的实际情况最为符合。 ISODATA法基于机器学习,在地物分布较为破碎的区域,机器学习的效果会受样本中噪声的影响,产生过拟合现象。最大似然法是基于统计分析的原理,可减轻样本中噪声的影响,提取结果在空间分布上也更为合理。面向对象特征的决策树法以对象为处理单元,充分利用研究对象的光谱、形状、纹理、空间关系等不同属性信息,所以提取的结果与实际情况最为接近。

    图 3  各类地物面积统计
    Figure 3  Area statistics of various features

    为进一步比较不同方法下各类地物的提取差异,采用2.5 m天地图的500个样点结合野外调查对3种方法的分类结果进行验证,利用误差矩阵分析得到的分类结果进行精度评价,结果如表4所示。从制图精度角度看,ISODATA法制图精度由高到低依次是其他、建设用地、水体、林地、农田、冰川积雪和草地,其中精度最高的其他为89.37%,最低的草地仅为58.00%。对于用户精度,ISODATA法的水体用户精度最高,为97.44%。余下的地类用户精度由高到低分别为林地、其他、冰川积雪、草地、建设用地和农田。从以上2个精度对比来看,林地和水体的分类精度最高,建设用地、草地、冰川积雪和其他分类精度也较高,农田分类精度较低。分析认为,由于水体的光谱特性相对单一,误分状况较少。而林地、农田和草地三者误分与互相之间光谱特性重合有较大关系。建设用地的误分区域主要分布在洱海周边和建成区周围的裸地,因裸地和房屋具有相似的高反射特性,主要误分为建设用地和草地,草地和冰川积雪误分为建设用地由光谱特性相近导致。

    表 4  ISODATA法遥感解译误差矩阵
    Table 4  ISODATA remote sensing interpretation error matrix
    土地利用类型林地建设用地农田水体草地其他冰川积雪参考样本数用户精度/%
    林地 93 0 3 0 4 0 0 100 93.00
    建设用地 0 67 0 7 5 5 3 87 77.01
    农田 16 2 47 0 2 1 7 75 62.67
    水体 0 0 0 76 2 0 0 78 97.44
    草地 3 0 0 3 29 2 0 37 78.38
    其他 0 4 2 0 8 71 0 85 83.53
    冰川积雪 0 2 6 0 0 0 30 38 78.95
    分类样本数 112 75 58 86 50 79 40 500
    制图精度/% 83.04 89.33 81.03 88.37 58.00 89.37 75.00
    下载: 导出CSV 
    | 显示表格

    表5可得:基于最大似然法的水体制图精度最高,为94.79%,余下6个地类制图精度由高到低分别为林地、草地、其他、农田、冰川积雪和建设用地。用户精度最高的地类是水体,为100.00%,其他地类用户精度由高到低分别是林地、建设用地、草地、农田、其他和冰川积雪。冰川积雪精度最低,仅为66.67%。通过分析认为,水体的光谱特性较为单一,极少出现误分。充分利用不同类型的光谱表现特征和周边地理环境,所以林地和农田区分度较好,但和草地仍有部分混淆。部分建设用地位于山区,受周边地理环境影响较大,加之城区建设用地光谱特征较为复杂。农田误分主要是误分为林地、草地和建设用地,由于前三者均属于绿色植被,在气温湿度均较好的情况下,选择样本时会经常造成3类间的误分。与建设用地的误分由于山区农田与建设用地交错分布,难以分辨。其他地类误分为建设用地由于两者具有相似的高反射特性,极易造成混淆。

    表 5  最大似然法遥感解译误差矩阵
    Table 5  Maximum likelihood remote sensing interpretation error matrix
    土地利用类型林地建设用地农田水体草地其他冰川积雪参考样本数用户精度/%
    林地 119 0 0 0 2 0 0 121 98.35
    建设用地 3 51 2 5 1 2 0 64 79.69
    农田 6 4 61 0 4 4 1 80 76.25
    水体 0 0 0 91 0 0 0 91 100.00
    草地 5 4 7 0 55 0 3 74 74.32
    其他 0 14 2 0 0 36 0 52 69.23
    冰川积雪 1 4 0 0 1 0 12 18 66.67
    分类样本数 134 77 72 96 63 42 16 500
    制图精度/% 88.81 66.23 84.72 94.79 87.30 85.71 75.00
    下载: 导出CSV 
    | 显示表格

    表6可以看出:基于面向对象特征决策树法中的水体制图精度仍是最高,为93.94%,其他地类制图精度由高到低分别是林地、农田、草地、建设用地、其他和冰川积雪。冰川积雪虽然精度最低,但仍达76.92%。面向对象特征决策树法制图精度由高到低分别是水体、其他、林地、冰川积雪、草地、农田和建设用地,其中用户精度最高的水体为95.88%,最低的建设用地精度为83.61%。分析认为,误分情况主要是由于决策树粗分类时3个指数的参数设置原因。农田和草地之间的部分误分也与面向对象特征参数设置有关,此方法分类中冰川积雪和其他2个地类无错分现象,由此看出面向对象特征参数设置较为适合。

    表 6  面向对象特征决策树法遥感解译误差矩阵
    Table 6  Remote sensing interpretation error matrix of object-oriented feature decision tree method
    土地利用类型林地建设用地农田水体草地其他冰川积雪参考样本数用户精度/%
    林地 118 0 2 0 5 0 0 125 94.40
    建设用地 0 51 3 3 1 2 1 61 83.61
    农田 4 2 76 0 4 1 2 89 85.39
    水体 1 2 0 93 1 0 0 97 95.88
    草地 3 3 4 3 86 0 0 99 86.87
    其他 0 1 0 0 0 17 0 18 94.44
    冰川积雪 0 1 0 0 0 0 10 11 90.91
    分类样本数 126 60 85 99 97 20 13 500
    制图精度/% 93.65 85.00 89.41 93.94 88.66 85.00 76.92
    下载: 导出CSV 
    | 显示表格

    以上精度分析可以看出,面向对象特征决策树法相比于其他方法在农田、草地、建设用地和其他这4类分类精度上有了显著提高,且在高原山区特有地类冰川积雪的信息提取上也有较好的适用性。而对于研究区水域和林地的提取来说,最大似然法的适用性更好。

    一般总体精度在80%以上可以认为精度良好,表7表明:3种分类方法分类精度良好。其中,ISODATA法总体分类精度最低,但也满足基本分类需求,总体分类精度为82.60%,Kappa系数为79.40%;其次是最大似然法,总体分类精度较ISODATA法略有提高,总体分类精度为85.00%,Kappa系数为81.90%,但最大似然法基于机器学习的提取方法也可能会带来过拟合效应,导致提取精度偏高;面向对象特征决策树分类方法精度最高,总体分类精度可达90.20%,Kappa系数为87.95%,说明此方法的分类结果与实际情况最为贴近,更加适用于高原山区土地利用分类。

    表 7  3种分类方法比较
    Table 7  Comparison of three classification methods
    分类方法总体分类精度/%Kappa系数/%
    ISODATA法分类 82.60 79.40
    最大似然法分类 85.00 81.90
    面向对象特征决策树法 90.20 87.95
    下载: 导出CSV 
    | 显示表格

    本研究结果表明:①从地物空间分布上看,面向对象与决策树相结合的方法得到的最终分类结果与同期高分辨率天地图影像较为一致,表明与地物的实际分布情况更为接近。②从地类方法适用性角度来看,最大似然分类法在水域和林地的提取上适用性较好,面向对象特征决策树法在农田和草地、建设用地和其他这些光谱特征较为相似的地类区分度较好。在高原山地特有的地类冰川积雪提取上也表现出了极大的优越性。③从不同方法总体分类精度角度看,面向对象特征的决策树法在大理市的土地利用信息提取中效果最好,总体分类精度和Kappa系数分别为90.20%和87.95%,较传统的最大似然法和ISODATA法分类精度均有提升,可实现大理市土地利用的高精度提取。

    本研究在进行大理市土地利用分类时,利用先粗分类再进一步细分类的思想,将面向对象特征与决策树规则相结合,粗分类先设计决策树分类规则,在决策树基础上进行类别的细分类,此方法可避免区域之间的混淆问题,反映了提高遥感影像分类精度的一个方法,具有良好的应用前景[26]。面向对象特征辅助决策树分类,其分类精度和准确性虽有提高,但与欧空局面积仍存在一定的出入,说明分类过程中仅提取面向对象特征辅助是不够的。因此,在今后的计算机分类过程中,需进一步加强遥感影像计算机自动解译的研究,充分利用地物形状、纹理、空间关系、空间位置等特征,对影像进行综合评判,提高影像的分类精度。

  • 表  1  2000和2020年青海省主要土地利用面积情况

    Table  1.   Areas of main land use type in Qinghai Province in 2000 and 2020

    年份
    土地利用面积/万km2
    农业用地森林用地灌木林地疏林地草地水体永久积雪和冰川建筑用地裸地荒漠和沙化土地湿地
    20000.900.383.350.0341.661.380.660.3113.694.352.49
    20200.850.594.640.0242.431.710.720.2011.173.863.02
    下载: 导出CSV

    表  2  各环境因子对模型预测的贡献率

    Table  2.   Contribution rates of input factors

    环境因子贡献率/% 环境因子贡献率/% 环境因子贡献率/%
    最热季度降水量(bio18) 43.5 海拔 4.6 等温性(温度日较差/气温年较差,bio3) 1.8
    降水季节性变化系数(bio15) 29.8 距水系距离 2.7 土地利用变化(2020年) 1.0
    人类活动 6.3 气温日较差(bio2) 2.3 最冷月最低气温(bio6) 0.5
    最干月降水量 (bio14) 5.3 最湿季度平均气温(bio8) 2.0
    下载: 导出CSV

    表  3  未来2种气候情景下雪豹丧失、扩张及稳定适生区面积

    Table  3.   Areas of suitable habitat loss, expansion and stabilization in current and future climate change scenarios

    气候情景2050年变化区面积/万km2
    丧失区稳定区扩张区
    RCP 4.51.4422.111.12
    RCP 8.51.4622.090.96
    下载: 导出CSV
  • [1] 杨秀玲. 青海省天然林资源保护工程评估研究报告[R]. 西宁: 青海省天然林保护中心, 2022.

    YANG Xiuling. Research Report on Evaluation of Natural Forest Resources Protection Project in Qinghai Province [R]. Xining: Qinghai Provincial Natural Forest Protection Center, 2022.
    [2] 夏启财. 青海省天然林资源保护工程绩效评价[J]. 陕西林业科技, 2019, 47(2): 73 − 76, 87.

    XIA Qicai. Evaluation system of Natural Forest Resources Protection Project in Qinghai Province [J]. Shaanxi Forest Science and Technology, 2019, 47(2): 73 − 76, 87.
    [3] 梁梓澳, 王祥福, 王维枫, 等. 青海省天保工程土壤保持效益评价研究[J]. 南京林业大学学报 (自然科学版), 2023, 47(5): 181 − 188.

    LIANG Ziao, WANG Xiangfu, WANG Weifeng, et al. Evaluation of soil conservation benefit of the Natural Forest Protection Project in Qinghai Province [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(5): 181 − 188.
    [4] 罗发俊. 甘肃省天保工程区可持续发展研究[J]. 防护林科技, 2018(1): 76 − 77.

    LUO Fajun. Research on sustainable development of the Natural Forest Protection Project area in Gansu Province [J]. Protection Forest Science and Technology, 2018(1): 76 − 77.
    [5] ZHANG Qiang, YUAN Ruyue, SINGH V P, et al. Dynamic vulnerability of ecological systems to climate changes across the Qinghai-Tibet Plateau, China [J/OL]. Ecological Indicators, 2022, 134: 108483[2023-03-18]. doi: 10.1016/j.ecolind.2021.108483.
    [6] SUN Jiejie, QIU Haojie, GUO Jiahuan, et al. Modeling the potential distribution of Zelkova schneideriana under different human activity intensities and climate change patterns in China [J/OL]. Global Ecology and Conservation, 2020, 21: e00840[2023-03-18]. doi: 10.1016/j.gecco.2019.e00840.
    [7] 洪洋, 张晋东. 卧龙自然保护区雪豹的生境选择偏好与食源结构特征[J]. 野生动物学报, 2021, 42(2): 295 − 305.

    HONG Yang, ZHANG Jindong. Habitat selection and food source of snow leopard (Panthera uncia) in Wolong National Nature Reserve, Sichuan Province, China [J]. Chinese Journal of Wildlife, 2021, 42(2): 295 − 305.
    [8] 李欣海, 郜二虎, 李百度, 等. 用物种分布模型和距离抽样估计三江源藏野驴、藏原羚和藏羚羊的数量[J]. 中国科学: 生命科学, 2019, 49(2): 151 − 162.

    LI Xinhai, GAO Erhu, LI Baidu, et al. Estimating abundance of Tibetan wild ass, Tibetan gazelle and Tibetan antelope using species distribution model and distance sampling [J]. Scientia Sinica Vitae, 2019, 49(2): 151 − 162.
    [9] 宓春荣, 郭玉民, HUETTMANN F, 等. 基于物种分布模型的精确采样提高目标物种发现率——以黑颈鹤(Grus nigricollis), 白头鹤(Grus monacha)为例[J]. 生态学报, 2017, 37(13): 4476 − 4482.

    MI Chunrong, GUO Yumin, HUETTMANN F, et al. Species distribution model sampling contributes to the identification of target species: take black-necked crane and hooded crane as two cases the model-based sampling approach could help toreduce areas to be investigated and it can find target species more effectively re. cost and effort [J]. Acta Ecologica Sinica, 2017, 37(13): 4476 − 4482.
    [10] 李芳菲, 李丽, 吴巩胜, 等. 基于最大熵模型的青海祁连山雪豹生境适宜性评价[J]. 生态学报, 2023, 43(6): 2202 − 2209.

    LI Fangfei, LI Li, WU Gongsheng, et al. Habitat suitability assessment of Panthera uncia in Qilian Mountains of Qinghai based on MAXENT modeling [J]. Acta Ecologica Sinica, 2023, 43(6): 2202 − 2209.
    [11] 杨子文, 韩姝伊, 李壹, 等. 气候变化对雪豹全球潜在适生区分布的影响与评估[J]. 生态学报, 2023, 43(4): 1412 − 1425.

    YANG Ziwen, HAN Shuyi, LI Yi, et al. Impacts and assessment of climate change on the global distribution of potentially suitable habitats for Panthera uncia [J]. Acta Ecologica Sinica, 2023, 43(4): 1412 − 1425.
    [12] 邹红菲, 郑昕. 中国雪豹保护策略的调查分析[J]. 野生动物, 2003, 24(5): 54 − 55.

    ZOU Hongfei, ZHENG Xin. Investigation and analysis of snow leopard conservation strategies in China [J]. Chinese Journal of Wildlife, 2003, 24(5): 54 − 55.
    [13] 李君, 马月伟, 姜楠, 等. 雪豹保护生物学研究进展[J]. 野生动物学报, 2020, 41(3): 796 − 805.

    LI Jun, MA Yuewei, JIANG Nan, et al. Research progress in conservation biology of snow leopard (Panthera uncia) [J]. Chinese Journal of Wildlife, 2020, 41(3): 796 − 805.
    [14] 李国庆, 刘长成, 刘玉国, 等. 物种分布模型理论研究进展[J]. 生态学报, 2013, 33(16): 4827 − 4835.

    LI Guoqing, LIU Changcheng, LIU Yuguo, et al. Advances in theoretical issues of species distribution models [J]. Acta Ecologica Sinica, 2013, 33(16): 4827 − 4835.
    [15] 许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法[J]. 生态学报, 2015, 35(2): 557 − 567.

    XU Zhonglin, PENG Huanhua, PENG Shouzhang. The development and evaluation of species distribution models [J]. Acta Ecologica Sinica, 2015, 35(2): 557 − 567.
    [16] ELITH J, GRAHAM C H, ANDERSON R P, et al. Novel methods improve prediction of species’ distributions from occurrence data [J]. Ecography, 2006, 29(2): 129 − 151.
    [17] 陈衍如, 谢慧敏, 罗火林, 等. 气候变化对寒兰分布的影响及其分布格局模拟[J]. 应用生态学报, 2019, 30(10): 3419 − 3425.

    CHEN Yanru, XIE Huimin, LUO Huolin, et al. Impacts of climate change on the distribution of Cymbidium kanran and the simulation of distribution pattern [J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3419 − 3425.
    [18] 潘浪波, 段伟, 黄有军. 基于MaxEnt模型预测薄壳山核桃在中国的种植区[J]. 浙江农林大学学报, 2022, 39(1): 76 − 83.

    PAN Langbo, DUAN Wei, HUANG Youjun. Prediction on the potential planting area of Carya illinoinensis in China based on MaxEnt model [J]. Journal of Zhejiang A&F University, 2022, 39(1): 76 − 83.
    [19] 邱浩杰, 孙杰杰, 徐达, 等. 基于MaxEnt模型预测鹅掌楸在中国的潜在分布区[J]. 浙江农林大学学报, 2020, 37(1): 1 − 8.

    QIU Haojie, SUN Jiejie, XU Da, et al. MaxEnt model-based prediction of potential distribution of Liriodendron chinense in China [J]. Journal of Zhejiang A&F University, 2020, 37(1): 1 − 8.
    [20] 邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用[J]. 生物多样性, 2011, 19(3): 295 − 302.

    XING Dingliang, HAO Zhanqing. The principle of maximum entropy and its applications in ecology [J]. Biodiversity Science, 2011, 19(3): 295 − 302.
    [21] PHILLIPS S J, ANDERSON R P, DUDÍK M, et al. Opening the black box: an open-source release of MaxEnt [J]. Ecography, 2017, 40(7): 887 − 893.
    [22] 郭彦龙, 赵泽芳, 乔慧捷, 等. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12): 1292 − 1305.

    GUO Yanlong, ZHAO Zefang, QIAO Huijie, et al. Challenges and development trend of species distribution model [J]. Advances in Earth Science, 2020, 35(12): 1292 − 1305.
    [23] 王绍武, 罗勇, 赵宗慈, 等. 新一代温室气体排放情景[J]. 气候变化研究进展, 2012, 8(4): 305 − 307.

    WANG Shaowu, LUO Yong, ZHAO Zongci, et al. New generation of scenarios of greenhouse gas emission [J]. Climate Change Research, 2012, 8(4): 305 − 307.
    [24] LOBO J M, JIMÉNEZ-VALVERDE A, HORTAL J. The uncertain nature of absences and their importance in species distribution modelling [J]. Ecography, 2010, 33(1): 103 − 114.
    [25] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions [J]. Ecological Modelling, 2006, 190(3/4): 231 − 259.
    [26] 张成成, 王君, ALEXANDER J S, 等. 基于红外相机数据的甘肃盐池湾国家级自然保护区鸟兽生物多样性评估[J]. 资源与生态学报, 2018, 9(5): 566 − 574.

    ZHANG Chengcheng, WANG Jun, ALEXANDER J S, et al. Biodiversity assessment of mammal and bird species from camera trap data in Yanchiwan National Nature Reserve, Gansu Province, China [J]. Journal of Resources and Ecology, 2018, 9(5): 566 − 574.
    [27] RONG Zhanlei, ZHAO Chuanyan, Liu Junjie, et al. Modeling the effect of climate change on the potential distribution of Qinghai spruce (Picea crassifolia Kom. ) in Qilian Mountains [J/OL]. Forests, 2019, 10(1): 62[2023-03-18]. doi: 10.3390/f10010062.
    [28] 沈涛, 张霁, 申仕康, 等. 西南地区红花龙胆分布格局模拟与气候变化影响评价[J]. 应用生态学报, 2017, 28(8): 2499 − 2508.

    SHEN Tao, ZHANG Ji, SHEN Shikang, et al. Distribution simulation of Gentiana rhodantha in Southwest China and assessment of climate change impact [J]. Chinese Journal of Applied Ecology, 2017, 28(8): 2499 − 2508.
    [29] HERNANDEZ P A, GRAHAM C H, MASTER L L, et al. The effect of sample size and species characteristics on performance of different species distribution modeling methods [J]. Ecography, 2006, 29(5): 773 − 785.
    [30] 杨全生, 汪有奎, 李进军, 等. 祁连山自然保护区天然林保护工程的成效分析[J]. 中南林业科技大学学报, 2015, 35(1): 89 − 95.

    YANG Quansheng, WANG Youkui, LI Jinjun, et al. Effective analysis on natural forest protection project in National Nature Reserve of Qilian Mountains [J]. Journal of Central South University of Forestry &Technology, 2015, 35(1): 89 − 95.
    [31] 杨渝. 天然林保护与野生动物的相互关系之初步探讨[J]. 野生动物, 2007, 28(6): 48 − 50.

    YANG Yu. Primary probe on correlation of natural forest conservation and wildlife [J]. Chinese Journal of Wildlife, 2007, 28(6): 48 − 50.
    [32] 迟翔文, 江峰, 高红梅, 等. 三江源国家公园雪豹和岩羊生境适宜性分析[J]. 兽类学报(自然科学版), 2019, 39(4): 397 − 409.

    CHI Xiangwen, JIANG Feng, GAO Hongmei, et al. Habitat suitability analysis of snow leopard (Panthera uncia) and bharal (Pseudois nayaur) in the Sanjiangyuan National Park [J]. Acta Theriologica Sinica, 2019, 39(4): 397 − 409.
    [33] 龚健辉, 李祎斌, 王瑞芬, 等. 基于MaxEnt模型预测天山中东部雪豹适宜栖息地[J]. 资源与生态学报, 2023, 14(5): 1075 − 1085.

    GONG Jianhui, LI Yibin, WANG Ruifen, et al. MaxEnt modeling for predicting suitable habitats of snow leopard (Panthera uncia) in the Mid-Eastern Tianshan Mountains [J]. Journal of Resources and Ecology, 2023, 14(5): 1075 − 1085.
    [34] 马兵. 天山中部雪豹 (Panthera unica) 栖息地特征及影响因子[D]. 北京: 北京林业大学, 2020.

    MA Bing. Influence of Environmental Factors on Characteristics of Snow Leopard (Panthera unica) Habitats in the Central Tianshan Mountains [D]. Beijing: Beijing Forety Uiversity, 2023.
    [35] 邓强. 黄土高原刺槐林下物种多样性、生产力和生态化学计量特征对模拟降水变化的响应[D]. 北京: 中国科学院大学, 2020.

    DENG Qiang. Effects of Manipulative Precipitation on Understory Plant Speciesdiversity, Productivity and Ecological Stoichiometry in a Planted Robinia pseudoacacia forest on the Loess Plateau, China [D]. Beijing: University of Chinese Academy of Sciences, 2020.
    [36] LI Guoyong, HAN Hongyan, DU Yue, et al. Effects of warming and increased precipitation on net ecosystem productivity: a long-term manipulative experiment in a semiarid grassland [J]. Agricultural and Forest Meteorology, 2017, 232: 359 − 366.
    [37] 于沿泽, 张明海, 杜海荣, 等. 优化后最大熵模型在模拟驼鹿适宜栖息地分布中的应用[J]. 东北林业大学学报, 2019, 47(10): 81 − 84, 95.

    YU Yanze, ZHANG Minghai, DU Hairong, et al. Optimized MaxEnt model in simulating distribution of suitable habitat of moose [J]. Journal of Northeast Forestry University, 2019, 47(10): 81 − 84, 95.
    [38] HIJMANS R J, CAMERON S E, PARRA J L, et al. Very high resolution interpolated climate surfaces for global land areas [J]. International Journal of Climatology, 2005, 25(15): 1965 − 1978.
    [39] 张微, 姜哲, 巩虎忠, 等. 气候变化对东北濒危动物驼鹿潜在生境的影响[J]. 生态学报, 2016, 36(7): 1815 − 1823.

    ZHANG Wei, JIANG Zhe, GONG Huzhong, et al. Effects of climate change on the potential habitat of Alces alces cameloides, an endangered species in Northeastern China [J]. Acta Ecologica Sinica, 2016, 36(7): 1815 − 1823.
    [40] ROSENBAUM B, POYARKOV A D, MUNKHTSOG B, et al. Seasonal space use and habitat selection of GPS collared snow leopards (Panthera uncia) in the Mongolian Altai range [J/OL]. PLoS One, 2023, 18(1): e0280011[2023-03-18]. doi: 10.1371/journal.pone.0280011.
    [41] KAZMI F A, SHAFIQUE F, HASSAN M U, et al. Ecological impacts of climate change on the snow leopard (Panthera unica) in South Asia [J/OL]. Brazilian Journal of Biology, 2021, 82: e240219[2023-03-28]. doi: 10.1590/1519-6984.240219.
    [42] BORIA R A, OLSON L E, GOODMAN S M, et al. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models [J]. Ecological Modelling, 2014, 275: 73 − 77.
  • [1] 张娟, 赵润江, 雷金睿, 林川翔, 王泽宇, 黄家健.  基于InVEST模型的海口市2000—2020年生境质量时空演变分析 . 浙江农林大学学报, 2025, 42(2): 383-392. doi: 10.11833/j.issn.2095-0756.20240358
    [2] 兰梦瑶, 周德志, 关颖慧.  延安市归一化植被指数时空变化及其驱动因素 . 浙江农林大学学报, 2024, 41(6): 1293-1302. doi: 10.11833/j.issn.2095-0756.20230610
    [3] 孔德雷, 姜培坤.  “双碳”背景下种植业减排增汇的途径与政策建议 . 浙江农林大学学报, 2023, 40(6): 1357-1365. doi: 10.11833/j.issn.2095-0756.20220742
    [4] 张世林, 高润红, 高明龙, 韩淑敏, 张文英, 赵静.  气候变化背景下中国樟子松潜在分布预测 . 浙江农林大学学报, 2023, 40(3): 560-568. doi: 10.11833/j.issn.2095-0756.20220451
    [5] 陈曦, 叶可陌, 李坤, 金阳.  资源型城市“三生空间”土地利用变化及其风险和价值研究 . 浙江农林大学学报, 2023, 40(5): 1111-1120. doi: 10.11833/j.issn.2095-0756.20220666
    [6] 贾玉洁, 刘云根, 杨思林, 王妍, 张超, 徐红枫, 郑淑君.  面向Sentinel-2A影像的大理市土地利用分类方法适用性研究 . 浙江农林大学学报, 2022, 39(6): 1350-1358. doi: 10.11833/j.issn.2095-0756.20220134
    [7] 裴顺祥, 法蕾, 杜满义, 辛学兵.  环境因子对中条山油松人工林下物种分布的影响 . 浙江农林大学学报, 2022, 39(2): 280-288. doi: 10.11833/j.issn.2095-0756.20210323
    [8] 汪雁楠, 赖国桢, 黄建建, 刘丽婷, 余良森, 温强, 龚春.  浙江红花油茶潜在适生区分布及其对未来气候变化的响应 . 浙江农林大学学报, 2022, 39(5): 989-997. doi: 10.11833/j.issn.2095-0756.20210641
    [9] 马书琴, 德吉央宗, 秦小静, 陈有超, 胡扬, 汪子微, 鲁旭阳.  基于热裂解气质联用(Py-GC/MS)技术的土壤有机质化学研究 . 浙江农林大学学报, 2021, 38(5): 985-999. doi: 10.11833/j.issn.2095-0756.20210133
    [10] 李文灏, 沈俊.  水网平原地区耕地破碎化时空变化研究 . 浙江农林大学学报, 2021, 38(4): 723-729. doi: 10.11833/j.issn.2095-0756.20200682
    [11] 郭虹扬, 史明昌, 杨建英, 陈春阳.  白洋淀大清河流域油松精准适宜性空间分布 . 浙江农林大学学报, 2021, 38(6): 1100-1108. doi: 10.11833/j.issn.2095-0756.20200599
    [12] 陈禹衡, 陆双飞, 毛岭峰.  黄檀属珍稀树种未来适宜区变化预测 . 浙江农林大学学报, 2021, 38(4): 837-845. doi: 10.11833/j.issn.2095-0756.20200522
    [13] 靳孟理, 胡俊, 齐实, 逯进生, 李月, 蒋九华.  北京市侧柏低效林物种多样性改造策略 . 浙江农林大学学报, 2020, 37(1): 27-35. doi: 10.11833/j.issn.2095-0756.2020.01.004
    [14] 邱浩杰, 孙杰杰, 徐达, 沈爱华, 江波, 袁位高, 李胜.  基于MaxEnt模型预测鹅掌楸在中国的潜在分布区 . 浙江农林大学学报, 2020, 37(1): 1-8. doi: 10.11833/j.issn.2095-0756.2020.01.001
    [15] 段彦博, 雷雅凯, 马格, 吴宝军, 田国行.  郑州市生态系统服务价值时空变化特征 . 浙江农林大学学报, 2017, 34(3): 511-519. doi: 10.11833/j.issn.2095-0756.2017.03.017
    [16] 武录义, 岳永杰, 刘果厚, 高润宏, 苏志成.  气候变化对元上都遗址区景观格局的影响 . 浙江农林大学学报, 2016, 33(2): 232-238. doi: 10.11833/j.issn.2095-0756.2016.02.007
    [17] 俞静芳, 余树全, 张超, 李土生.  应用CASA模型估算浙江省植被净初级生产力 . 浙江农林大学学报, 2012, 29(4): 473-481. doi: 10.11833/j.issn.2095-0756.2012.04.001
    [18] 沈月琴, 汪淅锋, 朱臻, 吕秋菊.  基于经济社会视角的气候变化适应性研究现状和展望 . 浙江农林大学学报, 2011, 28(2): 299-304. doi: 10.11833/j.issn.2095-0756.2011.02.021
    [19] 张利阳, 温国胜, 张汝民, 王电杰, 张俊.  毛竹光合生理对气候变化的短期响应模拟 . 浙江农林大学学报, 2011, 28(4): 555-561. doi: 10.11833/j.issn.2095-0756.2011.04.006
    [20] 曹银贵, 周伟, 程烨, 许宁, 郝银.  土地利用变化研究现状 . 浙江农林大学学报, 2007, 24(5): 633-637.
  • 期刊类型引用(5)

    1. 董亚坤,王钰,何紫玲,王鹏,赵昊,曾维军. 基于GEE的洱海流域土地利用/覆被分类算法对比研究. 西北林学院学报. 2024(01): 28-35 . 百度学术
    2. 武英洁,冯勇,徐晓琳,刘思宇,朱辉. 典型遥感影像分类方法适用性分析. 现代电子技术. 2024(06): 137-141 . 百度学术
    3. 廖超明,云子恒,罗恒,韦媛媛,凌子燕,潘桂颖. 基于特征优选的喀斯特地区覆被信息提取及精度分析. 测绘通报. 2024(02): 45-50 . 百度学术
    4. 包塔娜,范文义. 基于集合卡尔曼滤波的帽儿山森林多源LAI产品重建及融合校正方法. 浙江农林大学学报. 2024(04): 841-849 . 本站查看
    5. 李艳,张帆. 基于Sentinel-2影像的厦门市茶园遥感提取. 亚热带植物科学. 2023(04): 327-335 . 百度学术

    其他类型引用(6)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230259

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/3/526

计量
  • 文章访问数:  417
  • HTML全文浏览量:  90
  • PDF下载量:  20
  • 被引次数: 11
出版历程
  • 收稿日期:  2023-04-18
  • 修回日期:  2024-02-24
  • 录用日期:  2024-02-27
  • 网络出版日期:  2024-05-22
  • 刊出日期:  2024-05-22

土地利用和气候变化对青海省雪豹潜在适宜生境的影响

doi: 10.11833/j.issn.2095-0756.20230259
    基金项目:  国家林业和草原局西北调查规划院2021年科技创新项目 (XBJ-KJCX-2021-16)
    作者简介:

    王祥福(ORCID: 0000-0003-3176-3820),高级工程师,从事森林生态学研究。E-mail: wxf5378@163.com

    通信作者: 李愿会(ORCID: 0009-0005-3387-6687),教授级高级工程师,从事森林生态学研究。E-mail: nwinventory@sina.com
  • 中图分类号: Q958;S718.6

摘要:   目的  模拟不同气候情景下高寒山地珍稀动物适宜生境变化,对探究天然林资源保护工程前后土地利用变化对高寒山地珍稀动物的影响具有重要的实践意义。  方法  选取对雪豹 Panthera uncia分布可能存在影响的22个环境变量,分别利用2000和2020年土地利用数据代表天然林资源保护工程实施前后土地利用类型变化的情况,运用最大熵模型 (MaxEnt) 模拟雪豹适生区的分布变化,并对未来RCP 4.5和RCP 8.5等2种气候情景下2050年的雪豹潜在适宜生境进行模拟。  结果  天然林资源保护工程实施之前,雪豹在青海省的高适生区面积为11.79万 km2,中适生区面积为11.96万 km2,低适生区面积为22.96万 km2,总适宜性分布面积为46.71万 km2(占研究区域面积的64.7%)。天然林资源保护工程实施之后,雪豹的高、中、低适生区分别为11.78、11.77、24.14万 km2,总适生区面积共增加到了47.69万 km2(占研究区域面积的66.0%)。未来场景模拟结果显示:至2050年,青海省雪豹适宜生境总体上呈现出收缩聚拢的趋势,其高、中、低适宜生境面积相较于2020年都出现了一定程度的下降。其中,适宜生境在RCP 4.5和RCP 8.5情景下分别减少0.14和0.72万 km2,而中高适宜生境面积减少0.32和0.49万 km2  结论  相比2000年,2020年土地利用发生了变化,雪豹适宜生境略有增加,天然林资源保护工程并未导致雪豹适宜生境的明显扩张。气候变暖可能对雪豹的适宜生境产生负面影响。建议加强雪豹活动监测,提前制定气候变化下雪豹等濒危野生动物的保护策略。表3参42

English Abstract

贾玉洁, 刘云根, 杨思林, 等. 面向Sentinel-2A影像的大理市土地利用分类方法适用性研究[J]. 浙江农林大学学报, 2022, 39(6): 1350-1358. DOI: 10.11833/j.issn.2095-0756.20220134
引用本文: 王祥福, 李愿会, 王维枫, 等. 土地利用和气候变化对青海省雪豹潜在适宜生境的影响[J]. 浙江农林大学学报, 2024, 41(3): 526-534. DOI: 10.11833/j.issn.2095-0756.20230259
JIA Yujie, LIU Yungen, YANG Silin, et al. Applicability of land use classification method in Dali City based on Sentinel-2A image[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1350-1358. DOI: 10.11833/j.issn.2095-0756.20220134
Citation: WANG Xiangfu, LI Yuanhui, WANG Weifeng, et al. Impact of land use and climate change on potential suitable habitats of snow leopards (Panthera uncia) in Qinghai Province[J]. Journal of Zhejiang A&F University, 2024, 41(3): 526-534. DOI: 10.11833/j.issn.2095-0756.20230259
  • 不合理的土地利用会影响生态环境的稳定性,同时对生物多样性造成巨大影响,严重威胁物种的生存与繁衍。天然林资源保护工程实施20多年以来,森林资源得到了很好的保护和恢复,森林面积和蓄积实现了双增长,动植物资源也变得丰富,生物多样性得到有效保护[12]。天然林资源保护工程实施前后,土地利用类型发生了重大转变。这种转变主要表现为乔灌林地面积的扩张以及裸地面积的削减,其中灌木林地增加了近1.3万 km2 [3],极大丰富了动植物栖息地,为野生动物提供了更多可能的适生区。甘肃省对林业资源的保护增加了当地野生动物数量[4],这表明天然林资源保护工程实施引起的乔灌草等土地利用类型面积的扩张有利于野生动物的栖息和繁衍。近年来全球气候变化问题日趋严重,造成部分动植物栖息地丧失,同时也破坏了生态系统中物种间关系的平衡,显著降低了生态系统的生物多样性[4]。青海省地处青藏高原东北部,生态系统脆弱,在很大程度上受到气候变化的影响[5]

    模拟濒危物种的适生区分布对确定濒危物种保护区并制定相关保护措施具有重要意义[6]。洪洋等[7]分析了卧龙自然保护区的雪豹Panthera uncia生境选择偏好与食源结构特征。李欣海等[8]利用物种分布模型和距离抽样评估了三江源藏野驴Equus kiang、藏原羚Procapra picticaudata和藏羚羊Pantholops hodgsonii的数量[5]。宓春荣等[9]发现:物种分布模型预测的高适宜分布区有利于提高发现稀有种的概率,从而增强调查的针对性。李芳菲等[10]利用最大熵模型(Maximum Entropy,MaxEnt)结合气候、地形和人为干扰等关键环境变量对雪豹在祁连山山区的生境适宜性进行了评估和分析。杨子文等[11]利用MaxEnt模型对当前和未来全球不同发展模式引起的气候变化对雪豹适宜生境的影响进行了模拟预测和分析评估。然而,上述研究未能考虑灌丛、草地和雪山等土地利用类型的变化情况,且未考虑土地利用的影响。

    雪豹是猫科Felidae豹属Panthera哺乳动物,被人们称为“高海拔生态系统健康与否的气压计”。中国是雪豹重点分布的国家之一,拥有60%的雪豹栖息地,天山、青海等高海拔陡峭偏远地区是雪豹的主要分布地。20世纪过度的人为捕杀以及植被退化,导致雪豹种群数量逐年下降。2008年,雪豹被世界自然保护联盟(IUCN)评定为濒危物种[12],是中国一级重点保护野生动物[13]。近年来,随着一系列生态工程和相关保护工作的实施,雪豹保护取得了一定的成效[13],但是日益加剧的气候变化仍然对雪豹未来的生存和发展构成较大的威胁。因此,本研究利用物种分布模型,模拟雪豹在天然林资源保护工程实施前后以及未来2种气候情境下雪豹的适宜生境,探究天然林资源保护工程实施前后土地利用类型的转变和气候变化对雪豹适生区的影响,以期揭示天然林资源保护工程实施后土地利用类型的转变对濒危野生动物保护的积极作用,并为气候变化下制定雪豹的保护策略提供一定的理论参考。

    • 青海省地处青藏高原东北部,全省80%以上的区域为高原,地理坐标为31°36′~39°19′N,89°35′~103°04′E,总面积为72.23 万km2,全省平均海拔为3 000 m以上,其中海拔4 000~5 000 m地区占全省总面积的54%。地势总体呈西高东低,南北高中部低,地貌复杂多样,是雪豹的重要集中分布区。青海省属典型的高原大陆性气候,年平均气温为−5.1~9.0 ℃,最冷月1月平均气温为−17.4~−4.7 ℃,最热月7月平均气温为5.8~20.2 ℃。全省降水量呈由东南向西北逐渐减少的分布趋势,境内绝大部分地区年降水量小于400.0 mm。青海有高等植物2 700多种,占全国维管束植物种数的9.6%,其中有许多是中国特有或青海特有的植物。目前,青海有14种珍稀、濒危植物列入国家级重点保护范围,57种野生植物列入省级重点保护范围。青海野生动物资源较丰富。根据最新普查资料,青海有陆栖脊椎动物约1 100种,鸟类294种,占全国已知鸟类种数的1/4;兽类103种,占全国已知兽类种数的1/3,其中受国家重点保护的珍稀鸟兽达74种。青藏高原特有的10余种珍禽异兽总量超过30万头(只)。

    • 物种分布模型(species distribution models,SDMs)是利用物种分布数据(出现数据)和环境数据,评估物种在环境中的生态位,可以反映物种对生境的偏好程度,解释推测物种在区域内的出现概率、对生境适宜度的要求和物种丰富度等重要的生态评估指标[14]。 物种分布模型的发展始于BIOCLIM模型,此后的30多年内,越来越多的物种分布模型相继出现,如生态位因子分析模型(ecological niche factor analysis, ENFA) 、最大熵模型(MaxEnt)以及基于统计的和基于规则集的遗传算法 (genetic algorithm for rule-setprediction, GARP)等[15],其中MaxEnt模型是目前公认表现最好、应用最广的生态位模型[1617]。近年来,MaxEnt模型应用于物种分布预测、入侵物种分布预测、自然保护区设计和全球气候变暖对物种适生区域的影响等热点生态学问题,取得了较好结果[1821]。但MaxEnt模型也有一定的缺陷,如模型的时空外推能力仅在低阈值情况下较好,在较小的样本量情况下得出的结论可能对物种生态位模拟不完整,导致模拟结果失真[22]

    • 根据中国知网文献资料和媒体的报道,确定102个雪豹分布点。

    • 政府间气候变化专门委员会(IPCC)第5次报告明确以2100年总辐射强迫为指标,确定了4个典型温室气体浓度路径(representative concentration pathway, RCP)排放情景,分别对应的情景是2100年总辐射强迫相对于1750年达到2.6、4.5、6.0和8.5 W·m−2。RCP 4.5情景是到2100年,温室气体浓度对应辐射强迫稳定在4.5 W·m−2,大气中二氧化碳(CO2)质量分数增至538 mg·kg−1[23];RCP 8.5情景代表世界各国未采取任何温室气体减排措施,是温室气体排放量最高的情景,到2100年辐射强度超8.5 W·m−2,即CO2质量分数大于1 370 mg·kg−1。本研究选取了目前接受度较高的RCP 4.5和RCP 8.5情景。

      从WorldClim (https://www.worldclim.org/)下载并转换了当代(1970—2000年30 a气候观测数据的平均值)及未来(2050年)等2种不同强度气候变化场景(RCP 4.5和RCP 8.5)下的气候数据,所需的气候数据均来自全球气候模型[Community Climate System Model (version 4),CCSM 4],包括19个气候因子。选用的19个气候因子主要反映了降水量和温度的特点以及季节性的变化特征[24]。这些气候因子具有较强的生物学意义,已被广泛用于物种适宜分布区的预测中[16]

    • 人类活动数据(代表人类活动产生的干扰)来自于国际地球科学中心信息网络(CIESIN, http://www.ciesin.org/),它可以综合反映人类活动的强度。该数据来自对以下因素的综合评估:建成环境、人口密度、电力基础设施、农作物土地、牧场、道路、铁路、可用航道,从中提取青海地区的部分用于模型模拟。

    • 青海省 2000和 2020 年的土地利用数据来自 MODIS 图像(https://search.earthdata.nasa.gov/search)。在解译之前,利用地面样本对遥感数据进行了地理参照,2014年土地利用判读结果与《青海省森林资源规划设计调查成果(2014年)》进行了对比验证,表明总体分类准确率超过 85%。根据判读标准,土地利用被判读为 11 种类型,即农业用地、森林用地、灌木林地、疏林地、草地、水体、永久积雪和冰川、建筑用地、裸地、荒漠和沙化土地、湿地[3]。利用ArcGIS对各分类进行统计(表1),结果显示:灌木林地和裸地面积是变化最大的2种土地利用类型,灌木林地面积扩大了1.29 万km2,裸地面积减少了2.52 万km2。森林用地、草地、永久积雪和冰川、水体、湿地均有所增加,分别增加了0.21、0.77、0.06 、0.33和0.53 万km2。农业用地、疏林地、建筑用地、荒漠和沙化土地有所减少,分别减少了0.05、0.01、 0.11和0.49 万km2

      表 1  2000和2020年青海省主要土地利用面积情况

      Table 1.  Areas of main land use type in Qinghai Province in 2000 and 2020

      年份
      土地利用面积/万km2
      农业用地森林用地灌木林地疏林地草地水体永久积雪和冰川建筑用地裸地荒漠和沙化土地湿地
      20000.900.383.350.0341.661.380.660.3113.694.352.49
      20200.850.594.640.0242.431.710.720.2011.173.863.02
    • 青海水系数据来源于国家科技基础条件平台——国家地球系统科学数据中心(http://www.geodata.cn)。在此基础上,利用ArcGIS计算出青海省范围内距水系距离的栅格数据。

    • 数字高程(DEM)数据来源于WorldClim (https://www.worldclim.org/),通过ArcGIS裁剪出青海地区的DEM作为模型的输入数据。

    • 将搜集到的全部环境数据输入建立初始模型。为了降低环境因子之间的高度相关性和共线性而导致模型过度拟合,本研究采用Pearson相关分析选择环境变量。在Pearson相关系数绝对值大于0.8的2个因子中,只保留生态意义较大和初始模型中贡献率较大的一个环境变量。最终选择11个环境变量,包含7个气候变量(最热季度降水量、降水季节性变化系数、最干月降水量、最湿季度平均气温、气温日较差、等温性、最冷月最低温度)、海拔、人类活动、距水系距离以及土地利用变化。

    • 将收集的栅格数据在ArcGIS里统一边界和分辨率,并转为ASCII 格式,作为输入 MaxEnt 模型的环境变量,同时将收集到的青海地区雪豹分布点数据在 Excel中记录并转化为 CSV 格式也输入MaxEnt 模型。将 75%的数据作为训练数据,25%作为测试数据[25]。设置软件重复运算 15 次(即产生 15 个随机的预测模型)[26] ,输出分布值为逻辑斯蒂值(logistic)。

      MaxEnt提供了结果精度计算功能,可以生成受试者工作特征曲线(receiver operating characteristic curve, ROC)进行模型的模拟预测自检,并且在对动物生境进行评价与预测时,只需动物“出现点”的数据,且具有较高的精度[11, 20, 25]。曲线下面积(area under curve, AUC)值越大说明环境因子与雪豹分布模型之间相关性越大,预测效果也越好。其评价标准为:AUC值为0.5~0.6时,模型预测失败;AUC值为0.6~0.7时,模型预测效果较差;AUC值为0.7~0.8时,模型预测效果一般;AUC值为0.8~0.9时,模型预测效果好;AUC值为0.9~1.0,模型预测效果非常好[27]。由于不同区域气候存在不同程度的相关性,最终需结合刀切法和贡献率结果,筛选出影响雪豹分布的主要气候因子。

      本研究按照MaxEnt模型输出的每个地理单元生境适宜性值,对该地理单元进行分级。将雪豹适宜生境(区域)划分为4个等级:0~0.1为非适生区,0.1~0.3为低适生区,0.3~0.5为中适生区,0.5~1.0为高适生[2829]

    • MaxEnt模型15次重复运算结果显示:平均AUC值达0.838,说明模型模拟效果较好,结果的可信度较高。基于2020年土地利用数据和当前气候条件进行建模的结果显示:贡献率前5位的环境变量依次为最热季度降水量(43.5%)、降水季节性变化系数(29.8%)、人类活动(6.3%)、最干月降水量(5.3%)和海拔(4.6%),以上环境因子对于模型的累计贡献率达到89.5%。可见,这5个环境因素主导了雪豹的分布(表2)。

      表 2  各环境因子对模型预测的贡献率

      Table 2.  Contribution rates of input factors

      环境因子贡献率/% 环境因子贡献率/% 环境因子贡献率/%
      最热季度降水量(bio18) 43.5 海拔 4.6 等温性(温度日较差/气温年较差,bio3) 1.8
      降水季节性变化系数(bio15) 29.8 距水系距离 2.7 土地利用变化(2020年) 1.0
      人类活动 6.3 气温日较差(bio2) 2.3 最冷月最低气温(bio6) 0.5
      最干月降水量 (bio14) 5.3 最湿季度平均气温(bio8) 2.0
    • MaxEnt模拟结果显示:天然林资源保护工程实施后(2020年)雪豹在青海省的适宜生境面积相较于天然林资源保护工程实施之前(2000年)有所增加但增加幅度不大(增加了0.98 万km2)。2000和2020年,雪豹在青海省的地理分布范围基本一致,主要集中在青海省南部的玉树州(杂多县、囊谦县、玉树市和治多县),青海省东北部的海北州(祁连县、刚察县、海晏县),以及天峻县、玛沁县、同仁县等地。2000和2020年雪豹在青海省的高适生区面积分别为11.79和11.78 万km2,中适生区面积分别为11.90和11.77 万km2,低适生区面积分别为22.96和24.14 万km2。由此可以看出:土地利用的改变使得雪豹在青海省的低适生区变大,而对中高适生区无明显影响。

    • 在假设土地利用类型不变的情况下,本研究模拟了2050年2种气候场景(RCP 4.5和RCP 8.5)下的青海省雪豹的适宜生境。结果显示:2050年,雪豹在青海省的适宜生境面积相较于2020年总体上是减少的,但适生区减少的面积并不大。在RCP 4.5的气候场景下减少0.14 万km2,在RCP 8.5的气候场景下减少0.72 万km2。ArcGIS分区统计结果显示:雪豹在2050年的中高适宜生境面积相较于2020年都出现了一定程度的下降,其中,高适生区在RCP 4.5和RCP 8.5情景下分别减少0.25和0.03 万km2;中适生区在RCP 4.5和RCP 8.5情景下分别减少0.07和0.46 万km2。低适生区在2050年RCP 4.5气候情景下增加0.18 万km2,在RCP 8.5气候情景下减少0.23 万km2

      将中高适宜生境视作整体统计,得到其主要适宜生境(适宜指数>0.3的区域),在2050年RCP 4.5和RCP 8.5情景下分别丧失1.44和1.46 万km2;扩张的适宜生境分别为1.12和0.96 万km2,总体上丧失的适宜生境多于扩张的适宜生境(表3)。在未来,青海省雪豹分布区总体稳定,但局部地区(如称多县、曲麻莱县、格尔木市南、德令哈市、天峻县、乌兰县、达日县等)会缩减,局部地区(如班玛县、久治县、共和县、兴海县、同德县、泽库县、河南县等)会扩张。在RCP 4.5和RCP 8.5气候变化情境下均呈现这种趋势,只是在各地区的变化程度不一定,如在RCP 4.5的气候变化情境下,青海省东部地区的扩张程度大于西部地区,而在RCP 8.5的气候变化情境下青海省西部地区的扩张程度大于东部地区。

      表 3  未来2种气候情景下雪豹丧失、扩张及稳定适生区面积

      Table 3.  Areas of suitable habitat loss, expansion and stabilization in current and future climate change scenarios

      气候情景2050年变化区面积/万km2
      丧失区稳定区扩张区
      RCP 4.51.4422.111.12
      RCP 8.51.4622.090.96
    • 本研究的遥感解译和判读结果是通过森林资源二类调查结果验证的,土地利用分类数据与青海省第3次全国国土调查数据存在一些差异。本研究中的建筑用地和冰川面积并没有进行实际验证,因此存在误差,然而这种差异只体现在面积占比较小且对雪豹分布影响不大的土地类型上。

      本研究发现:2020年雪豹的适生区比2000年有所增加但增幅较小,说明土地利用对雪豹分布有积极影响,但这种影响并未完全驱动雪豹适生区面积的扩展。土地利用类型对雪豹分布的贡献率只占1.0%也证实了土地利用类型变化并不会对雪豹分布产生显著的直接影响。主要原因是雪豹主要的栖息环境多在常年冰雪覆盖的高山裸岩及寒漠带,而在这20 a间实施的天然林资源保护工程造成了草地、疏林地、灌木林及乔木林地这些土地利用类型的改变,对雪豹栖息地的直接影响较小。以往有研究表明:天然林资源保护工程增加了雪豹的种群数量[3031],但没有过多关注天然林资源保护工程后土地利用的变化对于雪豹适生区面积的影响。关于雪豹分布的研究主要集中于气候因子对雪豹适生区的影响[11]。近年来的相关研究逐渐加入了人类活动、地形、水文、其他动植物分布及土地利用等因素[10]。有研究指出:土地利用对于雪豹分布的影响较小(贡献率只占5.3%)[32] ,但龚健辉等[33]研究发现:土地利用对于雪豹分布的影响巨大(贡献率达53.8%),与本研究结果不同。产生不同结果的原因可能是由于研究区域和范围不同。

    • 本研究结果显示:雪豹的高适生区主要分布在青海省南部雪山和冰川较多的玉树州以及青海东北部的祁连山区域(海北州),这与雪豹本身的习性较为吻合[34]。最热季度降水量对雪豹分布的贡献率最高,其次是降水季节性变化系数,对雪豹分布占主导的影响因素都是与降水相关的环境变量,这与过去研究结果较为接近[8]。降水一方面会影响灌木丛[35]和草地[36]的初级生产力,从而间接影响以此为栖息地的动物种群数量,最终影响雪豹的食物供给[8, 37];另一方面,降水也影响河流径流,从而影响雪豹的水源供应[22]。人类活动对雪豹分布的贡献率占6.3%,因此对雪豹生境的保护应该尽量避免人类活动的干扰。本研究结果还显示:海拔对雪豹分布的影响相对较小(占4.6%),这与部分研究有所不同[31, 33],但也有研究显示:海拔与雪豹分布并无显著相关性[32] 。造成这些研究结果差异的原因一方面可能是研究区的空间尺度和位置不同,另一方面可能是本研究采用的其他环境变量相较于海拔对雪豹分布有强影响作用。本研究区海拔普遍较高,雪豹分布点都集中在较高海拔地区,

      气候变化会直接或间接影响动植物生境区域的温度、降水等气候因子及其相关的生态因子[23],从而影响生物的养分获取、生存和繁殖等行为,因此模拟气候变化对雪豹适宜生境的影响对提前制定响应的保护策略具有重要的意义。本研究模拟结果显示:2050年雪豹在青海省的适宜生境相较于2020年总体上呈现减少的趋势,尤其青海省南部的玉树州、果洛州以及海西州东北部(天峻县和乌兰县)的适宜生境减少较为明显。这一结果与杨子文等[11]的研究在一定程度上相近。玉树州、果洛州以及海西州的东北部雪山较多,在未来气候变暖的情况下,雪山和冰川面积可能会减少[38],导致雪豹栖息地减少。随着全球气候变暖,雪豹这类喜爱寒冷环境的濒危动物的适生区面积会出现缩减的情况[39]。这除了对雪豹的生境面积带来直接的影响外,可能会通过雪豹的食性偏好间接影响雪豹的生境适宜性[40]。也有研究表明:在冬季雪豹会偏向栖息于温度较高的环境,但该现象是否直接源于雪豹对于栖息地温度的选择仍不明确[41]。另外,基于岛屿生物地理学理论,适宜生境破碎化还会产生额外的消极影响[42]。气候变化所导致的雪豹适宜生境的破碎化将导致雪豹的活动范围受限,对于体型和习性上均不占优势的雪豹而言,其在适生区范围内的捕食等种内或种间竞争可能更加激烈,最终将进一步对其种群数量产生负作用。

    • 本研究将19个生物气候因子和其他4个与雪豹分布相关的环境因子(海拔、人类活动、距水系距离及土地利用变化)作为驱动物种分布模型的环境变量,结合雪豹分布点的经纬度数据,比较了天然林资源保护工程实施引起的土地利用变化对雪豹潜在适生区的影响,并使用未来的气候数据,预测了未来2050年2种不同强度气候变化场景(RCP 4.5和RCP 8.5)下雪豹的适宜生境情况。最热季度降水量、降水季节性变化系数、人类活动、最干月降水量、海拔等环境因素主导了雪豹的分布。天然林资源保护工程实施后土地利用的变化在一定程度上增加了雪豹适宜生境的面积,但由于天然林资源保护工程并没有使雪豹栖息环境,如常年冰雪覆被的高山裸岩及寒漠带等土地利用类型增加,因此这20 a间土地利用变化对于雪豹适生区影响较小。本研究还发现:气候变化主要通过水分因子的改变影响雪豹的分布。预测2050年青海省的雪豹适生面积将会出现一定程度的缩减。因此,在气候变化背景下,林业管理部门应当加强对雪豹活动的监测,提前制定气候变化下雪豹等濒危野生动物的保护策略。

参考文献 (42)

目录

/

返回文章
返回