-
单叶铁线莲Clematis henryi为多年生常绿木质藤本,为毛茛科Ranunculaceae铁线莲属Clematis植物。铁线莲属植物种类丰富,全世界约300种,中国分布108种。该属植物多为藤本,兼具药用以及观赏价值,栽培品种多样,在西方园林中应用广泛,素有“藤本皇后”之美誉[1−2]。中国拥有丰富的铁线莲属植物资源,但绝大多数仍处于野生状态[3]。单叶铁线莲花为白色或淡黄色,聚伞花序,花量大,具芳香,花期为12月至翌年2月,有效填补了现有铁线莲品种冬季少花的空白,具有极大的开发利用潜力[4]。
光照对植物的生长和发育具有重要的作用,除了影响光合作用之外,也影响植物体内激素的产生和形态建成、生理特征、新陈代谢和基因表达调控等[5−6]。城市园林中的小环境光照强度变化多样,光照过强会灼伤植株叶片,破坏光系统,过低则降低植物的光合效率,影响植物生长和观赏效果[7]。研究表明:遮光条件下植株具有形态可塑性,植物可以通过调节体内保护酶活性和次生代谢物含量适应遮光环境,夏季适度遮光能够明显提高光合作用[8−9]。选择适宜的光照环境,对园林植物健康生长,以及生态价值、观赏价值的充分发挥起到决定性作用。现有铁线莲品种多为春秋季开花的喜阳类型,单叶铁线莲作为冬季开花且具有良好耐阴性的植株种类,可以满足林下栽培、室内观赏等多种景观需求,将有效扩大铁线莲品种的栽培应用范围。因单叶铁线莲药用价值高,前人对其研究多集中在药材性状、资源调查、药理作用等方面[10],而关于单叶铁线莲的园林应用和遮光对其生理特性影响的研究尚未见报道。本研究对不同遮光强度下单叶铁线莲幼苗的生长发育及生理特性进行研究,探讨其对不同遮光强度响应的生理机制,为单叶铁线莲在园林中的栽培应用提供依据。
-
研究在浙江农林大学东湖校区铁线莲种质资源圃中(30°13′19.2″N,119°22′33.6″E)进行。该区属亚热带湿润型季风气候,雨量充足且四季分明,年平均气温为13.0~21.0 ℃,年均降水量为1 427.0 mm,年均日照时数为1 939.0 h,无霜期为23.0 d。2022年3月2日选取60株长势良好、生长一致的3年生单叶铁线莲扦插植株移栽于上口径16.0 cm、下口径12.0 cm、高13.5 cm的容器中,单株定植,栽培基质[V(珍珠岩)∶V(泥炭土)=1∶1]一致。容器苗置于大棚内(遮光强度为73%),常规栽培及管理。研究区5、6、7月日均最高气温分别为26.0、33.0、36.0 ℃;正午最高光强分别为1 300 、1 550 、1 800 μmol·m−2·s−1。
-
2022年5月20日,从上述移栽的植株中选取生长健康,且长势一致的40株用于后续研究。共设5个遮光处理,遮光率分别为80% (T1)、60% (T2)、50% (T3)、40% (T4)和0 (ck),每个处理8株,植株间距为25 cm,防止相互遮挡,期间常规栽培管理。15 d后开始进行形态和光合生理指标的测定。
-
2022年6月5日开始,分别于遮光后的15 d (6月5日)、30 d (6月20日)和60 d (7月20日)共3次测量并记录每组单叶铁线莲的分蘖数、节数以及节间距,并取平均值,拍照记录叶片变化。7月30日,各处理分别取3株带回实验室,冲去根部泥土,60 ℃烘干至恒量,测定生物量。
-
2022年6月5日开始,每15 d测定1次,分别于遮光后的15 d (6月5日)、30 d (6月20日)、45 d (7月5日)和60 d (7月20日)共测定4次。可溶性蛋白(SP)采用考马斯亮蓝法测定[11];丙二醛(MDA)采用硫代巴比妥酸显色法测定[11];叶绿素采用乙醇浸提-分光光度法测定[11]。
-
采样时间同1.3.2。超氧化物歧化酶(SOD)活性采用南京建成科技有限公司的试剂盒测定,以每克组织在1 mL反应液中SOD抑制率达50%时所对应的SOD量为1个SOD活力单位;过氧化物酶(POD)活性采用愈创木酚法测定[11];过氧化氢酶(CAT)活性采用苏州格锐思生物科技有限公司的试剂盒测定,以25 ℃下每克组织每分钟催化分解1 μmol过氧化氢为1个酶活单位。
-
所有数据均采用Excel 2010和Origin 2022进行整理和作图,利用SPSS 26.0进行方差分析和相关性分析。文中数据均为平均值±标准差。
-
遮光处理30 d后单叶铁线莲叶片颜色均比对照颜色深,其中T1为浓绿色;处理60 d后,T3、T4处理组叶片发黄,对照叶片边缘及叶尖出现明显的皱缩和焦枯现象(图1)。表明遮光处理有利于叶片生长,高光强叠加高温会降低叶绿素的合成甚至使叶片受到损害。
方差分析(表1)显示:与对照相比,T1处理的分蘖数、节数总体平均增加了63.0%、24.3%,60 d时,T1、T2、T3处理的节间距分别高于对照29.8%、10.7%、36. 6%。随着时间的延长,植株分蘖数、节数和节间距均有增长,30 d时增幅最大,整体呈先快后慢的增长趋势。此外,不同遮光处理之间的植株生长也存在一定差异,如60 d时,T4处理的分蘖数最多(3.6个),T1处理的节数最多(13.6个),T3处理的节间距最大(17.9 cm)。可见,促进分蘖数、节数和节间距增加的最适宜光强存在差异。生物量测定结果显示:T2、T3处理的生物量显著高于其他处理(P<0.05),分别比对照高58.2%和61.7%(表2),表明50%~60%的遮光促进植株生长,高温、强光不利于植株干物质积累。
表 1 遮光对单叶铁线莲分蘖数、节数、节间距的影响
Table 1. Effect of shading on tillers, number of nodes, and internode spacing of C. henryi
处理 分蘖数/个 节数/个 节间距/cm 15 d 30 d 60 d 15 d 30 d 60 d 15 d 30 d 60 d T1 2.10±0.10 a 3.00±0.10 a 3.20±0.16 AB 10.20±0.10 AB 13.00±0.10 A 13.60±0.16 a 16.00±0.10 A 16.80±0.10 A 17.00±0.16 B T2 1.75±0.04 a 2.50±0.85 ab 2.70±0.20 AB 8.20±0.04 B 10.00±0.85 B 12.10±0.20 ab 14.00±0.04 B 14.30±0.30 B 14.50±0.20 C T3 2.00±0.13 a 3.40±0.30 a 3.50±0.20 AB 10.20±0.13 AB 12.00±0.30 AB 12.30±0.20 ab 17.00±0.13 A 17.50±0.30 A 17.90±0.20 A T4 2.10±0.07 a 3.50±0.05 a 3.60±0.10 AB 10.30±0.07 AB 12.50±0.05 AB 13.00±0.10 a 13.00±0.07 B 14.00±0.05 BC 14.20±0.10 C ck 1.75±0.20 a 2.00±0.15 b 2.10±0.01 B 12.50±0.20 A 13.00±0.15 AB 13.00±0.01 a 13.00±0.20 B 13.10±0.15 C 13.10±0.01 D 说明:不同大写字母表示同一时间不同处理间差异极显著(P<0.01);不同小写字母表示同一时间不同处理间差异显著(P<0.05)。 表 2 遮光对单叶铁线莲生物量的影响
Table 2. Effects of shading on biomass of C. henryi
处理 生物量/g T1 35.0±3.1 b T2 40.5±2.0 a T3 41.4±1.7 a T4 33.2±2.4 b ck 25.6±1.3 c 说明:不同小写字母表示不同处理间差异显著(P<0.05)。 -
由图2可知:对照处理的可溶性蛋白(SP)最低,45和60 d时,T1处理的MDA质量摩尔浓度显著低于其他处理(P<0.05),遮光处理促进蛋白质合成的同时减少MDA的产生。随着处理时间的延长,除对照和T4处理外,SP质量分数呈升—降—升的变化趋势,对照处理的MDA质量摩尔浓度持续升高,60 d时达最大值(56.4 μmol·g−1),表明高温高光强胁迫下植物对于能量的固定能力下降,引发较强细胞膜脂过氧化作用。T3处理60 d时的SP质量分数高于30 d,而MDA质量摩尔浓度却分别低于T4、ck处理25.0%、26.6%,即适宜遮光度更有利于有机物积累,减少膜脂过氧化分解产物生成,膜系统更稳定。
图 2 遮光对单叶铁线莲可溶性蛋白(A)和丙二醛(B)的影响
Figure 2. Effect of shading on soluble protein(A) and malondialdehyde (B) contents of C. henryi
从表3可见:遮光处理15 d时,T1处理的叶绿素a/b最高(4.37)。60 d时遮光组的各指标均高于对照,高温、强光胁迫降低了单叶铁线莲合成叶绿素的能力。除15 d以外,T1处理的叶绿素a、叶绿素b、叶绿素a+b均最高,并显著高于对照(P<0.05)。说明单叶铁线莲可以通过提高叶绿素质量浓度适应遮光环境,更大限度地捕捉光能。
表 3 不同遮光处理下叶片叶绿素质量浓度的比较
Table 3. Comparison of different shading treatments on leaf chlorophyll content
处理
时间/d叶绿素a/(mg·L−1) 叶绿素b/(mg·L−1) T1 T2 T3 T4 ck T1 T2 T3 T4 ck 15 0.44±0.06 B 0.79±0.29 A 0.43±0.13 B 0.73±0.14 AB 0.67±0.06 AB 0.11±0.05 a 0.26±0.16 a 0.11±0.04 a 0.18±0.05 a 0.15±0.03 a 30 0.60±0.12 A 0.42±0.13 AB 0.62±0.00 A 0.34±0.11 B 0.29±0.09 B 0.23±0.03 A 0.13±0.06 BC 0.20±0.01 AB 0.07±0.06 C 0.07±0.05 C 45 1.54±0.16 A 0.66±0.09 B 0.29±0.04 D 0.48±0.06 C 0.24±0.02 C 0.73±0.08 A 0.38±0.04 B 0.24±0.02 CD 0.30±0.02 BC 0.22±0.01 D 60 0.62±0.10 A 0.42±0.05 B 0.28±0.01 C 0.42±0.03 B 0.15±0.03 D 0.23±0.03 A 0.13±0.02 B 0.14±0.08 AB 0.14±0.02 AB 0.13±0.02 B 处理
时间/d叶绿素a+b/(mg·L−1) 叶绿素a/b T1 T2 T3 T4 ck T1 T2 T3 T4 ck 15 0.55±0.10 B 1.05±0.35 A 0.54±0.16 B 0.91±0.17 AB 0.82±0.03 AB 4.37±1.30 a 3.82±1.93 a 3.98±0.87 a 4.17±1.08 a 4.68±1.15 a 30 0.83±0.15 A 0.56±0.18 AB 0.81±0.01 A 0.42±0.16 B 0.36±0.14 B 2.64±0.28 a 3.35±0.80 a 3.11±0.09 a 6.95±4.51 a 5.93±3.95 a 45 2.28±0.25 A 1.03±0.12 B 0.53±0.05 CD 0.78±0.07 BC 0.47±0.03 D 2.10±0.02 A 1.74±0.08 B 1.24±0.07 D 1.55±0.11 C 1.11±0.05 D 60 0.85±0.13 A 0.55±0.06 B 0.42±0.07 BC 0.56±0.03 B 0.28±0.06 C 2.74±0.06 A 3.73±0.25 A 4.24±2.46 A 3.05±0.36 A 1.24±0.17 B 说明:不同大写字母表示同一时间不同处理间差异极显著(P<0.01);不同小写字母表示同一时间不同处理间差异显著(P<0.05)。 -
图3显示:遮光时间对POD、CAT和SOD活性均有影响,其中POD和CAT活性随时间推移整体上升,SOD则不断下降,表明7月高温和强光胁迫叠加下,氧离子和氢氧根离子的积累超出了SOD的清除能力,POD和CAT被不断激活,成为保护细胞活力的主要力量,并起主要作用来抵抗植物体内的氧化物。除15 d之外,POD和CAT活性随着遮光强度由强到弱,均呈升—降—升的变化趋势,表明不同遮光环境下2种酶协同发挥作用,共同维持细胞膜稳定。45 d时T1处理的POD活性较低,T4处理的CAT活性分别显著高于T1、T2处理(P<0.05),说明短期高温高光强胁迫下,遮光强度较高时POD保持较低活性,即可抵御逆境带来的损害,遮光强度较低时CAT活性升高以维持细胞内部稳定。
-
相关性分析(表4)表明:CAT、SOD和POD活性均与MDA呈显著(P<0.05)或极显著(P<0.01)正相关,说明弱光或高温高光强环境使植物体内积累过量MDA,此时植株通过提高抗氧化酶活性来清除逆境下产生的有害物质。MDA与节间距、生物量均呈极显著负相关(P<0.01),而可溶性蛋白与节间距、生物量呈极显著正相关(P<0.01),膜脂过氧化产物对植物造成损伤,不利于植物形态发育以及干物质的积累。
表 4 不同遮光处理下植株形态和生理指标的相关性分析
Table 4. Correlation analysis of morphological and physiological indexes under different shading treatments
指标 生物量 分蘖数 节数 节间距 叶绿素
总量可溶性
蛋白MDA CAT POD SOD 生物量 1 分蘖数 0.152 1 节数 −0.142 0.542* 1 节间距 0.585* 0.421 0.300 1 叶绿素总量 0.303 0.733** 0.579* 0.420 1 可溶性蛋白 0.854** 0.423 0.102 0.718** 0.531* 1 MDA −0.684** −0.302 −0.234 −0.707** −0.623* −0.789** 1 CAT −0.325 −0.594* −0.375 −0.143 −0.794** −0.468 0.604* 1 POD −0.403 −0.461 −0.453 −0.952** −0.454 −0.613* 0.689** 0.203 1 SOD −0.631* −0.442 −0.012 −0.444 −0.535* −0.744** 0.684** 0.692** 0.425 1 说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)。 -
单叶铁线莲的分蘖数、节数和节间距分别于不同遮光强度下达到最高值,但与金线莲Anoectochilus roxburghii[12]和绢毛匍匐委陵菜Potentilla reptans[8]生长过程中不同器官生长发育适宜的光照强度并不一致。表明光因子对植株可塑性具有一定的影响,弱光刺激植株株节的纵向生长,以获得更多的光能[13],适度遮光有效保持叶色浓绿,强光胁迫使叶片发黄、皱缩。研究表明:遮光下桫椤Alsophila spinulosa幼苗叶绿素显著增加,全光照下出现日灼现象[14]。本研究中单叶铁线莲在50%~60%的遮光下生物量最高,这与香榧Torreya grandis ‘Merrillii’在不同遮光水平下的研究结果一致[15],表明中度遮光有利于耐阴植物的生物量积累,保持较好的生命活力。耐阴种类齿叶铁线莲C. serratifolia和褐毛铁线莲C. fusca[16]的光补偿点为8~24 μmol·m−2·s−1,自然分布环境多在落叶和常绿阔叶混交林下,这与单叶铁线莲生境相似。邵伟丽等[4]研究发现:单叶铁线莲比毛叶铁线莲C. lanuginosa、毛萼铁线莲C. hancockiana等6个野生种耐阴性更强,建议在选择遮光的小环境中栽培,本研究也得到类似结果。此外,单叶铁线莲园林应用过程中应保持适度遮光,促进分蘖数、节数、节间距的增加和叶绿素的形成和积累,使叶色浓绿,提升垂直绿化景观效果,遮光强度设置还要综合考虑光照强度对其不同器官生长发育的影响,保障观赏效果。
-
MDA作为膜脂过氧化产物,反映膜脂过氧化及膜受伤害的程度,可溶性蛋白含有多种参与植物体内代谢的酶类,是维持正常渗透势的重要渗透调节物质。本研究中短期(30 d)轻度遮光(T4)和不遮光(ck)处理植株的MDA质量摩尔浓度均显著低于其他处理,可能是短期弱光胁迫导致植株体内膜脂过氧化产物积累,低光强下紫心甘薯Ipomoea batatas [17]也得到类似结果。遮光组可溶性蛋白质量分数均显著高于对照,表明低光强有利于单叶铁线莲积累光合产物,这与金莲花Trollius chinensis[18]和地黄Rehmannia glutinosa[19]的研究结果相似。7月强光高温胁迫叠加,各处理组MDA质量摩尔浓度升高,可溶性蛋白质量分数降低,活性氧产生速度超过抗氧化物清除能力,细胞质膜通透性变大,细胞质外渗,导致植物生理代谢紊乱,植物体通过消耗可溶性蛋白来维持细胞膨压和降低渗透势,降低损害[20]。同时,遮光条件下植株MDA质量摩尔浓度减少,这与北江荛花Wikstroemia monnula[21]在遮光条件下的研究结果一致,表明遮光处理有效减缓了植株受到的伤害。
叶绿素直接影响叶肉细胞光合作用的强弱,是植物适应和利用环境因子的重要指标[22]。处理30 d时,遮光组叶绿素总量均高于对照,单叶铁线莲通过增加叶绿素质量浓度来提高光合效率,这与香果树Emmenopterys henryi[23]在遮光处理下叶绿素质量浓度的变化一致。T1、T2和T3处理在6月的叶绿素a/b低于对照,且随着时间的推移逐渐降低,说明其通过增加叶绿素b或者降低叶绿素a,提高了叶片对短波蓝紫光的吸收,又有利于维持光系统Ⅰ (PSⅠ)与光系统Ⅱ (PSⅡ)之间的能量平衡,从而提高自身对遮光环境的适应性[24],这与黄波罗Phellodendron amurense[25]在遮光下叶片叶绿素质量浓度变化的研究结论相似。叶绿素a+b的增加以及叶绿素a/b的降低均是植物对弱光环境适应以及耐阴性强的表现[26]。单叶铁线莲耐阴性较强,适度遮光可以促进叶绿素积累,使叶色保持浓绿,同时可以缓解夏季外界强光造成的损害。
-
逆境条件下植物体内产生大量自由基会危害植物细胞膜系统,严重时会导致细胞死亡[9]。与此对应,植物细胞会构建一套保护酶系统,减少活性氧和自由基对细胞的损害。研究初期,遮光组的SOD和POD活性显著高于对照,说明在较低光强下单叶铁线莲通过维持这2种酶的较高活性来清除活性氧,这与遮光处理下赤皮青冈Quercus gilva的酶活性变化相同[9]。伴随7月高温的出现,轻度遮光(T3、T4)和对照植株的SOD活性增长显著,这与铁线莲品种[27]面对高温胁迫时SOD活性变化规律一致;同时重度遮光(T1、T2)处理的SOD活性降幅较小,表明遮光度增加对植株起到了有效保护作用。植物体清除胁迫过程中细胞内产生的H2O2需依赖CAT和POD的共同作用[28],单叶铁线莲POD和CAT活性在7月持续增长,表明其通过协同机制来消除过剩光能带来的危害,这与铁线莲品种应对热胁迫的生理机制类似[29]。此外,POD活性增幅高于CAT也表明前者在协同作用中占主导地位,这与四季桂Osmanthus fragrans ‘Semperflorens’[30]叶片酶活性对光照的响应相似。
-
单叶铁线莲耐阴性好,40%~50%的遮光度可显著促进新枝和新叶的生长,园林应用中可在林下、建筑物北侧及室内窗台区域栽培,单叶铁线莲的开发利用将有效扩展观赏铁线莲的应用场景。夏季高温和强光叠加对单叶铁线莲植株生长的胁迫加剧,植物体通过POD和CAT等保护酶的协同作用缓解过剩光能对细胞的伤害。栽培过程中应选择不低于60%的遮光环境,保障植株的健康生长。
Effects of shading treatment on growth and physiological characteristics of Clematis henryi
-
摘要:
目的 探讨单叶铁线莲Clematis henryi对不同光照强度的生理响应机制,为单叶铁线莲的引种栽培和园林应用提供依据。 方法 以3年生单叶铁线莲扦插苗为研究材料,设置遮光率为0 (ck)、80% (T1)、60% (T2)、50% (T3)和40% (T4) 5种光照处理,研究不同遮光强度对单叶铁线莲植株生长和生理的影响。 结果 ①遮光处理显著增加植株分蘖数量、节数和节间距(P<0.05),T1处理的分蘖数和节数增幅最大,分别增加63.0%和24.3%,T1、T2、T3处理的节间距分别高于对照27.5%、8.4%和32.1%,T3处理的生物量最高,高于对照36.7%;②遮光处理极显著促进蛋白质合成,同时减少丙二醛(MDA)的产生(P<0.01),T1处理的MDA质量摩尔浓度最低,可溶性蛋白质量分数于30 d达最大值(11.2 mg·g−1);③叶绿素a和叶绿素b质量浓度不断增加,60 d时各处理组均高于对照,T1处理的叶绿素总量于30 d时达最大值(2.28 mg·L−1),为对照的3.9倍;④随遮光强度由高到低,过氧化物酶(POD)和过氧化氢酶(CAT)活性呈升—降—升的变化趋势,同时2种酶的活性随时间推移逐步上升,超氧化物歧化酶(SOD)则相反。 结论 单叶铁线莲有较强耐阴性,50%~60%的光照强度可显著促进枝和叶的生长和干物质积累,提高观赏价值。夏季栽培单叶铁线莲应选择适宜的遮光环境,保障植株的健康生长。图3表4参30 Abstract:Objective This study, with an investigation of the physiological response mechanism of Clematis henryi to different light intensity, is aimed to provide scientific basis for its introduction, cultivation, and landscaping applications. Method With three-year-old C. henryi cutting seedlings used as experimental materials, five light treatments were set up: full sunlight (ck), 80% (T1), 60% (T2), 50% (T3), and 40% (T4) shading before a study was conducted of the effects of different shading levels on the growth and physiology of C. henryi plants. Result (1) Shading treatment significantly increased the number of tillers, number of segments and segment spacing of plants (P<0.05), with the increase in the number of tillers and segment spacing of plants under T1 treatment being the highest (63.0% and 24.3%, respectively), and the segment spacing of plants under T1, T2 and T3 treatments being higher than that of the control (27.5%, 8.4% and 32.1% respectively). (2) Shading treatment significantly promoted protein synthesis and decreased MDA production (P<0.01), with the mass molar concentration of MDA in T1 treatment being the lowest, and the mass fraction of soluble protein (SP) reaching the maximum at 30 d (11.2 mg·g−1). (3) The mass concentration of chlorophyll a and chlorophyll b increased continuously, with each index of the shading group being higher than that of the control at 60 d, and the total mass concentration of chlorophyll reaching the maximum value (2.28 mg·L−1) at 30 d, which was 3.9 times that of the control. (4) The activities of POD and CAT showed the trend of rise-fall-rise with the shading from high to low, while the activities of the two enzymes increased gradually over time, and the opposite was true for SOD. Conclusion C. henryi exhibited strong shade tolerance, with shading levels of 50% − 60% significantly promoting the growth and dry matter accumulation of branches and leaves, enhancing ornamental value. Therefore, suitable shading environments should be selected for summer cultivation to ensure the healthy growth of plants. [Ch, 3 fig. 4 tab. 30 ref.] -
Key words:
- Clematis henryi /
- shading treatment /
- protect enzyme activity /
- chlorophyll /
- physiological index
-
朱顶红Hippeastrum rutilum又名红花莲、孤挺花等,系石蒜科Amaryllidaceae朱顶红属Hippeastrum
所有种类的总称,多年生草本植物,性喜温暖、湿润气候,稍耐寒[1]。现有约70个种[2]在全球呈离散分布,野生种主要集中分布在巴西和玻利维亚一带。在中国,朱顶红属外来引入花卉[3]。朱顶红花色艳丽且复杂多变,花瓣形状丰富,极具观赏价值,除可用于一般的盆景植物外,还可用于户外景观植物栽培,是元旦、春节和国庆的重要装饰。目前,国际上流行的园艺杂交种朱顶红有100多个品种,其中在中国栽培的品种有60多个[4]。作为高档观赏花卉,国内外开展的对朱顶红相关研究,主要集中在栽培技术(包括组培)、育种、扩繁技术和病虫害防治等方面。近年来,育种学家们培育出了很多花型、花色变化丰富,花瓣厚和花期长的新品种[3],但在国内推广应用的朱顶红品种主要引自荷兰,缺少自主培育的新品种,而且朱顶红的遗传背景较复杂,无法确定大部分栽培品种的遗传背景和品种间的亲缘关系,采用传统的分类方法很难区分其种下类群和品种[5]以及朱顶红种质资源的遗传多样性分析数据[4],因此,了解朱顶红的遗传多样性对于朱顶红遗传育种具有重要意义。已有研究表明:简单序列重复技术(ISSR)[6−7]已经成功应用于朱顶红种质资源遗传关系分析和品种鉴定,但这并不能完全反映朱顶红遗传多样性。2009年COLLARD等[8]新开发的基于植物基因组起始密码子ATG侧翼序列的保守性,设计单引物对目的基因进行扩增的新型分子标记技术——目标起始密码子多态性分子标记(start codon targeted polymorphism, SCoT)。ISSR引物扩增介于反向重复序列位点间的序列[9],部分序列存在无法扩增的现象。与ISSR标记相比,SCoT标记单引物与ATG结合后扩增目的基因或其附近DNA序列[10],有更为广阔的DNA扩增范围,其实验结果更具有可靠性。目前,SCoT标记已经成功应用于花生Arachis[11]、茶树Camellia sinensis[12−13]、栀子Gardenia jasminoides[14]、油菜Brassica rapa[15]、石蒜属Lycoris[16]、猕猴桃Actinidia[17]、铁皮石斛Dendrobium officinale[18]等植物遗传多样性、亲缘关系分析和变异鉴定以及基因变异表达等方面。为了更进一步分析更多朱顶红品种间的遗传多样性和亲缘关系,本研究利用建立的SCoT标记体系对朱顶红品种进行遗传多样性和亲缘关系分析,旨在了解朱顶红在分子水平上的遗传变异,为朱顶红杂交育种、种质资源保护和利用提供理论依据和技术基础。 1. 材料与方法
1.1 植物材料
植物材料朱顶红采自浙江农林大学遗传学科朱顶红植物种质资源圃,共计41个朱顶红品种(表1)。于2019年4月采集朱顶红花瓣,液氮冷冻并于−80 ℃冰箱保存备用。本研究所用引物是根据COLLARD等[8]设计的SCoT引物。
表 1 41个朱顶红品种性状描述Table 1 Character description of 41 H. rutilum cultivars used in this stduy品种编号 品种名 性状描述 花色 品种编号 品种名 性状描述 花色 1 ‘阿弗雷’‘Alfresco’ 重瓣 白NN155-D 22 ‘奇迹’‘A Miracle 单瓣 红46-A 2 ‘爱神’‘Aphrodite’ 重瓣 白NN155-D 23 ‘奇妙仙子’‘Tinker Bell’ 单瓣 红41-D,白NN155-D 3 ‘冰后’‘Ice Queen’ 重瓣 白NN155-D 24 ‘瑞贝卡’‘Rebecca’ 单瓣 红紫73-C,白NN155-D 4 ‘焦点’‘Spotlight’ 单瓣 白NN155-D,红53-B 25 ‘世外桃源’‘Paradise’ 单瓣 红紫73-A,白NN155-D 5 ‘粉色惊奇’‘Pink Surprise’ 单瓣 红54-A 26 ‘欲望’‘Desire’ 单瓣 红41-C 6 ‘鬼魅’‘Joker’ 重瓣 橙红N30-A 27 ‘珍妮小姐’‘Lady Jane’ 单瓣 红47-A,红56-A 7 ‘黑天鹅’‘Royal Velvet’ 重瓣 红53-A 28 ‘婚礼舞曲’‘Wedding Dance’ 单瓣 白NN155-A 8 ‘快车’‘The Express’ 单瓣 橙红N34-A 29 ‘托斯卡’‘Tosca’ 单瓣 红紫58-B 9 ‘哈库’‘Haku’ 单瓣 红54-B 30 ‘双梦’‘Double Dream’ 重瓣 红54-A 10 ‘露天’‘Alfresco’ 重瓣 白NN155-D 31 ‘红狮’‘Red Lion’ 单瓣 红41-A 11 ‘红宝石之星’‘Star of Ruby’ 单瓣 橙红N34-A,黄绿145-D 32 ‘千禧蛋’‘Millennium Egg’ 单瓣 白155-A 12 ‘红唇’‘Tres Chic’ 单瓣 红42-A,黄2-D 33 ‘焰火’‘Fireworks’ 单瓣 橙红34-A 13 ‘红娘’‘Matdhmaker’ 重瓣 红42-A,黄2-D 34 ‘马格’‘Magné’ 单瓣 红47-A 14 ‘侯爵’‘Marquis’ 重瓣 白NN155-D 35 ‘世界和平’‘World Peace’ 单瓣 红50-A 15 ‘花瓶’‘Gervase’ 单瓣 红50-B 36 ‘北极女神’‘Arctic Nymph’ 重瓣 白NN155-B 16 ‘滑稽演员’‘Harlequin’ 重瓣 白NN155-D 37 ‘首映’‘Premiere’ 单瓣 灰红182-A 17 ‘黄金岁月’‘Golden Years’ 重瓣 红46-A 38 ‘圣诞快乐’‘Merry Christmans’ 重瓣 白NN155-C,红45-A 18 ‘甜蜜妮芙’‘Sweet Nymph’ 重瓣 红45-C 39 ‘清晨阳光’‘Morning Light’ 单瓣 白NN155-D,红紫58-B 19 ‘玫瑰花样’‘Rose Petal’ 重瓣 白NN155-D 40 ‘超级黛丝’‘Giantama Deus’ 重瓣 白NN155-D,红54-C 20 ‘绣球’‘Hydrangea’ 单瓣 白NN155-D 41 ‘迷雾’‘Misty’ 单瓣 黄4-C,红46-A 21 ‘迎春’‘Jasminum Nudiflorum’ 重瓣 橙红N34-A,白NN155-C 说明:表中大写字母表示不同的色系代码 1.2 方法
1.2.1 朱顶红基因组DNA提取与检测
采用改良 CTAB法[19]提取朱顶红花瓣基因组DNA,采用微量核酸测定仪(Nanodrop 2000)测定DNA的浓度和质量,并通过质量分数为1.0%的琼脂糖凝胶电泳检测,检测合格的DNA样品于−20 ℃冰箱保存备用。
1.2.2 朱顶红SCoT-PCR反应体系的建立
为获得朱顶红SCoT-PCR反应的最佳体系,参考姜小凤[20]和潘媛等[14]报道的SCoT扩增反应条件,通过对PCR反应五要素(模板、引物、MgCl2、dNTPs、rTaqDNA聚合酶)进行5因素4水平正交实验(
$L^4_5 $ ,表2~3)。PCR扩增反应体系为20 μL,PCR扩增反应程序为:94 ℃预变性5 min,94 ℃变性35 s,退火35 s,72 ℃复性90 s,35个循环;72 ℃延伸10 min,16 ℃保存。PCR扩增产物进行质量分数为1.0%琼脂糖凝胶电泳。表 2${{L}}^4_5 $ 正交实验因素及水平Table 2$L^4_5 $ factors and levers of orthogonal design水平因素 引物/(μmol·L−1) MgCl2/(mmol·L−1) DNA/ng dNTPs/(mmol·L−1) rTaq/(×16.67 nkat) 1 0.1 1.5 30 0.1 0.50 2 0.2 2.0 40 0.2 0.75 3 0.3 2.5 50 0.3 1.00 4 0.4 3.0 60 0.4 1.25 表 3 朱顶红SCoT-PCR正交试验体系筛选Table 3 Screening of orthogonal systems处理
编号模板
DNA/ng引物/
(μmol·L−1)Mg2+/
(mmol·L−1)dNTPs/
(mmol·L−1)rTaq/
(×16.67 nkat)处理
编号模板
DNA/ng引物/
(μmol·L−1)Mg2+/
(mmol·L−1)dNTPs/
(mmol·L−1)rTaq/
(×16.67 nkat)1 30 0.1 1.5 0.1 0.50 9 50 0.4 1.5 0.3 0.75 2 30 0.2 2.0 0.2 0.75 10 50 0.3 2.0 0.1 0.50 3 30 0.3 2.5 0.3 1.00 11 50 0.2 2.5 0.4 1.25 4 30 0.4 3.0 0.4 1.25 12 50 0.1 3.0 0.2 1.00 5 40 0.3 1.5 0.2 1.25 13 60 0.2 1.5 0.4 1.00 6 40 0.4 2.0 0.1 1.00 14 60 0.1 2.0 0.3 1.25 7 40 0.1 2.5 0.4 0.75 15 60 0.4 2.5 0.2 0.50 8 40 0.2 3.0 0.3 0.50 16 60 0.3 3.0 0.1 0.75 1.2.3 SCoT引物合成、筛选与扩增
参照COLLARD等[8]设计SCoT引物,并由南京金斯瑞生物技术有限公司合成。引物筛选先利用1个样品对55条SCoT引物进行初步筛选,选择条带清晰的引物,再利用性状差异较大的3个朱顶红样品进行复筛,选择条带清晰、具多态性条带的引物进行后续41份朱顶红样品的SCoT-PCR扩增。SCoT-PCR扩增反应程序为:94 ℃预变性5 min,94 ℃变性35 s,退火35 s,72 ℃复性90 s,36个循环,72 ℃延伸10 min,16 ℃保存。PCR扩增产物用质量分数为1.0%琼脂糖凝胶电泳检测。
1.2.4 数据统计分析
由于引物与DNA结合点可由琼脂糖凝胶电泳图谱的条带表示,因此,PCR电泳图中的每个条带就是1个位点。在数据统计时,记录重复的DNA电泳条带峰同一引物的扩增产物,迁移率相同的条带记为“1”,没有条带记为“0”,并建立矩阵,只记录易于辨认的条带,排除模糊不清的条带。利用Excel计算多态性条带百分比(percentage of bands,PPB)。根据“1,0”矩阵并使用NTSYspc软件计算遗传距离和遗传相似系数,依据SHAN程序按照非加权配对算术平均法(UPGMA)法构建朱顶红样品间的聚类图。
2. 结果与分析
2.1 DNA质量浓度与质量检测结果
采用改良CTAB法提取朱顶红基因组DNA,经质量分数为1.0%琼脂糖凝胶电泳检测,各泳道朱顶红基因组DNA条带清晰、亮度好(图1),点样孔附近无杂质残留,表明提取DNA完好,降解少;使用微量核酸测定仪检测DNA质量浓度与纯度,吸光度值D(260)/D(280)为1.88~2.00,表明提取的朱顶红基因组DNA纯度较高,杂质较少;经测定朱顶红DNA质量浓度为80.0~896.2 mg·L−1,可满足后续实验要求。
2.2 朱顶红SCoT-PCR体系的建立
通过5因素4水平(
$L^4_5 $ )正交试验设计(表3),采用SCoT引物P55对朱顶红样品‘黑天鹅’DNA进行PCR扩增,结果发现:5号、9号、10号、14号、15号和16号处理,无扩增条带或条带模糊,可能是由于dNTPs用量过少而导致的。1号处理条带清晰,但条带数量少;12号处理条带清晰、数目多但有非特异性条带发生;7号处理由于条带清晰、数量多且没有非特异性条带的扩增(图2),因此,综合扩增条带与正交体系筛选分析,朱顶红SCoT-PCR扩增条带清晰且多态性良好的最佳反应体系为7号处理(20 μL):DNA 40 ng,引物 0.1 μmol·L−1;MgCl2 2.0 mmol·L−1,dNTPs 0.4 mmol·L−1和rTaq DNA聚合酶0.75 U (1 U =16.67 nkat)。2.3 朱顶红SCoT引物筛选
利用建立的SCoT体系从55条SCoT引物初筛出32条条带多且清晰的引物(图3),再用3个花色差异较大的朱顶红样品(‘婚礼舞曲’‘红狮’‘迷雾’)对32条SCoT引物进行复筛(图4),最终筛选到12条条带清晰且多态性良好的SCoT引物,用于后续41份朱顶红样品SCoT- PCR扩增。
2.4 朱顶红SCoT-PCR扩增结果分析与多态性分析
利用12条引物对41个朱顶红品种的DNA进行PCR扩增,产物分布在 200~3 000 bp,共扩增出89条清晰的条带,每条引物扩增的条带数为5~11条,其中,P56扩增条带数最多,可达11条,多态性条带11条;P5扩增条带数最少为5条,多态性条带4条,平均每条引物扩增条带为7.42条。多态性条带合计77条,平均每条引物可扩增出的多态性位点为6.42条,多态性比率为86.52%。多态性最高的引物是P32、P40和P56均达100%;而引物P12的多态性最低,仅有60%(表4)。以上结果表明:SCoT分子标记适用于朱顶红的多态性位点的检测,便于朱顶红品种间的遗传多样性的分析。
表 4 SCoT标记引物扩增结果Table 4 Amplification results of SCoT marker primers引物编号 引物序列 扩增条带数 多态性条带数 多态性比率/% P5 CAACAATGGCTACCACGA 5 4 80.00 P12 ACGACATGGCGACCAACG 5 3 60.00 P13 ACGACATGGCGACCATCG 9 7 77.78 P32 CCATGGCTACCACCGCAC 10 10 100.00 P40 CCATGGCTACCACCGCCG 5 5 100.00 P41 AACCATGGCTACCACCGA 6 5 83.33 P43 AACCATGGCTACCACCGG 7 7 100.00 P54 ACAATGGCTACCACCAGC 5 4 80.00 P55 ACAATGGCTACCACCAGG 8 6 75.00 P56 ACAATGGCTACCACCAGA 11 11 100.00 P57 ACAATGGCTACCACCAGT 9 7 77.78 P61 ACCATGGCTACCACCGAG 9 8 88.89 平均 7.42 6.42 86.52 合计 89 77 86.52 2.5 朱顶红遗传多样性分析
根据12条多态性良好的SCoT引物对41份朱顶红样品的扩增结果,使用NTSYspc软件计算品种遗传相似系数。41份朱顶红品种间共获得861个相似系数组成相似性矩阵,41份朱顶红样材料两两之间的相似系数为0.292 3~0.833 3,平均为0.498 4。其中,2号‘爱神’和3号‘冰后’相似系数最大(0.833 3),表明两者之间亲缘关系较近;23号‘奇妙仙子’和41号‘迷雾’相似系数最小(0.292 3),表明两者之间亲缘关系较远,相差较大。
同时,对41份朱顶红品种的遗传相似系数进行统计分析,以0.054 1为间距,分成10组,分析基因相似系数的频数条形图(图5)。大部分朱顶红品种种间相似度集中在0.400 7~0.563 2,数目为524个,所占比例为63.91%;剩下的基因相似系数在两侧呈不对称分布。表明朱顶红不同品种之间存在明显差异,具有丰富的遗传多样性。对相似性最高的10对品种的瓣型花色进行比对可以发现:相似性高的品种间瓣型具有高度的一致性(100%),而花色的一致性较低(40%),说明朱顶红在花色方面的遗传多样性更为丰富。
2.6 SCoT聚类分析
利用NTSYS 2.1软件中的非加权配对算术平均法(UPGMA)对41份朱顶红品种进行聚类分析,构建分子系统树(图6)。由图6可知:在遗传相似系数的0.42处可以将41份朱顶红品种划分为2个大类,说明这2个类群之间有较为明显的差异。第Ⅰ大类有34个品种,既有重瓣品种又有单瓣品种,第Ⅰ大类又分为4个小类,其中Ⅰa类中,白色的2号‘爱神’和3号‘冰后’聚在一起,橙红色6号‘鬼魅’、8号‘快车’和红色的7号‘黑天鹅’聚在一起;Ⅰb小类多为红色系列,而且还有多个由白色和红色形成的复色花,如4号‘焦点’、24号‘瑞贝卡’、25号‘世外桃源’和13号‘红唇’;Ⅰc小类多为红色繁殖类,其中白色的可能是品种变异的结果;Ⅰd小类中单瓣、白色的20号‘绣球’和红色的22号‘奇迹’是重瓣、橙红和白色组成的复色花(21号‘迎春’)的可能亲本;第Ⅱ大类品种较为简单,包括35号‘世界和平’、36号‘北极女神’、37号‘首映’、38号‘圣诞快乐’、39号‘清晨阳光’、40号‘超级黛丝’、41号‘迷雾’在内的7个品种(系),除36号‘北极女神’和37号‘首映’为重瓣外,均为单瓣,且多为复色花。
3. 讨论与结论
朱顶红是国际市场上常用的观赏植物,其种间杂交育种技术极大地丰富了朱顶红品种(系),具有较高的经济价值。但目前,朱顶红品种改良和选育主要以传统的杂交育种方式为主,从自然杂交、人工杂交的后代中分离优良性状单株,通过2~3 α培育后鉴定花瓣性状、花色等形态学特征,性状不同于亲本且具有稳定遗传性状的被认定为新品种。此类育种方法工作年限长且进展缓慢,无法区分真假杂交种,有极大可能面临育种失败的风险。
近年发展起来的SCoT分子标记技术兼具操作简单、多态性高、遗传信息丰富、成本低和引物通用性强等特点[21],是一种分析物种遗传多样性和亲缘关系有效的分子标记辅助育种技术,为植物种质鉴定和指纹图谱构建等研究提供了新的技术手段;它可以排除外界环境带来的表观遗传变化,从基因组水平真实反映材料的遗传基础与特征,从而快速判断是否为新品种,极大地缩短育种年限,降低育种成本。SCoT标记技术已应用于园林植物育种中,如玫瑰Rosa rugosa杂交种后代早期选择、遗传多样性和亲缘关系分析等方面[21]。本研究应用12条SCoT引物对41份朱顶红品种进行PCR扩增后均检测到清晰的条带,平均多态性条带比率高达86.52%,品种间遗传相似系数为0.292 3~0.834 3,与利用ISSR分子标记检测61份朱顶红品种间(遗传相似系数为0.371 4~0.842 9)[6−7]的结果相比,本实验的朱顶红品种间的遗传范围更广泛,遗传多样性更高,可为朱顶红的新品种选育提供基础。聚类结果表明:本研究的41个朱顶红品种没有完全按照花的瓣型,而是根据遗传相似系数混合聚类,多数花色性状相似品种被聚在一起,如第Ⅱ大类多为红色和白色组成的复色花。这与张林等[6−7]利用ISSR标记对61个朱顶红品种的聚类不太一致,可能是由于SCoT标记技术是一种能跟踪性状,并获得与性状相关目的基因的新型分子标记技术;利用SCoT标记技术还可以初步判断可能的杂交亲本,如Ⅰd小类中单瓣、白色的‘绣球’(20号)和红色的‘奇迹’(22号)是重瓣,橙红和白色组成的复色花(21号‘迎春’)的可能亲本。此假设可以在后期分子水平实验中进一步验证。
本研究成功有效地利用SCoT标记技术研究了朱顶红品种间的遗传多样性和对可能亲本的鉴定。今后可从朱顶红种质资源圃中选择亲缘关系较远的可育品种作为亲本,进行品种间杂交,培育花色丰富和花型多样的朱顶红新品种,进一步改良和选育朱顶红的新品种。
-
表 1 遮光对单叶铁线莲分蘖数、节数、节间距的影响
Table 1. Effect of shading on tillers, number of nodes, and internode spacing of C. henryi
处理 分蘖数/个 节数/个 节间距/cm 15 d 30 d 60 d 15 d 30 d 60 d 15 d 30 d 60 d T1 2.10±0.10 a 3.00±0.10 a 3.20±0.16 AB 10.20±0.10 AB 13.00±0.10 A 13.60±0.16 a 16.00±0.10 A 16.80±0.10 A 17.00±0.16 B T2 1.75±0.04 a 2.50±0.85 ab 2.70±0.20 AB 8.20±0.04 B 10.00±0.85 B 12.10±0.20 ab 14.00±0.04 B 14.30±0.30 B 14.50±0.20 C T3 2.00±0.13 a 3.40±0.30 a 3.50±0.20 AB 10.20±0.13 AB 12.00±0.30 AB 12.30±0.20 ab 17.00±0.13 A 17.50±0.30 A 17.90±0.20 A T4 2.10±0.07 a 3.50±0.05 a 3.60±0.10 AB 10.30±0.07 AB 12.50±0.05 AB 13.00±0.10 a 13.00±0.07 B 14.00±0.05 BC 14.20±0.10 C ck 1.75±0.20 a 2.00±0.15 b 2.10±0.01 B 12.50±0.20 A 13.00±0.15 AB 13.00±0.01 a 13.00±0.20 B 13.10±0.15 C 13.10±0.01 D 说明:不同大写字母表示同一时间不同处理间差异极显著(P<0.01);不同小写字母表示同一时间不同处理间差异显著(P<0.05)。 表 2 遮光对单叶铁线莲生物量的影响
Table 2. Effects of shading on biomass of C. henryi
处理 生物量/g T1 35.0±3.1 b T2 40.5±2.0 a T3 41.4±1.7 a T4 33.2±2.4 b ck 25.6±1.3 c 说明:不同小写字母表示不同处理间差异显著(P<0.05)。 表 3 不同遮光处理下叶片叶绿素质量浓度的比较
Table 3. Comparison of different shading treatments on leaf chlorophyll content
处理
时间/d叶绿素a/(mg·L−1) 叶绿素b/(mg·L−1) T1 T2 T3 T4 ck T1 T2 T3 T4 ck 15 0.44±0.06 B 0.79±0.29 A 0.43±0.13 B 0.73±0.14 AB 0.67±0.06 AB 0.11±0.05 a 0.26±0.16 a 0.11±0.04 a 0.18±0.05 a 0.15±0.03 a 30 0.60±0.12 A 0.42±0.13 AB 0.62±0.00 A 0.34±0.11 B 0.29±0.09 B 0.23±0.03 A 0.13±0.06 BC 0.20±0.01 AB 0.07±0.06 C 0.07±0.05 C 45 1.54±0.16 A 0.66±0.09 B 0.29±0.04 D 0.48±0.06 C 0.24±0.02 C 0.73±0.08 A 0.38±0.04 B 0.24±0.02 CD 0.30±0.02 BC 0.22±0.01 D 60 0.62±0.10 A 0.42±0.05 B 0.28±0.01 C 0.42±0.03 B 0.15±0.03 D 0.23±0.03 A 0.13±0.02 B 0.14±0.08 AB 0.14±0.02 AB 0.13±0.02 B 处理
时间/d叶绿素a+b/(mg·L−1) 叶绿素a/b T1 T2 T3 T4 ck T1 T2 T3 T4 ck 15 0.55±0.10 B 1.05±0.35 A 0.54±0.16 B 0.91±0.17 AB 0.82±0.03 AB 4.37±1.30 a 3.82±1.93 a 3.98±0.87 a 4.17±1.08 a 4.68±1.15 a 30 0.83±0.15 A 0.56±0.18 AB 0.81±0.01 A 0.42±0.16 B 0.36±0.14 B 2.64±0.28 a 3.35±0.80 a 3.11±0.09 a 6.95±4.51 a 5.93±3.95 a 45 2.28±0.25 A 1.03±0.12 B 0.53±0.05 CD 0.78±0.07 BC 0.47±0.03 D 2.10±0.02 A 1.74±0.08 B 1.24±0.07 D 1.55±0.11 C 1.11±0.05 D 60 0.85±0.13 A 0.55±0.06 B 0.42±0.07 BC 0.56±0.03 B 0.28±0.06 C 2.74±0.06 A 3.73±0.25 A 4.24±2.46 A 3.05±0.36 A 1.24±0.17 B 说明:不同大写字母表示同一时间不同处理间差异极显著(P<0.01);不同小写字母表示同一时间不同处理间差异显著(P<0.05)。 表 4 不同遮光处理下植株形态和生理指标的相关性分析
Table 4. Correlation analysis of morphological and physiological indexes under different shading treatments
指标 生物量 分蘖数 节数 节间距 叶绿素
总量可溶性
蛋白MDA CAT POD SOD 生物量 1 分蘖数 0.152 1 节数 −0.142 0.542* 1 节间距 0.585* 0.421 0.300 1 叶绿素总量 0.303 0.733** 0.579* 0.420 1 可溶性蛋白 0.854** 0.423 0.102 0.718** 0.531* 1 MDA −0.684** −0.302 −0.234 −0.707** −0.623* −0.789** 1 CAT −0.325 −0.594* −0.375 −0.143 −0.794** −0.468 0.604* 1 POD −0.403 −0.461 −0.453 −0.952** −0.454 −0.613* 0.689** 0.203 1 SOD −0.631* −0.442 −0.012 −0.444 −0.535* −0.744** 0.684** 0.692** 0.425 1 说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)。 -
[1] 邵伟丽, 廖娣华, 刘志高, 等. 铁线莲栽培品种观赏性综合评价体系的建立与应用[J]. 浙江农林大学学报, 2022, 39(6): 1229 − 1237. SHAO Weili, LIAO Dihua, LIU Zhigao, et al. Establishment and application of comprehensive evaluation system for ornamental quality of Clematis cultivars [J]. Journal of Zhejiang A&F University, 2022, 39(6): 1229 − 1237. [2] 陈晓蕾, 邵伟丽, 厉思源, 等. 6个铁线莲品种杂交F1代表型性状遗传分析[J]. 浙江农林大学学报, 2023, 40(1): 72 − 80. CHEN Xiaolei, SHAO Weili, LI Siyuan, et al. Genetic analysis of phenotypic traits in F1 hybrids of 6 Clematis cultivars [J]. Journal of Zhejiang A&F University, 2023, 40(1): 72 − 80. [3] 张君芳, 王艳莉, 李子珍, 等. 甘肃省野生铁线莲属植物分布特征及观赏性评价[J]. 中国野生植物资源, 2022, 41(4): 71 − 79. ZHANG Junfang, WANG Yanli, LI Zizhen, et al. Distribution characteristics and ornamental evaluation of wild Clematis in Gansu Province [J]. Chinese Wild Plant Resources, 2022, 41(4): 71 − 79. [4] 邵伟丽, 刘志高, 申亚梅, 等. 13种浙江省野生铁线莲引种驯化与观赏性评价[J]. 中国园林, 2012, 38(11): 116 − 121. SHAO Weili, LIU Zhigao, SHEN Yamei, et al. Introduction, domestication and ornamental evaluation of 13 wild Clematis species from Zhejiang Province [J]. Chinese Garden, 2012, 38(11): 116 − 121. [5] 金梦娇, 刘博, 王抗抗, 等. 薇甘菊光能利用及叶绿素合成在不同光照强度下的响应[J]. 中国农业科学, 2022, 55(12): 2347 − 2359. JIN Mengjiao, LIU Bo, WANG Kangkang, et al. Light energy utilization and response of chlorophyll synthesis under different light intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347 − 2359. [6] 刘从, 田甜, 李珊, 等. 中国木本植物幼苗生长对光照强度的响应[J]. 生态学报, 2018, 38(2): 518 − 527. LIU Cong, TIAN Tian, LI Shan, et al. Growth response of Chinese woody plant seedlings to different light intensities [J]. Acta Ecologica Sinica, 2018, 38(2): 518 − 527. [7] 梁康, 张廷忠, 陈菊艳, 等. 不同光照强度对华西花楸幼苗生长和光合日变化的影响[J]. 贵州林业科技, 2022, 50(3): 23 − 27. LIANG Kang, ZHANG Tingzhong, CHEN Juyan, et al. Effects of different light intensitieson growthand diurnal variation of photosynthesis of Sorbus wilsoniana seedlings [J]. Guizhou Forestry Science and Technology, 2022, 50(3): 23 − 27. [8] 张艳. 7种委陵菜属植物光适应性研究[D]. 北京: 北京林业大学, 2021. ZHANG Yan. Research on the Light Adaptability of Seven Potentilla Species [D]. Beijing: Beijing Forestry University, 2021. [9] 夏婵, 李何, 王佩兰, 等. 不同光照强度对赤皮青冈幼苗光合特性的影响[J]. 中南林业科技大学学报, 2021, 41(7): 72 − 79. XIA Chan, LI He, WANG Peilan, et al. Effects of shading on the photosynthetic characteristics of Cyclobalanopsis gilva seedlings [J]. Journal of Central South University of Forestry and Technology, 2021, 41(7): 72 − 79. [10] 陈文允, 普春霞. 云南省铁线莲属药用资源调查[J]. 云南中医学院学报, 2006, 29(1): 31 − 33. CHEN Wenyun, PU Chunxia. Resourcei nvestigation of medicinal species of Clematis in Yunnan Province [J]. Journal of Yunnan College of Traditional Chinese Medicine, 2006, 29(1): 31 − 33. [11] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. LI Hesheng. Experimental Principles and Techniques of Plant Physiology and Biochemistry [M]. Beijing: Higher Education Press, 2000. [12] 牛欢, 韦坤华, 徐倩, 等. 不同光照度对金线莲生长、生理特性和药用成分的影响[J]. 植物资源与环境学报, 2019, 29(1): 26 − 36, 43. NIU Huan, WEI Kunhua, XU Qian, et al. Effects of different illuminances on growth, physiological characteristics, and medicinal components of Anoectochilus roxburghii [J]. Journal of Plant Resources and Environment, 2019, 29(1): 26 − 36, 43. [13] 吴芳兰. 红蓝光质下香梓楠苗木生长生理及代谢产物的响应[D]. 南宁: 广西大学, 2022. WU Fanglan. The Responses of Growth and Physiological and Metabolites of Michelia hedyosperma Seedlings under Red and Blue Light [D]. Nanning: Guangxi University, 2022. [14] 刘雯雯, 饶丹丹, 吴二焕, 等. 遮阴对桫椤幼苗的叶片性状及光合特性的影响[J/OL]. 山西农业大学学报(自然科学版), 2023-12-29 [2024-01-17]. https://doi.org/10.13842/j.cnki. issn1671-8151.202311002. LIU Wenwen, RAO Dandan, WU Erhuan, et al. Effects of shading on leaf traits and photosynthetic characteristics of Alsophila spinulosa seedlings [J/OL]. Journal of Shanxi Agricultural University (Natural Science Edition), 2023-12-29[2024-01-17]. https://doi.org/10.13842/j.cnki.issn1671-8151.202311002. [15] 郑亚辉. 遮阴对香榧幼苗生理特性的影响[J]. 安徽林业科技, 2019, 47(1): 20 − 22. ZHENG Yahui. Effects of shading on the physiological characters of Chinese torreya seedlings [J]. Anhui Forestry Science and Technology, 2019, 47(1): 20 − 22. [16] 王凯. 弱光和盐碱逆境对两种铁线莲生理特性的影响[D]. 哈尔滨: 东北林业大学, 2017. WANG Kai. Effect of Weak Light and Salinity Stress on Physiological Characteristics of Two Species of Clematis [D]. Harbin: Northeast Forestry University, 2017. [17] 侯夫云, 董顺旭, 张海燕, 等. 遮荫条件下紫心甘薯的抗氧化防御系统研究[J]. 山东农业科学, 2013, 45(6): 48 − 50. HOU Fuyun, DONG Shunxu, ZHANG Haiyan, et al. Research on antioxidant defense system of purple sweet potato under shading conditions [J]. Shandong Agricultural Sciences, 2013, 45(6): 48 − 50. [18] 吕晋慧, 王玄, 冯雁梦, 等. 遮荫对金莲花光合特性和叶片解剖特征的影响[J]. 生态学报, 2012, 32(19): 6033 − 6043. LÜ Jinhui, WANG Xuan, FENG Yanmeng, et al. Effects of shading on the photosynthetic characteristics and anatomical structure of Trollius chinensis Bunge [J]. Acta Ecologica Sinica, 2012, 32(19): 6033 − 6043. [19] 刘春琰, 黄勇, 郭猛, 等. 遮阴对地黄生长及生理特性的影响[J]. 河南农业科学, 2019, 51(4): 59 − 67. LIU Chunyan, HUANG Yong, GUO Meng, et al. Effects of shading on growth and physiological characteristics of Rehmannia glutinosa [J]. Henan Agricultural Sciences, 2019, 51(4): 59 − 67. [20] 熊仕发, 吴立文, 陈益存, 等. 不同种源白栎幼苗叶片对干旱胁迫的响应及抗旱性评价[J]. 生态学杂志, 2019, 39(12): 3924 − 3933. XIONG Shifa, WU Liwen, CHEN Yicun, et al. Response of leaf of Quercus fabri seedlings from different provenances to drought stress and drought resistance evaluation [J]. Chinese Journal of Ecology, 2019, 39(12): 3924 − 3933. [21] 彭思娴, 孙家怡, 栾牧, 等. 北江荛花光合荧光及抗氧化酶活性对不同光照强度的响应[J/OL]. 分子植物育种, 2023-12-19[2024-01-17]. https://link.cnki.net/urlid/46.1068.S.20231219.1359.031. PENG Sixian, SUN Jiayi, LUAN Mu, et al. Response of photosynthetic fluorescence and antioxidant enzyme activity to different light intensities in Wikstroemia monnula [J/OL]. Molecular Plant Breeding, 2023-12-19[2024-01-17]. https://link.cnki.net/urlid/46.1068.S.20231219.1359.031. [22] 冯灿灿. 遮阴对木芙蓉生长及开花品质的影响[D]. 雅安: 四川农业大学, 2020. FENG Cancan. Effects of Shading Treatment on Growth and Flowering Quality of Hibiscus mutabilis L. [D]. Ya’an: Sichuan Agricultural University, 2020. [23] 李冬林, 金雅琴, 崔梦凡, 等. 遮荫对香果树叶片生理特性及叶肉细胞超微结构的影响[J]. 植物研究, 2020, 40(1): 29 − 40. LI Donglin, JIN Yaqin, CUI Mengfan, et al. Effects of shading on physiological characteristics and ultrastructure of mesophyll cell of Emmenopterys henryi leaves [J]. Plant Research, 2020, 40(1): 29 − 40. [24] 孙小玲, 许岳飞, 马鲁沂, 等. 植株叶片的光合色素构成对遮阴的响应[J]. 植物生态学报, 2010, 34(8): 989 − 999. SUN Xiaoling, XU Yuefei, MA Luyi, et al. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment [J]. Chinese Journal of Plant Ecology, 2010, 34(8): 989 − 999. [25] 王凯, 朱教君, 于立忠, 等. 遮阴对黄波罗幼苗的光合特性及光能利用效率的影响[J]. 植物生态学报, 2009, 33(5): 1003 − 1012. WANG Kai, ZHU Jiaojun, YU Lizhong, et al. Effects of shading on photosynthetic characteristics and light use efficiency of Phellodendron amurense seedlings [J]. Chinese Journal of Plant Ecology, 2009, 33(5): 1003 − 1012. [26] 石凯, 李泽, 张伟建, 等. 不同光照对油桐幼苗生长、光合日变化及叶绿素荧光参数的影响[J]. 中南林业科技大学学报, 2018, 38(8): 35 − 42, 50. SHI Kai, LI Ze, ZHANG Weijian, et al. Influence of different light intensity on the growth, diurnal change of photosynthesis and chlorophyll fluorescence of tung tree seedling [J]. Journal of Central South University of Forestry and Technology, 2018, 38(8): 35 − 42, 50. [27] 朱玉雪, 张敏涛, 刘莹, 等. 4种早花大花组铁线莲的耐热性综合评价[J]. 上海交通大学学报(农业科学版), 2017, 35(1): 58 − 65, 71. ZHU Yuxue, ZHANG Mintao, LIU Ying, et al. Comprehensive evaluation of heat-tolerance of 4 cultivars of early large-flowered group Clematis [J]. Journal of Shanghai Jiaotong University (Agricultural Science Edition), 2017, 35(1): 58 − 65, 71. [28] 范宣. 遮阴对川西柳叶菜生长发育与生理生化的影响[D]. 南充: 西华师范大学, 2017. FAN Xuan. The Effects of Shading on the Growth, Physiological and Biochemical Traits of Epilobium fangii [D]. Nanchong: China West Normal University, 2017. [29] 刘志高, 邵伟丽, 申亚梅, 等. 铁线莲品种耐热性分析及评价指标筛选[J]. 核农学报, 2019, 34(1): 203 − 213. LIU Zhigao, SHAO Weili, SHEN Yamei, et al. Evaluation of heat tolerance and screening the index for the assessment of heat tolerance in cultivars of Clematis [J]. Chinese Journal of Nuclear Agriculture, 2019, 34(1): 203 − 213. [30] 杨亚男. 遮荫对四季桂光合生理及开花特性的影响[D]. 雅安: 四川农业大学, 2016. YANG Ya’nan. Effects of Shading on Photosynthetic Physiology and Flowering Characteristics of Osmanthus fragrans [D]. Ya’an: Sichuan Agricultural University, 2016. 期刊类型引用(5)
1. 刘柯忻,张晓娟,张卫平,李新生,吴升华,马秀奇. 基于SCoT标记的黑稻种质资源遗传多样性分析. 植物遗传资源学报. 2025(02): 260-270 . 百度学术
2. 吕文涛,娄文睿,娄晓鸣,宣继萍. 基于EST-SSR标记的朱顶红种质资源鉴定. 分子植物育种. 2024(04): 1123-1132 . 百度学术
3. 曾精,黄成龙,王冰洁,潘登浪,曾宪海. 油棕SCoT-PCR反应体系的建立与优化. 分子植物育种. 2024(21): 7067-7075 . 百度学术
4. 杜旋,田守波,张红梅,刘娜. SCoT标记分析节瓜育种材料的遗传多样性. 分子植物育种. 2024(23): 7737-7743 . 百度学术
5. 娄永峰,宋晓琛,冷春晖,陈兴彬,朱新传,肖复明. 陈山红心杉SCoT反应体系建立及引物筛选. 南方林业科学. 2021(04): 1-4+32 . 百度学术
其他类型引用(0)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230508