-
森林是陆地生态系统的主体,具有涵养水源、保持水土和调控径流等多种生态服务功能,被称为“绿色水库”[1]。森林主要通过林冠层、灌草层、凋落物层和土壤层截留和储存降水,从而有效涵蓄水分和补充地下水[2−4]。其中,凋落物层作为森林生态系统水源涵养功能垂直结构中的第三水文层,对森林的水源涵养功能有着重要作用。一方面,凋落物覆盖在地表层能够减小雨滴动能、加强雨水入渗和降低土壤水分蒸发[5−6];另一方面,凋落物利用其自身的结构特性,能够吸持超过自身质量2~5倍的水分,可拦蓄超过60%的地表径流量,能有效拦蓄降水和减少土壤侵蚀等[7−8]。此外,凋落物的分解过程,能够促进土壤养分循环、改善土壤结构、增加土壤抗蚀性和土壤持水能力,从而使森林涵养水源功能得到充分的发挥[9−11]。
国内外学者对森林的凋落物层水源涵养功能进行了大量研究,如中国温带地区的森林凋落物层生物量比亚热带和热带高[12];成熟林的凋落物层拦蓄降水量比幼龄林和过熟林大[13];合理的森林密度能提高林地凋落物层的持水能力[14−15]。除气候、林龄和密度对凋落物的持水能力有影响外,不同森林类型凋落物的水源涵养功能也有明显差异[16−17]。有研究表明:人工林的凋落物层生物量和有效拦蓄量大于天然林[18−19];阔叶林的持水性能优于针叶林[20−21];混交林的水源涵养能力比纯林强[8, 22]。上述研究不同森林的水源涵养功能有一定的地域性,普遍规律较弱,因此还需要进一步完善对不同地区森林的凋落物层水文效应研究。
坝上地区属于典型的土石山区,年降水量少、土壤层薄和水土保持能力低,但同时也是京津冀一道重要的屏障,对坝上地区森林的水土保持研究非常重要[23−24]。目前对坝上地区森林的研究多以人工林和纯林为对象,且主要是单一森林类型的比较研究[20, 25−26],针对不同森林类型的凋落物层水源涵养功能研究较少,这就不能准确评估该区域的水源涵养能力,难以制定有效的水土保持措施。基于此,本研究选取坝上崇礼地区的华北落叶松Larix gmelinii var. principis-rupprechtii林、白桦Betula platyphylla林、山杨Populus davidiana-白桦混交林(杨桦混交林)和华北落叶松-白桦混交林(落桦混交林) 4种森林类型,对其森林凋落物层的生物量以及不同分解层持水能力进行定量分析,比较不同森林类型凋落物层的水源涵养功能,以期为坝上地区森林生态系统的植被恢复和水土保持能力提升提供科学依据。
-
研究区在河北崇礼森林生态系统观测研究站,该区位于河北省张家口市和平林场内(40°47′~41°17′N,114°17′~115°34′E),海拔为814.0~2 174.0 m,属温带大陆性季风气候。地形大部分为山地,地势呈现由西北向东南倾斜的趋势,年均气温为3.7 ℃,年均降水量为300.0 mm,降水集中在夏季,时有冰雹和暴雨灾害。土壤以栗钙土、棕壤土、褐土和草甸土为主。植被属于暖温带落叶阔叶林和温带草原类型,植物区系呈现较大的过渡特点,在暖温带落叶阔叶林类型中,森林类型主要是天然次生林植被,以白桦和山杨面积最大,人工针叶林有华北落叶松、云杉Picea asperata、马尾松Pinus massoniana和油松Pinus tabuliformis等。
-
在查阅张家口市和平林场森林资源档案和野外调查的基础上,2022年6—9月,在张家口市和平林场内选取林龄为35 a,且具有代表性的4种森林类型为研究对象,包括华北落叶松林(PL)、白桦林(NP)、杨桦混交林(NBP)和落桦混交林(PBL)。每种类型森林设置3块20 m×30 m的样地,共计12块,进行木本植物每木检尺,记录海拔、坡度、坡向等信息。样地基本概况见表1。
表 1 样地基本概况
Table 1. Basic information of the sample plots
森林类型 海拔/m 坡向 坡度/(°) 树高/m 胸径/cm 密度/(株·hm−2) 郁闭度 华北落叶松林 1 846.7 阴坡 18.0±1.5 16.0±0.9 30.2±0.3 1 033.0±90.3 0.75±0.21 白桦林 1 648.7 阴坡 20.7±3.3 10.8±0.2 11.0±0.5 3 339.0±152.5 0.80±0.11 杨桦混交林 1 685.5 阴坡 25.0±3.9 10.0±0.5 10.6±0.9 3 525.0±118.1 0.83±0.10 落桦混交林 1 696.0 阴坡 19.0±2.7 12.0±0.8 16.2±0.8 2 890.0±106.9 0.70±0.15 说明:数据为平均值±标准误。 -
在每个样地内随机设置5个0.5 m×0.5 m的凋落物小样方,将样方内凋落物按照分解程度,划分为半分解层(凋落物形状不完整且开始腐烂,肉眼可以分辨出大体形状)和未分解层(凋落物的形态和颜色基本保持原状,外表无被分解痕迹),使用钢卷尺(1 mm精度)分别测定凋落物各层厚度,分层收集样方内的凋落物,带回实验室称量,在85 ℃烘干后称量,计算单位面积凋落物的生物量。
-
采用浸泡法,在每个样方内取适量烘干的凋落物样品,装入尼龙网袋后浸入水中,分别测定浸水0.5、1.0、2.0、4.0、6.0、8.0、10.0、12.0、24.0 h后凋落物质量的变化,计算凋落物的最大持水率、自然含水率、最大拦蓄率、有效拦蓄率、最大持水量、有效拦蓄量和最大拦蓄量。计算公式如下:
$$ {R}_{\mathrm{h}\mathrm{m}\mathrm{a}\mathrm{x}}=\frac{{G}_{24}-{G}_{\mathrm{干}}}{{G}_{\mathrm{干}}}\times 100\% \text{;} $$ (1) $$ {R}_{\mathrm{O}}=\frac{{G}_{\mathrm{鲜}}-{G}_{\mathrm{干}}}{{G}_{\mathrm{干}}}\times 100\% \text{;} $$ (2) $$ {R}_{\mathrm{M}}={R}_{\mathrm{h}\mathrm{m}\mathrm{a}\mathrm{x}}-{R}_{\mathrm{O}} \text{;} $$ (3) $$ {R}_{\mathrm{S}}=0.85 {R}_{\mathrm{h}\mathrm{m}\mathrm{a}\mathrm{x}}-{R}_{\mathrm{O}} \text{;} $$ (4) $$ {W}_{\mathrm{h}\mathrm{m}\mathrm{a}\mathrm{x}}={R}_{{\mathrm{hmax}}}\times {G}_{\mathrm{C}} \text{;} $$ (5) $$ W_{\mathrm{s}}=(0.85 {W}_{{\mathrm{hmax}}}-{R}_{\mathrm{O}})\times {G}_{\mathrm{C}} \text{;} $$ (6) $$ W_{\mathrm{u}}=({R}_{\mathrm{h}\mathrm{m}\mathrm{a}\mathrm{x}}-{R}_{\mathrm{O}})\times {G}_{\mathrm{C}} 。 $$ (7) 式(1)~(7)中:Rhmax、RO、RM和RS分别代表凋落物层的最大持水率(%)、自然含水率(%)、最大拦蓄率(%)和有效拦蓄率(%);Whmax、Ws和Wu分别代表最大持水量(t·hm−2)、有效拦蓄量(t·hm−2)和最大拦蓄量(t·hm−2);GC、G鲜、G干、G24分别为凋落物生物量(t·hm−2)、自然状态下的质量(g)、烘干后的质量(g)、浸泡24 h后的质量(g);0.85为有效拦蓄系数。
-
运用Excel 2010和SPSS 19.0进行数据处理和统计分析,用单因素方差分析(one-way ANOVA)和最小显著极差法(LSD)分析不同森林凋落物层的厚度、蓄积量和持水能力差异,采用Origin 2021作图。
-
4种森林类型凋落物层厚度为32.3~62.7 mm (表2),从大到小依次为落桦混交林、华北落叶松林、白桦林、杨桦混交林,其中,华北落叶松林和落桦混交林显著大于杨桦混交林(P<0.05)。凋落物层总生物量为8.27~23.33 t·hm−2,从大到小依次为华北落叶松林、落桦混交林、杨桦混交林、白桦林,其中,华北落叶松林显著大于其他3种森林类型(P<0.05)。
表 2 不同森林类型凋落物层的厚度和生物量
Table 2. Litter thickness and biomass of different forest types
森林类型 半分解层 未分解层 厚度/mm 总生物量/(t·hm−2) 生物量/(t·hm−2) 比例/% 生物量/(t·hm−2) 比例/% 华北落叶松林 15.75±2.41 a 67.51 7.57±2.09 a 32.49 53.0±8.70 ab 23.33±4.47 a 白桦林 5.47±0.65 b 66.14 2.80±0.78 bc 33.86 36.0±6.90 bc 8.27±1.11 b 杨桦混交林 5.79±0.09 b 50.09 5.78±0.50 ab 49.91 32.0±1.86 c 11.56±0.42 b 落桦混交林 13.41±2.18 a 90.61 1.40±0.16 c 9.39 62.0±3.70 a 14.80±2.03 b 说明:数据为平均值±标准误。同列不同字母表示同一指标不同森林类型间差异显著(P<0.05)。 从凋落物的未分解层和半分解层生物量来看,未分解层生物量为华北落叶松林最大,落桦混交林最小,华北落叶松林和杨桦混交林显著大于落桦混交林(P<0.05);半分解层生物量为华北落叶松林最大,白桦林最小,华北落叶松林和落桦混交林显著大于杨桦混交林和白桦林(P<0.05)。从凋落物的半分解层和未分解层生物量所占比例来看,4种森林的半分解层生物量所占比例均大于未分解层,且极端比例出现在落桦混交林,其半分解层占比最大,为90.61%。
-
如图1所示:凋落物层的最大持水量从大到小依次为华北落叶松林、落桦混交林、杨桦混交林、白桦林,与总生物量的变化规律一致,华北落叶松林显著大于白桦林(P<0.05)。半分解层最大持水量为10.55~33.37 t·hm−2,华北落叶松林和落桦混交林显著大于白桦林和杨桦混交林(P<0.05);未分解层最大持水量为2.98~16.35 t·hm−2,华北落叶松林和杨桦混交林显著大于落桦混交林(P<0.05)。此外,除杨桦混交林外,华北落叶松林、白桦林和落桦混交林的半分解层最大持水量明显大于未分解层。
图 1 不同森林类型凋落物层的最大持水量和最大持水率
Figure 1. Litter maximum water holding capacity and maximum water holding rate of different forest types
凋落物层的最大持水率白桦林最大,为231.15%,杨桦混交林和落桦混交林次之,华北落叶松林最小,为208.92%,不同森林类型间最大持水率无显著差异。半分解层最大持水率为182.17%~220.90%,从大到小依次为白桦林、华北落叶松林、落桦混交林、杨桦混交林,不同森林类型间无显著差异。未分解层最大持水率为208.77%~274.51%,从大到小依次为杨桦混交林、白桦林、落桦混交林、华北落叶松林,杨桦混交林显著大于华北落叶松林和落桦混交林(P<0.05)。除华北落叶松林外,其他3种森林类型未分解层最大持水率均大于半分解层。
-
如图2所示:4种森林类型凋落物层最大拦蓄量为华北落叶松林最大,为39.05 t·hm−2,白桦林最小,为16.73 t·hm−2,与最大持水量的变化规律一致,华北落叶松林显著大于其他3种森林类型(P<0.05)。半分解层最大拦蓄量从大到小依次为华北落叶松林、落桦混交林、白桦林、杨桦混交林,华北落叶松林和落桦混交林与白桦林、杨桦混交林存在显著差异(P<0.05);未分解层最大拦蓄量从大到小依次为杨桦混交林、华北落叶松林、白桦林、落桦混交林,其中,杨桦混交林显著大于白桦林、落桦混交林(P<0.05),华北落叶松林显著大于落桦混交林(P<0.05)。
图 2 不同森林类型凋落物层的最大拦蓄量和最大拦蓄率
Figure 2. Litter maximum interception capacity and maximum interception rate of different forest types
凋落物层的最大拦蓄率从大到小依次为白桦林、杨桦混交林、落桦混交林、华北落叶松林,与凋落物层最大持水率的变化规律一致,其中,白桦林和杨桦混交林显著大于落桦混交林、华北落叶松林(P<0.05)。半分解层最大拦蓄率为151.84%~192.28%,从大到小依次为白桦林、华北落叶松林、落桦混交林、杨桦混交林,其中,白桦林显著大于落桦混交林、杨桦混交林(P<0.05)。未分解层最大拦蓄率为175.43%~257.56%,从大到小依次为杨桦混交林、白桦林、落桦混交林、华北落叶松林,其中,杨桦混交林显著大于其他3种森林类型(P<0.05),华北落叶松林显著小于其他3种森林类型(P<0.05)。
-
如图3所示:4种森林凋落物层有效拦蓄量为13.90~31.56 t·hm−2,从大到小依次为华北落叶松林、落桦混交林、杨桦混交林、白桦林,与最大持水量和最大拦蓄量变化规律一致,华北落叶松林显著大于其他3种森林类型(P<0.05)。半分解层华北落叶松林和落桦混交林有效拦蓄量分别为20.78和17.36 t·hm−2,显著大于白桦林(8.60 t·hm−2)和杨桦混交林(7.20 t·hm−2)(P<0.05);未分解层有效拦蓄量为2.87~14.87 t·hm−2,杨桦混交林最大,华北落叶松林和白桦林次之,落桦混交林最小。
图 3 不同森林类型凋落物层的有效拦蓄量和有效拦蓄率
Figure 3. Litter effective interception capacity and effective interception rate for different forest types
凋落物层的有效拦蓄率为138.95%~172.94%,从大到小依次为白桦林、杨桦混交林、落桦混交林、华北落叶松林,与凋落物层最大持水率和最大拦蓄率变化规律一致,其中,白桦林和杨桦混交林显著大于落桦混交林、华北落叶松林(P<0.05)。半分解层有效拦蓄率为124.51%~159.14%,从大到小依次为白桦林、华北落叶松林、落桦混交林、杨桦混交林,其中,白桦林显著大于落桦混交林和杨桦混交林(P<0.05)。未分解层有效拦蓄率为144.12%~216.38%,从大到小依次为杨桦混交林、白桦林、落桦混交林、华北落叶松林,其中,杨桦混交林显著大于其他3种森林类型(P<0.05),华北落叶松林显著小于其他3种森林类型(P<0.05)。
-
如图4所示:4种森林类型凋落物层持水量在浸水最初2.0 h内都迅速增加,处于快速吸水状态;在浸水2.0~8.0 h内,凋落物层持水量增加逐渐变缓;在浸水12.0 h后持水量增加明显较少,接近稳定状态;24.0 h后持水量达到最大值,处于饱和状态。不同森林类型凋落物半分解层和未分解层持水量变化有差异,半分解层持水量从大到小依次为白桦林、华北落叶松林、落桦混交林、杨桦混交林,未分解层持水量从大到小依次为杨桦混交林、白桦林、落桦混交林、华北落叶松林。对4种森林类型凋落物层持水量(w)与浸水时长(t)的关系进行拟合发现:持水量与浸水时间呈较好的对数函数关系(表3),关系式为$ {w}=k\mathrm{ln}t+b $。其中:k为系数,b为常数。
图 4 不同森林类型凋落物的持水量随浸水时长的变化
Figure 4. Variation of water holding capacity of litter with soaking time for different forest types
表 3 不同森林类型凋落物持水量和吸水速率与浸水时长的拟合方程
Table 3. Simulated equations between water holding capacity, water absorption rate, and soaking time of litter in different forest types
森林类型 凋落物层 持水量(w)与时长(t) 吸水速率(y)与时长(t) 回归方程 R2 回归方程 R2 华北落叶松林 未分解层 w=0.14 lnt+1.63 0.97 y=1.63 t−0.93 0.99 半分解层 w=0.11 lnt+1.79 0.94 y=1.78 t−0.91 0.99 白桦林 未分解层 w=0.23 lnt+1.75 0.98 y=1.73 t−0.89 0.99 半分解层 w=0.15 lnt+1.80 0.97 y=1.80 t−0.92 0.99 杨桦混交林 未分解层 w=0.16 lnt+2.12 0.98 y=2.11 t−0.93 0.99 半分解层 w=0.11 lnt+1.63 0.94 y=1.63 t−0.94 0.99 落桦混交林 未分解层 w=0.22 lnt+1.52 0.98 y=1.52 t−0.89 0.99 半分解层 w=0.17 lnt+1.62 0.97 y=1.60 t−0.91 0.92 -
如图5所示:4种森林类型凋落物层吸水速率在浸水最初2.0 h内急剧下降,在浸水2.0~8.0 h,吸水速率逐渐变缓,在浸水24.0 h时,吸水速率基本为0。半分解层的吸水速率从大到小依次为白桦林、华北落叶松林、落桦混交林、杨桦混交林,未分解层的吸水速率从大到小依次为杨桦混交林、白桦林、落桦混交林、华北落叶松林。对4种森林类型凋落物层吸水速率(y)与浸水时长(t)的关系进行拟合发现:凋落物吸水速率与浸水时长呈较好的幂函数关系(表3),关系式为$ y=k{t}^{n} $。其中:k为系数,n为指数。
Hydrological effects of litter layers in different forest types in the Bashang region
-
摘要:
目的 坝上地区是京津冀地区的重要水源涵养功能区,研究不同森林类型凋落物层的水源涵养能力可以为该区域植被的恢复、经营以及水土保持提供依据。 方法 在张家口市和平林场内选择华北落叶松Larix gmelinii var. principis-rupprechtii林、白桦Betula platyphylla林、山杨Populus davidiana-白桦林(杨桦混交林)和华北落叶松-白桦林(落桦混交林) 4种森林类型为研究对象,通过野外调查和室内浸泡法测定凋落物层的各项生态水文指标。 结果 ①不同森林凋落物层厚度在32.0~62.0 mm内变化,从大到小依次为落桦混交林、华北落叶松林、杨桦混交林、白桦林。②白桦林和杨桦混交林凋落物层的最大持水率、最大拦蓄率、有效拦蓄率大于落桦混交林和华北落叶松林,其中白桦林最大,分别为231.15%、207.60%和172.94%;华北落叶松林最小,分别为208.92%、170.29%和138.95%。③4种森林类型凋落物层的生物量为8.27~23.33 t·hm−2,最大持水量为18.96~49.71 t·hm−2,最大拦蓄量为16.73~39.05 t·hm−2,有效拦蓄量为13.90~31.56 t·hm−2,基本规律为华北落叶松林>落桦混交林>杨桦混交林>白桦林。④4种森林凋落物层持水量与浸水时长符合对数函数关系(R2>0.94);吸水速率与浸水时长符合幂函数关系(R2>0.92)。 结论 华北落叶松林单位质量下的凋落物层吸持水性能低于白桦林,但综合考虑凋落物生物量后,其持水和拦蓄水总量显著高于后者,综合水源涵养能力强。图5表3参38 Abstract:Objective This study, with an investigation of the water conservation capacity of litter layers in different forest types in the Bashang region, an important water conservation functional area in the Beijing-Tianjin-Hebei region, is aimed to provide a basis for the restoration, management and improvement of water and soil conservation in this region. Method With four types of forests, including Larix gmelinii var. principis-rupprechtii (PL), Betula platyphylla (NP), Populus davidiana and B. platyphylla mixed forest (NBP), L. gmelinii var. principis-rupprechtii and B. platyphylla mixed forest (PBL), selected as research objects in the Heping Forest Farm in Zhangjiakou City, field investigations and indoor immersion methods were employed to measure the ecological hydrological indicators of litter layers. Result (1) The thickness of litter layers in different forests ranged from 32.0 to 62.0 mm, with the PBL mixed forest having the thickest litter layer, followed by PL forest, NBP mixed forest, and NP forest. (2) The maximum water holding rate, maximum retention rate, and effective retention rate of litter layers were higher in NP forest and NBP mixed forest than PBL mixed forest and PL forest, with NP forest having the highest values of 231.15%, 207.60%, and 172.94%, respectively, and PL forest having the lowest values of 208.92%, 170.29%, and 138.95%, respectively. (3) The biomass, maximum water holding capacity, maximum retention capacity, and effective retention capacity of litter layers in the four types of forests ranged from 8.27 to 23.33 t·hm−2, 18.96 to 49.71 t·hm−2, 16.73 to 39.05 t·hm−2, and 13.90 to 31.56 t·hm−2, respectively, and the general trend was PL>PBL mixed forest>NBP mixed forest>NP forest. (4) The water holding capacity of litter layers in the four types of forests showed a logarithmic function relationship with the immersion time (R2>0.94) while the water absorption rate showed a power function relationship with the immersion time (R2> 0.92). Conclusion The water absorption performance of litter layers per unit mass in PL forest was weaker than that in NP forest, but when considering the biomass, the total water holding and retention capacity of PL forest was significantly higher than NP forest, indicating a strong comprehensive water conservation capacity. [Ch, 5 fig. 3 tab. 38 ref.] -
Key words:
- Bashang regin /
- forest types /
- litter /
- water conservation
-
表 1 样地基本概况
Table 1. Basic information of the sample plots
森林类型 海拔/m 坡向 坡度/(°) 树高/m 胸径/cm 密度/(株·hm−2) 郁闭度 华北落叶松林 1 846.7 阴坡 18.0±1.5 16.0±0.9 30.2±0.3 1 033.0±90.3 0.75±0.21 白桦林 1 648.7 阴坡 20.7±3.3 10.8±0.2 11.0±0.5 3 339.0±152.5 0.80±0.11 杨桦混交林 1 685.5 阴坡 25.0±3.9 10.0±0.5 10.6±0.9 3 525.0±118.1 0.83±0.10 落桦混交林 1 696.0 阴坡 19.0±2.7 12.0±0.8 16.2±0.8 2 890.0±106.9 0.70±0.15 说明:数据为平均值±标准误。 表 2 不同森林类型凋落物层的厚度和生物量
Table 2. Litter thickness and biomass of different forest types
森林类型 半分解层 未分解层 厚度/mm 总生物量/(t·hm−2) 生物量/(t·hm−2) 比例/% 生物量/(t·hm−2) 比例/% 华北落叶松林 15.75±2.41 a 67.51 7.57±2.09 a 32.49 53.0±8.70 ab 23.33±4.47 a 白桦林 5.47±0.65 b 66.14 2.80±0.78 bc 33.86 36.0±6.90 bc 8.27±1.11 b 杨桦混交林 5.79±0.09 b 50.09 5.78±0.50 ab 49.91 32.0±1.86 c 11.56±0.42 b 落桦混交林 13.41±2.18 a 90.61 1.40±0.16 c 9.39 62.0±3.70 a 14.80±2.03 b 说明:数据为平均值±标准误。同列不同字母表示同一指标不同森林类型间差异显著(P<0.05)。 表 3 不同森林类型凋落物持水量和吸水速率与浸水时长的拟合方程
Table 3. Simulated equations between water holding capacity, water absorption rate, and soaking time of litter in different forest types
森林类型 凋落物层 持水量(w)与时长(t) 吸水速率(y)与时长(t) 回归方程 R2 回归方程 R2 华北落叶松林 未分解层 w=0.14 lnt+1.63 0.97 y=1.63 t−0.93 0.99 半分解层 w=0.11 lnt+1.79 0.94 y=1.78 t−0.91 0.99 白桦林 未分解层 w=0.23 lnt+1.75 0.98 y=1.73 t−0.89 0.99 半分解层 w=0.15 lnt+1.80 0.97 y=1.80 t−0.92 0.99 杨桦混交林 未分解层 w=0.16 lnt+2.12 0.98 y=2.11 t−0.93 0.99 半分解层 w=0.11 lnt+1.63 0.94 y=1.63 t−0.94 0.99 落桦混交林 未分解层 w=0.22 lnt+1.52 0.98 y=1.52 t−0.89 0.99 半分解层 w=0.17 lnt+1.62 0.97 y=1.60 t−0.91 0.92 -
[1] 龚诗涵, 肖洋, 郑华, 等. 中国生态系统水源涵养空间特征及其影响因素[J]. 生态学报, 2017, 37(7): 2455 − 2462. GONG Shihan, XIAO Yang, ZHENG Hua, et al. Spatal patterns of ecosystem water conservation in China and its impact factors analysis[J]. Acta Ecologica Sinica., 2017, 37(7): 2455 − 2462. [2] 何文强, 陈林, 庞丹波, 等. 贺兰山东坡不同植被类型凋落物层水文效应[J]. 生态学杂志, 2023, 43(4): 1047 − 1056. HE Wenqiang, CHEN Lin, PANG Danbo, et al. Hydrological effects of litter layer of different vegetation types on the eastern slope of the Helan Mountains[J]. Chinese Journal of Ecology, 2023, 43(4): 1047 − 1056. [3] ZHANG Mingfang, LIU Ning, HARPER R. A global review on hydrological responses toforest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime[J]. Journal of Hydrology, 2017, 546: 44 − 56. [4] MOIWO J P, TAO Fulu, LU Wenxi. Analysis of satellite-based and in situ hydro-climatic data depicts water storage depletion in north China region[J]. Hydrological Processes, 2013, 27(7): 1011 − 1020. [5] 马佳明, 赵鹏, 刘雪莹, 等. 崇陵流域不同林分类型枯落物水文效应研究[J]. 生态环境学报, 2021, 30(4): 691 − 699. MA Jiaming, ZHAO Peng, LIU Xueying, et al. Research on the hydrological effects of litters of different forest types in Chongling Watershed[J]. Ecology and Environmental Sciences, 2021, 30(4): 691 − 699. [6] NERIS J, TEJEDOR M, RODRÍGUEZ M, et al. Effect of forest floor characteristics on water repellency, infiltration, runoff and soil loss in Andisols of Tenerife[J]. Catena, 2013, 108: 50 − 57. [7] LI Xiang, NIU Jianzhi, XIE Baoyuan. Study on hydrological functions of litter layers in north China [J/OL]. PLoS One, 2013, 8 (7): e70328[2023-11-01]. doi:10.1371/journal.pone.0070328. [8] 张瑛, 徐庆, 高德强, 等. 湖南会同不同林分类型杉木人工林凋落物水文效应[J]. 林业科学研究, 2021, 34(6): 81 − 89. ZHANG Ying, XU Qing, GAO Deqiang, et al. Hydrological effects of litters in different types of Cunninghamia lanceolata plantations in Huitong of Hunan, China[J]. Forest Research, 2021, 34(6): 81 − 89. [9] 李强, 周道玮, 陈笑莹. 地上枯落物的累积、分解及其在陆地生态系统中的作用[J]. 生态学报, 2014, 34(14): 3807 − 3819. LI Qiang, ZHOU Daowei, CHEN Xiaoying. The accumulation, decomposition and ecological effects of above-ground litter in terrestrial ecosystem[J]. Acta Ecologica Sinica, 2014, 34(14): 3807 − 3819. [10] FACELLI J M, PICKETT S T A. Plant litter: its dynamics and effects on plant community structure[J]. Botanical Review, 1991, 57(1): 1 − 32. [11] 刘宗悦, 吕时新, 徐钧杰, 等. 毛竹林皆伐和剩余物保留对土壤质量的影响[J]. 浙江农林大学学报, 2022, 39(6): 1289 − 1295. LIU Zongyue, LÜ Shixin, XU Junjie, et al. Effects of clear-cutting and harvest residue of Phyllostachys edulis forests on soil quality[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1289 − 1295. [12] 刘士玲, 郑金萍, 范春楠, 等. 我国森林生态系统枯落物现存量研究进展[J]. 世界林业研究, 2017, 30(1): 66 − 71. LIU Shiling, ZHENG Jinping, FAN Chunnan, et al. Research progress in litter accumulation of forest ecosystem in China[J]. World Forestry Research, 2017, 30(1): 66 − 71. [13] 高迪, 郭建斌, 王彦辉, 等. 宁夏六盘山不同林龄华北落叶松人工林枯落物水文效应[J]. 林业科学研究, 2019, 32(4): 26 − 32. GAO Di, GUO Jianbin, WANG Yanhui, et al. Hydrological effects of forest litters of Larix principis-rupprechtii plantations with varying ages in Liupanshan of Ningxia, China[J]. Forest Research, 2019, 32(4): 26 − 32. [14] 王玲, 赵广亮, 周红娟, 等. 八达岭林场不同密度油松人工林枯落物水文效应[J]. 生态环境学报, 2019, 28(9): 1767 − 1775. WANG Ling, ZHAO Guangliang, ZHOU Hongjuan, et al. Hydrological characteristics of litter in a Pinus tabulaeformis plantation with different densities in Badaling Forest Farm[J]. Ecology and Environmental Sciences, 2019, 28(9): 1767 − 1775. [15] 褚欣, 潘萍, 郭丽玲, 等. 不同密度飞播马尾松林凋落物及土壤持水性能比较分析[J]. 浙江农林大学学报, 2017, 34(5): 808 − 815. CHU Xin, PAN Ping, GUO Liling, et al. Comparing water-holding capacity in forest litter and soils for an aerially seeded Pinus massoniana plantation with different stand densities[J]. Journal of Zhejiang A&F University, 2017, 34(5): 808 − 815. [16] 熊壮, 叶文, 张树斌, 等. 西双版纳热带季节雨林与橡胶林凋落物的持水特性[J]. 浙江农林大学学报, 2018, 35(6): 1054 − 1061. XIONG Zhuang, YE Wen, ZHANG Shubin, et al. Water-holding capacity in forest litter of a seasonal tropical rainforest and a rubber plantation of Xishuangbanna in southwest China[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1054 − 1061. [17] 简永旗, 吴家森, 盛卫星, 等. 间伐和林分类型对森林凋落物储量和土壤持水性能的影响[J]. 浙江农林大学学报, 2021, 38(2): 320 − 328. JIAN Yongqi, WU Jiasen, SHENG Weixing, et al. Effects of thinning and stand types on litter stock and soil water-holding capacity[J]. Journal of Zhejiang A&F University, 2021, 38(2): 320 − 328. [18] 蔚阿龙, 温慧, 于生龙, 等. 冀西北清水河流域4种森林的枯落物层及土壤层水文效应[J]. 陆地生态系统与保护学报, 2023, 3(1): 34 − 46. WEI Along, WEN Hui, YU Shenglong, et al. Hydrological effects of litter layer and soil layers in four forest types in the Qingshui River Basin in northwest Hebei Province[J]. Terrestrial Ecosystem and Conservation, 2023, 3(1): 34 − 46. [19] 邢晓光, 沈会涛, 马文才, 等. 冀西北山地华北落叶松和白桦林下枯落物水文特征[J]. 水土保持通报, 2016, 36(5): 126 − 130. XING Xiaoguang, SHEN Huitao, MA Wencai, et al. Hydrological effects of Larix principis-rupprechtii and Betula Platyphylla forest litters in Northwest Mountain of Hebei Province[J]. Bulletion of Soil and Water Conservation, 2016, 36(5): 126 − 130. [20] 胡静霞, 杨新兵, 朱辰光, 等. 冀西北地区4种纯林枯落物及土壤水文效应[J]. 水土保持研究, 2017, 24(4): 304 − 310. HU Jingxia, YANG Xinbing, ZHU Chenguang, et al. Hydrological effects of litter in four pure forests and soils in Northwest of Hebei Province[J]. Research of Soil and Water Conservation, 2017, 24(4): 304 − 310. [21] 党毅, 王维, 余新晓, 等. 北京西山典型人工林分枯落物层生态水文效应[J]. 北京林业大学学报, 2022, 44(12): 72 − 87. DANG Yi, WANG Wei, YU Xinxiao, et al. Eco-hydrological effects of litter layer in typical artificial forest stands in Xishan Mountain of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(12): 72 − 87. [22] 武昱鑫, 余新晓, 彭修文, 等. 冬奥会崇礼赛区5种人工林枯落物及土壤水文特征[J]. 北京林业大学学报, 2022, 44(4): 66 − 75. WU Yuxin, YU Xinxiao, PENG Xiuwen, et al. Hydrological characteristics of litter and soil of five types of plantation configuration patterns in the Chongli Competition District of Winter Olympic Games[J]. Journal of Beijing Forestry University, 2022, 44(4): 66 − 75. [23] 周立华, 马永欢, 马绍休. 中国北方农牧交错带风水蚀复合区的粮食与退耕还林(草)问题[J]. 中国沙漠, 2007, 27(4): 552 − 557. ZHOU Lihua, MA Yonghuan, MA Shaoxiu. Food supply and grain for green project in the water-wind erosion compound areas of farming and grazing interlaced zone in northern China[J]. Journal of Desert Research, 2007, 27(4): 552 − 557. [24] 刘亭亭. 清水河流域典型土地利用方式水土流失特征分析[D]. 保定: 河北农业大学, 2018. LIU Tingting. Research on the Soil and Water Loss Characteristics of Typical Land Use Patterns in Qingshui River Basin [D]. Baoding: Hebei Agricultural University, 2018. [25] 庞梦丽, 朱辰光, 翟博超, 等. 河北省太行山区3种人工水土保持林枯落物及土壤水文效应[J]. 水土保持通报, 2017, 37(1): 51 − 56. PANG Mengli, ZHU Chenguang, ZHAI Bochao, et al. Water-holding capacity of litter and soil in three kinds of soil and water conservation forests in Taihang Mountains of Hebei Province [J]. Bulletion of Soil and Water Conservation, 2017, 37(1): 51 − 56. [26] 郭建军, 王佳欢, 胡静霞, 等. 2022年冬奥会崇礼赛区针叶林枯落物及土壤水文效应[J]. 中国水土保持科学, 2021, 19(4): 66 − 72. GUO Jianjun, WANG Jiahuan, HU Jingxia, et al. Hydrological effects of litter and soil for the coniferous forest in the Chongli district for 2022 Olympic Winter Games, Hebei Province[J]. Science of Soil and Water Conservation, 2021, 19(4): 66 − 72. [27] ZHU Fangfang, CHENG Jinhua. Comparison of the effects of litter decomposition process on soil erosion under simulated rainfall [J/OL]. Scientific Reports, 2022, 12 (1): 20929[2023-11-01]. doi: 10.1038/s41598-022-25035-2. [28] 杨霞, 陈丽华, 康影丽, 等. 辽东低山区5种典型水源涵养林枯落物持水特性[J]. 生态学杂志, 2019, 38(9): 2662 − 2670. YANG Xia, CHEN Lihua, KANG Yingli, et al. Water-holding characteristics of litter in five typical water conservation forests in low mountainous areas of eastern Liaoning[J]. Chinese Journal of Ecology, 2019, 38(9): 2662 − 2670. [29] PAUSAS J G. Litter fall and litter decomposition in Pinus sylvestris forests of the eastern Pyrenees[J]. Journal of Vegetation Science, 1997, 8(5): 643 − 650. [30] 张建利, 吴华, 喻理飞, 等. 草海湿地流域优势树种凋落物叶分解与水文特征研究[J]. 水土保持学报, 2014, 28(3): 98 − 103. ZHANG Jianli, WU Hua, YU Lifei, et al. Research on leaf litter decomposition and hydrological characteristics of dominant tree species in the Caohai wetland watershed[J]. Bulletion of Soil and Water Conservation, 2014, 28(3): 98 − 103. [31] 朱家晸, 秦富仓, 李龙, 等. 内蒙古清水河县公益林区不同林地类型枯落物层水文效应[J]. 水土保持通报, 2022, 42(1): 114 − 121. ZHU Jiazheng, QIN Fucang, LI Long, et al. Hydrological effects of litter layer of five different forest land types at public welfare forest area of Qingshuihe County, Inner Mongolia[J]. Bulletion of Soil and Water Conservation, 2022, 42(1): 114 − 121. [32] 公博, 师忱, 何会宾, 等. 冀北山区6种人工林的林地水源涵养能力[J]. 干旱区资源与环境, 2019, 33(3): 165 − 170. GONG Bo, SHI Chen, HE Huibin, et al. The water conservation capacity of 6 kinds of planted forests in northern mountain area of Hebei Province[J]. Journal of Arid Land Resources and Environmen, 2019, 33(3): 165 − 170. [33] 孟庆权, 葛露露, 杨馨邈, 等. 滨海沙地不同人工林凋落物现存量及其持水特性[J]. 水土保持学报, 2019, 33(3): 146 − 152. MENG Qingquan, GE Lulu, YANG Xinmiao, et al. Water-holding capacity and accumulation amount of litters in different plantations in coastal sandy area[J]. Journal of Soil and Water Conservation, 2019, 33(3): 146 − 152. [34] 伍倩, 闫文德, 梁小翠, 等. 亚热带4种典型人工林凋落物持水特性[J]. 中南林业科技大学学报, 2015, 35(12): 76 − 81, 94. WU Qian, YAN Wende, LIANG Xiaocui, et al. Water holding characteristics of litters in 4 plantations in subtropical zone[J]. Journal of Central South University of Forestry & Technology, 2015, 35(12): 76 − 81, 94. [35] 胡淑萍, 余新晓, 岳永杰. 北京百花山森林枯落物层和土壤层水文效应研究[J]. 水土保持学报, 2008, 22(1): 146 − 150. HU Shuping, YU Xinxiao, YUE Yongjie. Hydrological effects of forest litters and soil in Baihua Mountain[J]. Journal of Soil and Water Conservation, 2008, 22(1): 146 − 150. [36] 王美莲, 王飞, 姚晓娟, 等. 不同林龄兴安落叶松枯落物及土壤水文效应研究[J]. 生态环境学报, 2015, 24(6): 925 − 931. WANG Meilian, WANG Fei, YAO Xiaojuan, et al. Hydrological effects of forest litters and soil in Xing’an larch forest at different stand ages[J]. Ecology and Environmental Sciences, 2015, 24(6): 925 − 931. [37] 侍柳彤, 史常青, 杜晨曦, 等. 小五台山地区主要林分枯落物分布特征及水源涵养能力[J]. 水土保持学报, 2022, 36(5): 195 − 203. SHI Liutong, SHI Changqing, DU Chenxi, et al. Distribution characteristics and water conservation capacity of litter in main forests of Xiaowutai Mountain[J]. Journal of Soil and Water Conservation, 2022, 36(5): 195 − 203. [38] 程唱, 贺康宁, 俞国峰, 等. 干旱半干旱区不同林型人工林水源涵养能力比较研究[J]. 生态学报, 2021, 41(5): 1979 − 1990. CHENG Chang, HE Kangning, YU Guofeng, et al. Comparative study on water conservation capacity of different forest types of artificial forest in arid andsemi-arid area[J]. Acta Ecologica Sinica, 2021, 41(5): 1979 − 1990. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230535