留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宁夏罗山松阿扁叶蜂幼虫发生的关键影响因子

兰珍珍 王新谱 施兴文 董川

凡婷婷, 张佳琦, 刘会君, 等. 核桃铵态氮转运蛋白基因JrAMT2的功能分析[J]. 浙江农林大学学报, 2024, 41(1): 79-91. DOI: 10.11833/j.issn.2095-0756.20230296
引用本文: 兰珍珍, 王新谱, 施兴文, 等. 宁夏罗山松阿扁叶蜂幼虫发生的关键影响因子[J]. 浙江农林大学学报, 2024, 41(4): 735-743. DOI: 10.11833/j.issn.2095-0756.20230581
FAN Tingting, ZHANG Jiaqi, LIU Huijun, et al. Functional analysis of ammonium nitrogen transporter gene JrAMT2 in Juglans regia[J]. Journal of Zhejiang A&F University, 2024, 41(1): 79-91. DOI: 10.11833/j.issn.2095-0756.20230296
Citation: LAN Zhenzhen, WANG Xinpu, SHI Xingwen, et al. Key factors affecting the occurrence of Acantholyda posticalis larvae in Luoshan Mountains, Ningxia[J]. Journal of Zhejiang A&F University, 2024, 41(4): 735-743. DOI: 10.11833/j.issn.2095-0756.20230581

宁夏罗山松阿扁叶蜂幼虫发生的关键影响因子

DOI: 10.11833/j.issn.2095-0756.20230581
基金项目: 宁夏回族自治区重点研发计划项目 (2021BEG02009)
详细信息
    作者简介: 兰珍珍 (ORCID: 0009-0005-7438-7062),从事农业昆虫与害虫防治研究。E-mail: lzz15383644190@163.com
    通信作者: 王新谱 (ORCID: 0000-0003-3725-4242),教授,博士,从事农业昆虫与害虫防治研究。E-mail: wangxinpu@nxu.edu.cn
  • 中图分类号: S763

Key factors affecting the occurrence of Acantholyda posticalis larvae in Luoshan Mountains, Ningxia

  • 摘要:   目的  研究松阿扁叶蜂Acantholyda posticalis幼虫的发生与林分因子和立地因子的关系,筛选影响松阿扁叶蜂幼虫发生的关键因子。  方法  2022—2023年,在宁夏罗山国家级自然保护区松阿扁叶蜂主要发生区域设立21块样地,调查松阿扁叶蜂幼虫虫口密度和林分因子及立地因子。应用逐步回归分析法筛选出影响松阿扁叶蜂幼虫平均虫口密度的关键因子;采用方差分析和相关性分析法得出松阿扁叶蜂幼虫平均虫口密度与关键因子之间的关系。  结果  逐步回归法筛选出草本盖度、冠幅、郁闭度和坡位是影响松阿扁叶蜂幼虫发生的关键因子。根据关键因子建立了幼虫平均虫口密度的线性预测方程。筛选出的4个关键因子中,草本盖度和坡位对松阿扁叶蜂幼虫的发生有抑制作用,冠幅和郁闭度对松阿扁叶蜂幼虫的发生有促进作用。  结论  松阿扁叶蜂幼虫在林下草本盖度低、林分郁闭度和冠幅大的上坡位林地易发生。建议将这些林地作为防治重点区域,调整位于上坡位的林木草本盖度至0.3以上,冠幅至2.5 m以下,郁闭度至0.7以下,实现对宁夏罗山松阿扁叶蜂幼虫种群数量的生态控制。图5表3参39
  • 核桃Juglans regia 为胡桃科Juglandaceae胡桃属Juglans植物[1],其种仁含油量高,有“木本油料之王”的称号[2]。同时,核桃木材坚实,是良好的硬木材料。作为重要的经济林树种,核桃大多种植于土壤贫瘠的山坡沟坎,不与粮争地[3]。然而,核桃树体高大,与其他果树相比对矿质营养元素需求量较高,大量元素与核桃产量和品质形成紧密相关[4],因此,提高核桃树体对矿质元素的吸收能力对于提高核桃产量和品质至关重要[5]。研究表明:在核桃树各器官中种仁的氮素质量分数最高,核桃树吸收累积的矿质营养元素中氮素被商品核桃(种仁、硬壳)携走的比例也最高,叶片次之[6]。可见,氮素可能是提高核桃产量和品质的关键营养元素。然而,过量施用氮肥会导致严重的环境问题,因此,提高氮素利用效率是提高核桃产量与品质的重中之重[7]

    土壤中氮素主要分为无机氮和有机氮两大类,植物根系能够吸收利用的主要是无机氮,主要以硝态氮和铵态氮形式存在[89]。植物根系对无机氮转运调节途径可分为2种,即高亲和力(HATs)和低亲和力(LATs)的氮转运系统[10],HATs 在外部铵态氮( ${\rm{NH}}_4^ +$)、硝态氮(${\rm{NO}}^ -_3 $)浓度低于 0.5 mmol·L−1时介导吸收大部分的无机氮,而 LATs 则是在 ${\rm{NH}}_4^ + $、${\rm{NO}}_3^ - $浓度高于 0.5或 1.0 mmol·L−1时介导吸收无机氮[10]。植物对铵态氮和硝态氮的吸收主要由铵转运蛋白和硝酸转运蛋白介导。土壤中同时含有植物可吸收利用的硝态氮和铵态氮时,由于植物吸收硝态氮需要先将其还原成铵态氮后才能进行同化利用,消耗的能量更多,所以植物对铵态氮表现出明显的偏好性,而且当植物受盐胁迫及活性氧的伤害时,铵态氮具有缓解作用,因此,介导植物对铵态氮吸收的铵转运蛋白在植物氮同化中起着重要作用[11]。铵转运蛋白基因主要有两大类族,分为AMT1和AMT2。在已知的铵转运蛋白中大部分 AMT1 家族的转运蛋白属于高亲和转运体[12],如拟南芥Arabidopsis thaliana中有6个编码铵转运蛋白被鉴定,包括5个AMT1家族基因,1个AMT2家族基因。AMT1家族基因中,AtAMT1.1和AtAMT1.3对拟南芥根系铵态氮吸收的贡献率最高,为30%,AtAMT1.2、AtAMT1.5对拟南芥根系高亲和铵态氮吸收的贡献率略低于AtAMT1.1和AtAMT1.3[13]AtAMT1.4在花粉中特异性表达[14],在水稻Oryza sativa铵转运蛋白基因家族中AMT1家族有基因3个,其中OsAMT1.1和OsAMT1.2为高亲和力转运体[15];而 AMT2 家族以低亲和为主,在拟南芥AMT2家族基因中AtAMT2.1 在低亲和范围内适度促进拟南芥根系对铵态氮吸收,主要在铵从根部到地上部运输中发挥作用[16]。AMT2 型蛋白通常在植物的不同组织中包括根、芽和叶中都有表达,如AtAMT2.1基因在拟南芥各器官中均有表达,主要表达在拟南芥的维管束及上皮层[17],在拟南芥中AtAMT2.1与AtAMT1s之间还存在协同作用。此外,毛果杨Populus trichocarpa PtAMT2.1主要在叶片中,PtAMT2.2在叶柄中高表达。除此之外,玉米Zea mays[18]、番茄Lycopersicon esculentum [19]、欧洲油菜Brassica napus [20]等高等作物均鉴别出了AMT基因,但到目前为止,研究大多集中于高亲和的铵转运蛋白AMT1基因家族,对低亲和的铵转运蛋白AMT2基因家族的研究较少。因此,阐明AMT2的生物学功能和调控机制,对于提高核桃自身的氮效率和提高肥料利用效率都具有重要意义。

    本研究以核桃JrAMT2过表达株系为供试材料,采用实时荧光定量聚合酶链式反应(qRT-PCR)及生理检测的方法鉴定JrAMT2基因在核桃植株体内的表达模式,进一步对核桃JrAMT2基因进行生物学功能分析,为核桃优良品种选育提供理论依据。

    实验材料来自浙江农林大学省部共建亚热带森林培育国家重点实验室保存的核桃野生型(WT)以及课题组2019年获得的核桃JrAMT2过表达阳性植株 [21],其中JrAMT2基因构建于PCMBIA1300植物表达载体,载体抗性为卡那霉素(kanmycin,Kan),利用根癌农杆菌Agrobacterium tumefaciens GV3103菌株介导将构建好的35S::JrAMT2::GFP过表达载体转化到核桃野生型体细胞胚中,植物筛选标记为潮霉素(hygromycin,Hyg)。本研究所用核桃组培苗为野生型体胚和JrAMT2过表达阳性体胚经脱水萌发获得,温室苗则由上述组培苗经生根、炼苗、驯化获得。

    1.2.1   生物信息分析运用

    SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)网站在线分析JrAMT2蛋白质二级结构,运用TMHMM(http://www.cbs.dtu.dk/services/TMHMM/)在线软件对JrAMT2 蛋白进行跨膜结构域的预测,通过 GSDS(http://gsds.gao-lab.org/)软件在线分析JrAMT2基因结构。

    1.2.2   植株的培养

    同一JrAMT2过表达阳性体胚萌出的植株为1个株系,选取3个核桃JrAMT2阳性株系,命名为JrAMT2-1、JrAMT2-2、JrAMT2-3,每个株系继代培养至50株以上,培养条件:温度为 25 ℃,湿度为 75%~80%,光照强度为2~15 klx,光照周期为16 h光照8 h黑暗,培养基为Driver&Kunivuki&McGranahan (DKW)培养基。

    采用2步生根法获得核桃驯化植株,选取阳性体胚萌发后经4次继代培养的核桃组培苗作为实验材料。第1步进行根诱导,5~8 cm长的光生芽,转移到补充有10 mg·L−1吲哚丁酸钾(K-IBA)的DKW固体培养基,在黑暗中培养7 d,诱导根原基的发生;第2步,不定根诱导结束后将其转移到粗蛭石∶DKW培养基比例(体积比)为3∶2的固体培养基中,温度为25 ℃,湿度为75%~80%,光照强度为2~15 klx,光照周期为16 h光照8 h黑暗,培养时间为21~28 d,形成不定根,获得核桃不同株系生根植株[22]

    核桃苗不定根形成后取出用清水冲洗,多菌灵浸泡,移栽到泥炭∶蛭石∶珍珠岩比例(体积比)为2∶1∶1的混合土中,将移栽驯化成活后获得的核桃再生植株在温度为 25 ℃,湿度为 75%~80%,光照强度为2~15 klx,光照周期为16 h光照8 h黑暗的条件下培养[23],获得核桃不同株系温室植株。

    1.2.3   核桃JrAMT2基因阳性鉴定

    选用阳性体胚萌发后经4次继代培养的核桃组培苗进行绿色荧光蛋白(GFP) 检测、PCR及RT-qPCR验证,引物见表1。从再生植株顶芽开始向下截取 1.5 cm,培养14 d 后观察植株表型,每个株系均5个生物学重复。选取植株顶芽、叶片、茎段混样提取DNA及RNA。 PCR 反应程序为:94 ℃预变性 2 min;98 ℃变性10 s,55 ℃退火温度 30 s,68 ℃延伸 2 min,共 32 个循环;68 ℃延伸 7 min,PCR 反应产物进行质量分数为1.2%琼脂糖凝胶电泳。使用 The iQ5 Real-Time PCR Detection System 仪器进行RT-qPCR,测定转基因植株中JrAMT2的相对表达量。反应程序为:95 ℃ 10 min;95 ℃ 10 s,60 ℃ 31 s,40 个循环;95 ℃ 15 s;60 ℃ 1 min;95 ℃ 30 s;60 ℃ 15 s。通过 2−ΔΔCt方法计算定量结果[24]

    表 1  引物
    Table 1  Primers
    引物序列(5′→3′)用途
    Actin-F GCCGAACGGGAAATTGTC 内参
    Actin-R AGAGATGGCTGGAAGAGG 内参
    QJrAMT2-F AGCAAATGGGGTTCCAGGTT 定量
    QJrAMT2-R TGTCTCCCGCAGATAGAAGGTA 定量
    GFP-F ATGGTGAGCAAGGGCGAGGA 鉴定
    GFP-R TTACTTGTACAGCTCGTCCA 鉴定
    JrAMT2-F CATGAATACCACACCGGCCTA 鉴定
    下载: 导出CSV 
    | 显示表格

    取核桃野生型及核桃JrAMT2过表达株系组培苗的根、茎、小叶,根纵切、茎横切临时切片分别放置于体视荧光显微镜(Carl Zeiss Stereo D13covery V12,Axio Cam MRc system)在明场和蓝光(488 nm)激发条件下利用 ZEN lite 成像软件连续拍照[25-26]

    1.2.4   生长参数、铵态氮和硝态氮测定

    分别选取生长状态一致的核桃野生型与3个核桃JrAMT2过表达株系组培苗,从顶尖向下剪取1.5 cm茎段,含2~4片复叶,培养14 d,每个株系均5个生物学重复,测量株高及节间数。选取长势相同的核桃野生型及JrAMT2过表达植株采用2步生根法驯化,移栽后用直尺测量统计不同株系生长0、20、40 d的株高、节间长、叶片长度及叶片宽度。

    分别选取生长状态一致的核桃野生型与3个核桃JrAMT2过表达株系组培苗,培养14 d,采用2步生根法获得核桃生根植株,植株分为地上部分及地下部分2个部分,清洗植株,分别测定地上部分及地下部分鲜质量,于105 ℃下杀青,80 ℃烘干至恒量,称取干质量。使用苏州科铭生物技术有限公司的植物铵态氮(ZATD-1-G)和植物硝态氮(ZXTD-1-G)试剂盒测定地上部分及地下部分铵态氮和硝态氮质量分数,每个株系均5个生物学重复。

    1.2.5   植株叶绿体观察、叶绿素质量分数及叶绿素荧光测定

    分别选取生长状态一致的核桃野生型与3个核桃JrAMT2过表达株系组培苗,取顶尖向下第2节间处复叶。将该叶片置于0.35 mol·L−1氯化钠中研磨破碎至絮状,取悬液于高倍光学显微镜下观察,找到视野中单个完整的叶肉细胞,观察细胞中的叶绿体, 使用image J软件计算叶绿体表面积与单层细胞表面积比率。每个株系均5个生物学重复。

    采用丙酮浸取法测定叶绿素质量分数。分别取0.1 g核桃野生型与3个核桃JrAMT2过表达株系组培苗长势一致的叶片,剪碎,置于15 mL离心管中,加入10 mL体积分数 80%丙酮溶液,于室温黑暗处浸提,直至管内材料褪色变白,以80%丙酮溶液为对照,测定663和646 nm处吸光值,每个株系均5个生物学重复。wt=[(wa+8wbVt×(mFW×1 000)−1],叶绿素 a 质量分数(wa) =20.3×D(646),叶绿素 b 质量分数(Cb)=8.04×D(663)。其中:wt为叶绿素质量分数(mg·g−1),Vt为提取液总体积(mL),mFW为叶片鲜质量(g),D(646)和D(663)分别为646和663 nm处的吸光度。

    叶绿素荧光测定使用M-PEA(multi-function plant efficiency analyser)多功能植物效率分析仪(英国Hansatech公司)测定。选取生长状态一致的核桃野生型与3个核桃JrAMT2过表达株系温室苗由上向下第3片叶片暗处理30 min,在饱和脉冲光(5 000 μmol·m−2·s−1) 下进行快速叶绿素荧光诱导动力学曲线(OJIP曲线) 的测定和绘制。参照SCHANSKE等[27]的方法分析叶绿素荧光诱导动力学参数(JIP-test)。

    1.2.6   数据分析

    利用SPSS 26软件进行单因素方差分析(one-way ANOVA)和多重比较(邓肯法),显著性水平为0.05。使用GraphPad Prism 7.0软件绘图。

    核桃 JrAMT2基因的全长为 1 464 bp,起始密码子为 ATG,终止密码子为 TGA。经过美国国家生物技术信息中心(NCBI)在线序列比对显示:该基因的序列编码的氨基酸序列属于 Ammonium Transporter Family,编码487个氨基酸(图1),蛋白分子量为52.458 kD,预测分子式为C2433H3715N601O646S23,含有7 418个原子,理论等电点为7.11,不稳定指数为35.61,脂溶指数为101.56,亲水性平均值为0.472。该段蛋白质中包含20种常见氨基酸:亮氨酸质量分数最高,达到11.7%,其次分别为甘氨酸11.1%,丙氨酸10.9%,缬氨酸8.6%,半胱氨酸质量分数最低,仅为1.0%。JrAMT2蛋白中分别含有29个酸性氨基酸残基(Asp+Glu)和29个碱性氨基酸残基(Arg+Lys) (表2)。

    图 1  JrAMT2基因氨基酸序列
    Figure 1  Amino acid sequence of JrAMT2 gene
    表 2  JrAMT2基因氨基酸组成
    Table 2  Composition of JrAMT2 amino acids
    氨基酸数量/个占比/%氨基酸数量/个占比/%氨基酸数量/个占比/%
    丙氨酸 53 10.90 组氨酸 9 1.80 苏氨酸 27 5.50
    精氨酸 11 2.30 异亮氨酸 25 5.10 色氨酸 18 3.70
    天冬酰胺 16 3.30 亮氨酸 57 11.70 酪氨酸 17 3.50
    天冬氨酸 15 3.10 赖氨酸 18 3.70 缬氨酸 42 8.60
    半胱氨酸 5 1.00 甲硫氨酸 18 3.70 吡咯赖氨酸 0 0.00
    谷氨酰胺 11 2.30 苯丙氨酸 24 4.90 晒半胱氨酸 0 0.00
    谷氨酸 14 2.90 脯氨酸 24 4.90
    甘氨酸 54 11.10 丝氨酸 29 6.00
    下载: 导出CSV 
    | 显示表格

    对核桃JrAMT2蛋白跨膜区的预测结果表明:该蛋白N端在膜外,C端存在膜内,共含有11个跨膜螺旋,跨膜螺旋区段分别位于24~46、59~81、129~151、158~180、195~214、227~244、254~276、288~310、314~333、346~368和398~420,推测JrAMT2属于跨膜蛋白,并在N端存在信号肽(图2A)。

    图 2  核桃JrAMT2基因生物信息学分析
    Figure 2  Bioinformatics analysis of JrAMT2 gene in J. regia

    对JrAMT2 蛋白二级结构的预测结果显示:JrAMT2的氨基酸组成中有4种构象,其中 α- 螺旋有 201 个氨基酸,占比 43.12%;延伸链有 93个氨基酸,占比19.10%;β- 转角有 30个氨基酸,占比 6.16%;无规则卷曲有154个氨基酸,占比 31.62%。JrAMT2 铵转运蛋白主要由 α- 螺旋和无规则卷曲组成(图2B)。

    JrAMT2基因结构的分析显示:JrAMT2基因由4个外显子,3个内含子组成。与拟南芥AtAMT2基因相比,拟南芥基因结构多了1个外显子和1个内含子,与山核桃Carya cathayensis CcAMT2基因[28]、栓皮栎Quercus suber QsAMT2基因[29]相比,外显子和内含子数量相同,同源性较高(图2C)。

    在成功构建35S::JrAMT2::GFP的过表达载体并通过农杆菌介导转化核桃体胚后,对同一无性系JrAMT2体胚经脱水萌发获得的再生植株进行阳性鉴定。利用PCR技术,以核桃JrAMT2过表达植株3个株系(JrAMT2-1、JrAMT2-2和JrAMT2-3) DNA为模板,进行外源GFP基因(729 bp)的PCR验证,检测到大小约为 750 bp的电泳条带,与GFP基因大小符合(图3A);进行目的基因JrAMT2加外源GFP基因全长(2193 bp)的PCR验证,检测到大小为2000 bp的电泳条带,与目的基因大小符合(图3B);以核桃JrAMT2过表达植株3个株系的cDNA为模板,利用实时定量PCR技术对JrAMT2基因表达量进行检测,结果显示:核桃JrAMT2过表达植株3个株系JrAMT2基因相对表达量分别为野生型的10.58、12.80和14.94倍,显著上调(图3C),表明核桃JrAMT2过表达植株中JrAMT2基因稳定表达。

    图 3  PCR 和RT-qPCR 对核桃组培苗的JrAMT2基因的检测
    Figure 3  Detection of JrAMT2 gene in J. regia tissue culture seedlings by PCR and qRT-PCR

    对获得的过表达株系进行GFP荧光阳性鉴定,分别将核桃过表达及野生型幼苗(图4A)的小叶、茎、根置于荧光体视显微镜下在波长为488 nm蓝光激发下拍摄。结果显示:过表达植株的小叶、茎、根表面呈现均匀的绿色荧光,其中腋芽处荧光更明亮(图4B1~6),野生型核桃幼苗的小叶、茎、根在荧光下拍摄无绿色荧光激发(图4B7~12),说明JrAMT2蛋白在腋芽处积累。为进一步研究JrAMT2基因在核桃幼苗中的表达,对过表达株系及野生型组培苗的茎段进行横切,根进行纵切后,进行GFP荧光检测,结果显示:核桃JrAMT2过表达植株茎段横切中呈现均匀的绿色荧光,其中在维管组织中荧光更明亮,野生型植株茎段横切面无绿色荧面光(图4B1~12);核桃JrAMT2过表达植株根段纵切面中呈现均匀的绿色荧光,且在维管组织中荧光更明亮,野生型植株根段纵切面无绿色荧光(图4C1~8)。表明JrAMT2基因在核桃幼苗的根和茎中均可稳定表达,其中JrAMT2蛋白在根和茎的维管束组织中积累。

    图 4  铵态氮转蛋白基因JrAMT2在核桃苗中稳定表达
    Figure 4  Stable expression of ammonium nitrogen transfer protein gene JrAMT2 in J. regia
    2.3.1   核桃JrAMT2过表达植株生长表型分析

    为了进一步研究核桃JrAMT2基因的生物学功能,将3个JrAMT2过表达植株与野生型核桃植株培养14 d。结果表明:与野生型相比,核桃JrAMT2过表达植株均生长旺盛,株高显著增加,节间显著增长(P<0.05,图5A)。3个JrAMT2过表达株系株高分别为3.87、4.23和4.12 cm,节间长分别为0.33、0.35和0.34 cm,野生型植株株高为3.30 cm,节间长为0.28 cm,与野生型相比,3个JrAMT2过表达株系株高分别增加了17.0%、28.0%和29.0% (图5B),节间长分别增加了19.0%、25.0%和24.0% (图5C)。综上所述,JrAMT2过表达对核桃幼苗的生长有显著提高作用。

    图 5  核桃JrAMT2过表达离体培养植株表型分析
    Figure 5  Phenotypic analysis of J. regia JrAMT2 overexpression plant in vitro culture

    对核桃JrAMT2过表达植株进一步驯化培养,成功获得核桃JrAMT2过表达温室苗。对其生长表型进行分析(图6A),定植后培养40 d,核桃JrAMT2过表达温室苗的株高、节间长、叶片长度、叶片宽度增加显著高于野生型(P<0.05)。培养至第20天时,与野生型相比,核桃JrAMT2过表达温室苗3个株系株高分别增加21.9%、26.0%和24.6% (图6B),节间长分别增加41.2%、27.7%和26.3% (图6C),叶片长度分别增加18.7%、16%和30.7% (图6D),叶片宽度分别增加41.3%、48.2%和55.1% (图6E);培养至第40天时,与野生型相比,JrAMT2过表达温室苗3个株系株高分别增加53.6%、68.2%和62.1%,节间长分别增加37.2%、50.3%和44.8%,叶片长度分别增加了27.8%、34.1%和49.3%,叶片宽度分别增加24.3%、19.5%和29.2%。综上所述,核桃JrAMT2过表达温室苗与野生型相比,株高、节间长、叶片大小均显著增加,进一步证明JrAMT2基因过表达加快了核桃的生长速度。

    图 6  核桃JrAMT2过表达阳性温室苗性状分析
    Figure 6  Character analysis of J. regia JrAMT2 overexpression positive greenhouse seedlings
    2.3.2   核桃JrAMT2过表达植株对氮素吸收分析

    为探究JrAMT2基因在核桃中是否存在差异表达,将核桃野生型及核桃JrAMT2过表达植株进行2步生根,获得核桃JrAMT2过表达生根植株,将其分为地上部分与地下部分。与野生型相比,核桃JrAMT2过表达生根植株地下部分不定根生长旺盛(图7A)。对核桃JrAMT2过表达植株地上部分及地下部分差异分析,分别提取3个核桃JrAMT2过表达株系生根植株地上部分及地下部分RNA,利用实时定量PCR技术,分析地上部分及地下部分JrAMT2基因表达的差异。结果表明:3个JrAMT2过表达株系地上部分JrAMT2基因表达量分别是野生型的11.94、12.70和15.06倍,地下部分JrAMT2基因表达量分别是野生型的19.07、23.34和24.00倍(图7B)。对核桃野生型及3个JrAMT2过表达株系地上部分及地下部分进行干质量和鲜质量测定。结果表明:3个JrAMT2过表达株系地上部分鲜质量和干质量显著高于野生型(P<0.05),与野生型相比,鲜质量分别增加23.45%、33.67%和56.26%,干质量分别增加23.45%、43.89%和56.26%;3个JrAMT2过表达株系地下部分干质量和鲜质量显著高于野生型(P<0.05),与野生型相比,鲜质量分别增加222.65%、199.24%和344.38%,干质量分别增加222.65%、199.24%和354.33%(图7C)。

    图 7  核桃JrAMT2过表达植株氮素吸收分析
    Figure 7  Character analysis of the regenerated plants with expression of JrAMT2 in J. regia

    基于核桃JrAMT2过表达植株表型变化,本研究进一步测定核桃JrAMT2过表达植株对硝态氮及铵态氮吸收。结果表明:与野生型相比,核桃3个JrAMT2过表达株系地上部分及地下部分铵态氮质量分数显著增加(P<0.05),地上部分分别增加59.1%、32.3%和55.1%,地下部分别增加68.1%、61.9%和114.1% (图7D);核桃3个JrAMT2过表达株系地上部分硝态氮质量分数显著降低(P<0.05),地下部分硝态氮质量分数显著增加(P<0.05),地上部分分别降低10.1%、7.1%和13.6%,地下部分别增加63.5%、75.7%和70.3% (图7E)。综上所述,JrAMT2基因主要作用于核桃地下部分,且JrAMT2基因过表达促进植株地下部分对铵态氮和硝态氮的吸收,并介导了铵态氮从地下部到地上部的运输。

    2.3.3   核桃JrAMT2过表达植株叶绿素质量分数及叶绿素荧光特性分析

    对核桃JrAMT2过表达植株叶色与叶片细胞叶绿体进行观察。核桃JrAMT2过表达植株叶色与野生型相比颜色较深(图8A),在显微镜下观察3个核桃JrAMT2过表达植株株系及野生型叶绿体特征发现,3个核桃JrAMT2过表达株系扩张的栅栏叶肉细胞中的叶绿体更致密(图8B)。进一步分析发现:对3个阳性株系进行总叶绿素质量分数测定,3个核桃JrAMT2过表达株系叶绿素质量分数显著高于野生型(P<0.05),野生型总叶绿素质量分数为3.53 mg·g−1,核桃JrAMT2过表达阳性植株3个株系总叶绿素质量分数分别为4.64、4.69和6.10 mg·g−1,与野生型相比分别增加了32.6%、34.0%和74.3% (图8C);JrAMT2过表达株系叶绿体表面积在单层细胞表面积的占比显著高于野生型(P<0.05),野生型叶绿体表面积与单层细胞表面积的比率为0.56,3个核桃JrAMT2过表达株系叶绿体表面积与单层细胞表面积的比值分别为0.67、0.68和0.69,与野生型相比分别增加了19.41%、21.18%和22.94% (图8D)。综上所述,JrAMT2基因过表达提高了叶绿体表面积与单层细胞表面积的比率及核桃叶肉细胞内叶绿素的积累。

    图 8  核桃JrAMT2过表达植株叶绿体及叶绿素质量分数分析
    Figure 8  Analysis of chloroplast and chlorophyll content in J. regia with JrAMT2 overexpression

    对3个核桃JrAMT2过表达株系进行快速叶绿素荧光诱导动力学曲线测定。结果显示:与野生型相比,3个核桃JrAMT2过表达株系的O (Fo点)相、K相降低,J点、I点、P (Fm)及J~P点振幅均提高,OJIP曲线较陡,表明JrAMT2基因一定程度上提高了叶片的活性(图9A)。与野生型相比,3个核桃JrAMT2过表达株系暗适应后的最大荧光强度(Fm)、最大量子产额(Fv/Fm)均提高,Fm分别提高了47.1%、45.9%、50.2%,Fv/Fm分别提高了15.6%、13.4%、14.7%,表明JrAMT2基因一定程度上提高了光系统Ⅱ(PSⅡ)的光化学效率(图9B)。计算归一化处理的OJIP曲线(Vt)[Vt =(FtFo /(FmFo),Ft为任意时刻t的荧光值],并计算相对荧光差异ΔVtVt = Vt处理Vt对照,用ΔK、ΔJ值分别显示在300 μs和20 ms处的ΔVt值,表示放氧复活体的活性(OEC)]。结果显示:与野生型相比,3个核桃JrAMT2过表达株系ΔK、ΔJ值下降且<0 (图9C),表明JrAMT2基因一定程度上提升了核桃叶片PSⅡ供体侧及受体侧电子传递效率及放氧复活体的活性。

    图 9  铵态氮转运蛋白JrAMT2基因表达对核桃叶绿素荧光的影响
    Figure 9  Effect of ammonium nitrogen transporter JrAMT2 gene on chlorophyll fluorescence of J. regia

    用JIP-test参数对OJIP曲线进行定量分析,结果显示:核桃3个JrAMT2过表达株系在t=0时的最大光化学效率(φPo)、反应中心捕获的光能用于${\rm{Q}}_{\rm{A}}^- $下游电子传递的量子产量(ΨEo)、吸收的能量用于电子传递的量子产量(φEo)上升,分别上升了14.62%、44.59%、65.80%;在J点的相对可变荧光强度(VJ)、最小荧光强度与最大荧光强度比值(Fo/Fm)、反应中心关闭净速率(dV/dto)下降,分别下降了31.03%、35.29%、49.34% (图9D),表明JrAMT2基因一定程度上提高了PS反应中心的量子比率及产额;对单位PS反应中心比活性参数分析,结果显示:与野生型相比,3个核桃JrAMT2过表达株系在t=0 时的单位反应中心捕获的用于电子传递的能量(ETo/RC)、在t=0 时的单位反应中心传递到电子链末端的能量(REo/RC)无明显变化,在t=0 时单位反应中心吸收的能量(ABS/RC)、在t=0 时单位反应中心耗散的能量(DIo/RC)、在 t=0 时单位反应中心捕获的用于还原QA的能量(TRo/RC)显著下降,分别为36.43%、58.67%、27.22%,表明JrAMT2基因一定程度提高了核桃叶片反应中心活性和用于电子传递的能量份额,增强了电子传递能力(图9E);对单位受光截面比活性参数分析,结果显示:与野生型相比,3个核桃JrAMT2过表达株系在 t=tFM(暗适应后达到最大荧光强度时间点)时的单位受光截面耗散的能量(DIo/CSm)无明显变化,在 t=tFM时单位受光截面吸收的能量(ABS/CSm)、在t=tFM时单位受光截面捕获的用于还原QA的能量(TRo/CSm)、在 t=tFM时单位受光截面捕获的用于电子传递的能量(ETo/CSm)、在t=tFM时单位受光截面传递到电子链末端的能量(REo/CSm)上升,分别上升了 47.79%、69.39%、145.10%、303.62%(图9F),表明JrAMT2基因一定程度提高核桃叶片单位受光截面的电子传递的份额及电子传递效率。综上所述,JrAMT2基因过表达促进核桃的光合作用。

    氮素作为植物生长发育必不可少的营养元素,是核酸、蛋白质、酶、叶绿素、植物激素等的重要组成部分[30]。自然界中可供利用的氮素资源有限,作物高产就需要化肥的投入。中国的化肥投入总量逐渐升高,但化肥利用率很低,给自然环境带来极大的负担 [3132],因此合理使用化肥,提高作物对氮素的吸收效率是促进农业生态化发展的重要途径。铵转运蛋白基因AMTs是广泛存在于动物、植物、微生物中用于运输${\rm{NH}}_4^+ $的载体蛋白,从分子层面提高植物对氮素的利用具有重要意义。前人研究发现:在拟南芥中,氮饥饿能诱导AtAMT1.1、AtAMT2.1基因上调表达,并且AtAMT2基因的表达水平随着氮饥饿时间的延长而增加[33-34]。在充足或高氮条件下,观察到拟南芥中AtAMT2.1及水稻根中OsAMT1.2基因表达水平仍上调 [35-36],其中氮素形态对AMT基因转录水平的调控也取决于AMT基因个体和植物物种。

    本研究对核桃JrAMT2过表达植株进行初步的功能验证,对JrAMT2基因进行生物信息学分析表明:JrAMT2蛋白中含有29个酸性氨基酸残基(Asp+Glu)和29个碱性氨基酸残基(Arg+Lys)。该蛋白N端在膜外,C端存在膜内,共含有11个跨膜螺旋结构域,与李畅[36]预测的OsAMT2.1蛋白结构域特点相同,且与夏金泽等[37]研究的木薯Manihot esculenta MeAMT2.6基因的蛋白结构相似。AMT2 型蛋白通常在植物的各种组织中表达,包括根、芽和叶。前人研究发现:杜梨 Pyrus betulifolia PbAMT2基因在所有器官中均有表达,但在根部表达最高[38]。在拟南芥中发现:AtAMT2.1基因主要在维管组织中表达,在芽中的表达高于根[15]。本研究对核桃JrAMT2过表达植株进行绿色荧光观察发现:JrAMT2蛋白在核桃苗整株均有表达,且在芽及根茎的维管束中荧光更明亮,说明与拟南芥相同,核桃JrAMT2蛋白在所有器官中表达,且主要在维管组织中表达。

    在植物生长发育重要阶段充足的氮素营养供给可以促进其生长发育,增加产量,对植物外施氮素能增加植株株高及叶面积[39]。本研究对核桃JrAMT2过表达植株生长性状分析发现:JrAMT2基因在核桃中过表达对植株生长发育有调控作用,主要表现在过表达植株株高、节间长显著增加。对过表达植株生根驯化结果显示:过表达植株生物量显著增加,根系发达。对核桃JrAMT2过表达植株移栽驯化,定植后植株生长速率显著高于野生型,主要表现在节间伸长快,叶面积增加。AMT2是具有铵吸收功能的铵转运蛋白,且在维管组织表达,暗示着该基因可能参与铵向木质部的装载,介导铵在植物中的长距离运输。研究发现:拟南芥AtAMT2.1除了对根吸收氮素有一定贡献外,主要作用于${\rm{NH}}_4^+ $从根部到茎部的运输[40]。本研究对核桃JrAMT2过表达植株地上部分和地下部分基因表达测定发现:植株地下部分JrAMT2基因表达量显著高于地上部分,且植株地下部分生物量的增加显著高于地下部分,说明核桃JrAMT2基因主要在地下部分表达。对核桃JrAMT2过表达植株对铵态氮和硝态氮吸收测定结果表明:核桃JrAMT2过表达植株地上部分仅对铵态氮的吸收显著上调,地下部分对铵态氮与硝态氮的吸收均显著上调,说明JrAMT2基因促进植株对铵态氮和硝态氮的吸收,并介导了铵态氮从地下部分到地上部分的运输。氮素营养还会通过影响叶绿素合成和叶绿素荧光参数的变化来参与光能的利用和调控[41]。有研究表明:水稻OsAMT2.1基因敲除株系的光合特性与野生型相比出现下降趋势,同样说明了AMT2基因对植物光合作用有调控作用[36]。本研究对核桃JrAMT2过表达植株叶绿素质量分数及叶绿素荧光参数变化的测定结果显示:JrAMT2基因显著提高了核桃的叶绿体表面积与单层细胞表面积比率、叶绿素质量分数及叶绿素荧光参数中叶片放氧复活体活性、量子产额、电子传递效率。

    JrAMT2作为铵态氮转运基因,促进核桃对铵态氮和硝态氮的吸收,且介导铵态氮从根部到茎部的运输,对核桃生长发育、光合作用等有积极作用,对研究核桃高效利用氮素及良种的筛选有重要意义。

  • 图  1  草本盖度对松阿扁叶蜂幼虫平均虫口密度的影响

    Figure  1  Effect of herbaceous coverage on the average population density of A. posticalis

    图  2  冠幅对松阿扁叶蜂幼虫平均虫口密度的影响     

    Figure  2  Effect of crown size on the average population density of A. posticalis

    图  3  郁闭度对松阿扁叶蜂幼虫平均虫口密度的影响

    Figure  3  Effect of canopy cover on the average population density of A. posticalis

    图  4  坡位对松阿扁叶蜂幼虫平均虫口密度的影响    

    Figure  4  Effect of slope position on the average population density of A. posticalis

    图  5  松阿扁叶蜂幼虫平均虫口密度与关键因子相关性及显著性检验

    Figure  5  Correlation and significant test coefficients between key factors and A. posticalis larvae population density

    表  1  调查样地基本信息

    Table  1.   Basic information of the sample site

    样地号海拔/m坡度/(°)坡向坡位优势树种林分类型样地号海拔/m坡度/(°)坡向坡位优势树种林分类型
    12286.0834.042油松纯林122324.7325.062油松纯林 
    22290.6133.041油松纯林132322.7224.061油松纯林 
    32227.3942.051油松纯林142315.6023.542青海云杉+油松混交林
    42217.6340.052油松纯林152323.4924.551油松纯林 
    52196.9533.053油松纯林162307.9925.052油松纯林 
    62201.7530.053油松纯林172418.0029.562青海云杉+油松混交林
    72390.7846.051油松纯林182415.0330.062青海云杉+油松混交林
    82383.4537.352油松纯林192431.0036.063青海云杉纯林 
    92345.2336.553油松纯林202432.8937.063青海云杉纯林 
    102397.5541.061油松纯林212496.9733.062青海云杉纯林 
    112335.5639.061油松纯林
    下载: 导出CSV

    表  2  林分因子和立地因子与松阿扁叶蜂幼虫平均虫口密度的方差分析

    Table  2.   Analysis of variance between stand and site factors and average population density of A. posticalis larvae

    误差来源平方和自由度均方FP
    回归37 135.254152 475.68427.796<0.001
    残差2 315.7502689.067
    总计39 451.00441
    下载: 导出CSV

    表  3  平均虫口密度与关键因子逐步回归分析

    Table  3.   Average insect population density and key factors were analyzed by stepwise regression

    因子系数a系数biFPR2膨胀因子
    郁闭度(x3) 22.83254.37754.847<0.0010.8401.377
    冠幅(x6)  14.2791.480
    草本盖度(x8)−195.3391.483
    坡位(x15)  −6.5311.610
    下载: 导出CSV
  • [1] 张同心, 孙绪艮, 崔为正, 等. 松阿扁叶蜂对不同树种的选择行为[J]. 林业科学, 2006, 42(6): 66 − 70.

    ZHANG Tongxin, SUN Xugen, CUI Weizheng, et al. Selective behaviors of Acantholyda posticalis to different trees [J]. Scientia Silvae Sinicae, 2006, 42(6): 66 − 70.
    [2] 贾彦霞, 田会刚, 姜灵, 等. 松阿扁叶蜂越冬幼虫空间分布型研究[J]. 中国森林病虫, 2017, 36(3): 5 − 7, 12.

    JIA Yanxia, TIAN Huigang, JIANG Ling, et al. Study on spatial distribution patterns of overwintering larvae of Acantholyda posticalis [J]. Forest Pest and Disease, 2017, 36(3): 5 − 7, 12.
    [3] 梁中贵, 李建军, 刘建强, 等. 松阿扁叶蜂研究进展[J]. 中国植保导刊, 2007, 27(5): 14 − 17.

    LIANG Zhonggui, LI Jianjun, LIU Jianqiang, et al. Research progress on Acantholyda posticalis [J]. China Plant Protection, 2007, 27(5): 14 − 17.
    [4] 赵紫华. 从害虫“综合治理”到“生态调控”[J]. 科学通报, 2016, 61(18): 2027 − 2034.

    ZHAO Zihua. From “integrated pest management” to “ecologically based pest management” [J]. Chinese Science Bulletin, 2016, 61(18): 2027 − 2034.
    [5] 赵紫华, 马建华, 高峰, 等. 害虫种群区域性生态调控的系统策略[J]. 中国生物防治学报, 2021, 37(5): 855 − 862.

    ZHAO Zihua, MA Jianhua, GAO Feng, et al. Systematic strategy of ecologically based pest management of insect pest population at landscape scales [J]. Chinese Journal of Biological Control, 2021, 37(5): 855 − 862.
    [6] SÁNCHEZ-MARTINEZ G, WAGNER M R. Bark beetle community structure under four Ponderosa pine forest stand conditions in northern Arizona [J]. Forest Ecology and Management, 2002, 170(1/3): 145 − 160.
    [7] GRAY D R. The relationship between climate and outbreak characteristics of the spruce budworm in eastern Canada [J]. Climatic Change, 2008, 89: 447 − 449.
    [8] JACTEL H, BROCKEROFF E G. Tree diversity reduces herbivory by forest insects [J]. Ecology Letters, 2007, 10(9): 835 − 848.
    [9] PRATHER R M, CASTILLIONI K, WELTI E A R, et al. Abiotic factors and plant biomass, not plant diversity, strongly shape grassland arthropods under drought conditions [J/OL]. Ecology, 2020, 101(6): e03033[2023-11-01]. doi: 10.1002/ecy.3033.
    [10] JOHN P C, LAURA J N, WILLIAM R M, et al. Influence of landscape factors and abiotic conditions on dispersal behavior and overwintering site selection by Halyomorpha halys (Hemiptera: Pentatomidae) [J]. Journal of Economic Entomology, 2020, 113(4): 2016 − 2021.
    [11] FORISTER M L, NOVOTNY V, PANORSKA A K, et al. The global distribution of diet breadth in insect herbivores [J]. Proceedings of the National Academy of Sciences, 2014, 112(2): 442 − 447.
    [12] 李丹春, 付作霖, 徐红霞, 等. 白龙江林区油松林分因子对中华松针蚧危害的影响[J]. 林业科学研究, 2021, 34(3): 180 − 186.

    LI Danchun, FU Zuolin, XU Hongxia, et al. Effects of stand factors of Pinus tabulaeformis stand on damage of Matsucoccus sinensis in Bailongjiang forest area [J]. Forest Research, 2021, 34(3): 180 − 186.
    [13] WERNER F A, HOMEIER J. Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient [J]. Functional Ecology, 2015, 29(3): 430 − 440.
    [14] 孔婷婷, 刘爱华, 张静文. 天山野苹果林苹果小吉丁虫虫口密度与林分因子的关系[J]. 中国植保导刊, 2019, 39(11): 42 − 46.

    KONG Tingting, LIU Aihua, ZHANG Jingwen. Relationship between the stand factors and population density of Agrilus mali Matsumura in wild apple trees in Tianshan Mountain [J]. China Plant Protection, 2019, 39(11): 42 − 46.
    [15] 邵方丽, 余新晓, 郑江坤, 等. 北京山区防护林优势树种分布与环境的关系[J]. 生态学报, 2012, 32(19): 6092 − 6099.

    SHAO Fangli, YU Xinxiao, ZHEN Jiangkun, et al. Relationships between dominant arbor species distribution and environmental factors of shelter forests in the Beijing mountain area [J]. Acta Ecologica Sinica, 2012, 32(19): 6092 − 6099.
    [16] 任德智, 葛立雯, 罗大庆. 小尺度森林郁闭度测定方法及应用[J]. 林业科技开发, 2014, 28(1): 94 − 97.

    REN Dezhi, GE Liwen, LUO Daqing. A method for estimating small-scale forest crown closure and its application [J]. China Forestry Science and Technology, 2014, 28(1): 94 − 97.
    [17] 周润惠, 唐永彬, 王敏, 等. 威远不同年龄桉树人工林林下物种多样性和土壤理化性质[J]. 应用与环境生物学报, 2021, 27(3): 742 − 748.

    ZHOU Runhui, TANG Yongbin, WANG Min, et al. Species diversity and soil physicochemical properties at Eucalyptus robusta plantations of different ages in Weiyuan [J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 742 − 748.
    [18] 曾凡勇, 孙志强. 森林生态系统中植食性昆虫与寄主的互作机制、假说与证据[J]. 生态学报, 2014, 34(5): 1061 − 1071.

    ZENG Fanyong, SUN Zhiqiang. Mechanism, hypothesis and evidence of herbivorous insect-host interactions in forest ecosystem [J]. Acta Ecologica Sinica, 2014, 34(5): 1061 − 1071.
    [19] LANTSCHNER M V, CORLEY J C. Spatiotemporal outbreak dynamics of bark and wood-boring insects [J/OL]. Current Opinion in Insect Science, 2023, 55: 101003 [2023-11-01]. doi: 10.1016/j.cois.2022.101003.
    [20] ZHAN Zhongyi, YU Linfeng, REN Lili, et al. The association between stand and landscape level factors and red turpentine beetle damage in different infestation stages [J/OL]. Forest Ecology and Management, 2023, 531: 120790 [2023-11-01]. doi: 10.1016/j.foreco.2023.120790.
    [21] 辛未冬, 杜一丹, 刘华煜, 等. 地表节肢动物多样性对煤矸石山不同植被恢复方式的响应及生物指示作用[J]. 生态环境学报, 2022, 31(10): 2079 − 2088.

    XIN Weidong, DU Yidan, LIU Huayu, et al. Responses and biological indications of ground-dwelling arthropods diversity to different vegetation restoration patterns in coal gangue [J]. Ecology and Environmental Sciences, 2022, 31(10): 2079 − 2088.
    [22] 胡瑞瑞, 梁军, 谢宪, 等. 昆嵛山腮扁叶蜂发生与赤松纯林林分因子的关系[J]. 生态学杂志, 2019, 38(5): 1285 − 1291.

    HU Ruirui, LIANG Jun, XIE Xian, et al. Relationship between Cephalcia kunyushanica occurrence and stand factors of Pinus densiflora pure forests [J]. Chinese Journal of Ecology, 2019, 38(5): 1285 − 1291.
    [23] 唐艳龙, 杨忠岐, 高尚坤, 等. 寄主树木、寄主和环境因子对松褐天牛深沟茧蜂寄生率的影响研究[J]. 林业科学研究, 2018, 31(1): 72 − 77.

    TANG Yanlong, YANG Zhongqi, GAO Shangkun, et al. A study on host tree, host and environmental factors affecting the parasitism of Iphiaulax monochamusi Yang (Hymenoptera: Braconidae), a larval parasitoid of Monochamus alternatus (Coleoptera: Cerambycidae) [J]. Forest Research, 2018, 31(1): 72 − 77.
    [24] 韩大校, 王千雪, 王烁, 等. 地形和森林植被因子对落叶松毛虫越冬代发生及数量的影响[J]. 林业科学研究, 2023, 36(2): 144 − 152.

    HAN Daxiao, WANG Qianxue, WANG Shuo, et al. Effects of topography and forest vegetation factors on occurrence and population size of overwintering Dendrolimus superans [J]. Forest Research, 2023, 36(2): 144 − 152.
    [25] 曾康华. 计量经济学[M]. 北京: 清华大学出版社, 2016.

    ZENG Kanghua. Econometrics [M]. Beijing: Tsinghua University Press, 2016.
    [26] 刘强, 吴志伟, 林世滔, 等. 松材线虫病发生点格局及影响因素[J]. 应用生态学报, 2022, 33(9): 2530 − 2538.

    LIU Qiang, WU Zhiwei, LIN Shitao, et al. Spatial point pattern analysis of pine wilt disease occurrence and its influence factors [J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2530 − 2538.
    [27] 庞圣江, 唐诚, 张培, 等. 广西大青山西南桦人工林拟木蠹蛾为害的影响因子[J]. 东北林业大学学报, 2016, 44(11): 85 − 88.

    PANG Shengjiang, TANG Cheng, ZHANG Pei, et al. Attack factors of Arbela spp. in Betula alnoides plantations at mountain Daqingshan, Guangxi [J]. Journal of Northeast Forestry University, 2016, 44(11): 85 − 88.
    [28] 李巧, 陈又清, 周兴银, 等. 元谋干热河谷桉树林昆虫群落初步研究[J]. 浙江林学院学报, 2008, 25(4): 502 − 506.

    LI Qiao, CHEN Youqing, ZHOU Xingyin, et al. Insect communities in Eucalyptus plantations in Yuanmou Arid-hot Valley [J]. Journal of Zhejiang Forestry College, 2008, 25(4): 502 − 506.
    [29] BELLONE D, KLAPWIJK M J, BJORKMAN C. Habitat heterogeneity affects predation of European pine sawfly cocoons [J]. Ecology and Evolution, 2017, 7(24): 11011 − 11020.
    [30] 惠刚盈, 张连金, 胡艳波, 等. 林分拥挤度及其应用[J]. 北京林业大学学报, 2016, 38(10): 1 − 6.

    HUI Gangying, ZHANG Lianjin, HU Yanbo, et al. Stand crowding degree and its application [J]. Journal of Beijing Forestry University, 2016, 38(10): 1 − 6.
    [31] 张晔珵, 张怀清, 陈永富, 等. 基于树冠因子的林木竞争指数研究[J]. 林业科学研究, 2016, 29(1): 80 − 84.

    ZHANG Yecheng, ZHANG Huaiqing, CHEN Yongfu, et al. Study of tree competition index based on crown feature [J]. Forest Research, 2016, 29(1): 80 − 84.
    [32] O’ROURKE M E, PETERSEN M J. Extending the ‘resource concentration hypothesis’ to the landscape-scale by considering dispersal mortality and fitness costs [J]. Agriculture,Ecosystems &Environment, 2017, 249: 1 − 3.
    [33] 董威, 刘泰瑞, 覃志杰, 等. 不同林分密度油松天然林土壤理化性质及微生物量碳氮特征研究[J]. 生态环境学报, 2019, 28(1): 65 − 72.

    DONG Wei, LIU Tairui, QIN Zhijie, et al. Research on the characteristics of soil physicochemical properties and microbial biomass carbon and nitrogen in natural Pinus tabulaeformis forests with different stand densities [J]. Ecology and Environmental Sciences, 2019, 28(1): 65 − 72.
    [34] 周泓杨, 张丹桔, 张捷, 等. 马尾松人工林郁闭度对大型土壤动物功能群的影响[J]. 应用生态学报, 2017, 28(6): 1860 − 1868.

    ZHOU Hongyang, ZHANG Danju, ZHANG Jie, et al. Effects of canopy density on the functional group of soil macro fauna in Pinus massoniana plantations [J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1860 − 1868.
    [35] 孙志强, 张星耀, 林琳, 等. 赤松纯林林分特征对昆嵛山鳃扁叶蜂发生量的影响[J]. 生态学报, 2010, 30(4): 857 − 866.

    ZHANG Zhiqiang, ZHANG Xingyao, LIN Lin, et al. Impact of the stand characteristics of Pinus densiflora pure forests on the infestations of Cephalcia kunyushanica in Kunyushan region [J]. Acta Ecologica Sinica, 2010, 30(4): 857 − 866.
    [36] 罗先轶, 张永光. 基于多源遥感数据的森林虫害监测及驱动力分析[J]. 航天返回与遥感, 2022, 43(6): 129 − 140.

    LUO Xianyi, ZHANG Yongguang. Monitoring forest pests and its driving factors based on multi-source remote sensing data [J]. Spacecraft Recovery &Remote Sensing, 2022, 43(6): 129 − 140.
    [37] 程立超, 迟德富. 立地因子和林分因子对黄褐天幕毛虫的影响[J]. 湖南农业大学学报 (自然科学版), 2016, 42(2): 177 − 181.

    CHENG Lichao, CHI Defu. Effect of site factors and stand factors on Malacosoma neustria testacea Motschulsky [J]. Journal of Hunan Agricultural University (Natural Sciences), 2016, 42(2): 177 − 181.
    [38] 程立超, 迟德富. 立地和林分因子对舞毒蛾虫口密度的影响[J]. 西北林学院学报, 2017, 32(6): 224 − 227.

    CHENG Lichao, CHI Defu. Effects of site and stand factors on the average population density of Lymantria dispar [J]. Journal of Northwest Forestry University, 2017, 32(6): 224 − 227.
    [39] 肖玖金, 林宏贵, 周鑫, 等. 不同坡位柳杉人工林夏季土壤动物群落特征[J]. 浙江农林大学学报, 2016, 33(2): 257 − 264.

    XIAO Jiujin, LIN Honggui, ZHOU Xin, et al. Soil fauna community structure in Cryptomeria fortunei artificial stands at different slope elevations in summer [J]. Journal of Zhejiang A&F University, 2016, 33(2): 257 − 264.
  • [1] 王雨齐, 张前前, 张文卓, 俞叶飞, 吕强锋, 滕秋梅, 李永春.  延胡索产量和品质对杉木林郁闭度和凋落物处理的响应 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240461
    [2] 陈思宇, 刘宪钊, 王懿祥, 梁丹.  基于机载LiDAR的高郁闭度华北落叶松林单木识别 . 浙江农林大学学报, 2022, 39(4): 800-806. doi: 10.11833/j.issn.2095-0756.20210399
    [3] 王雨阳, 王懿祥, 李明哲, 梁丹.  基于无人机可见光影像的毛竹林郁闭度估测方法 . 浙江农林大学学报, 2022, 39(5): 981-988. doi: 10.11833/j.issn.2095-0756.20210576
    [4] 熊璨, 唐慧超, 徐斌, 洪泉.  郊野绿道的使用特征与满意度 . 浙江农林大学学报, 2019, 36(1): 154-161. doi: 10.11833/j.issn.2095-0756.2019.01.019
    [5] 贾鹏刚, 夏凯, 董晨, 冯海林, 杨垠晖.  基于无人机影像的银杏单木胸径预估方法 . 浙江农林大学学报, 2019, 36(4): 757-763. doi: 10.11833/j.issn.2095-0756.2019.04.016
    [6] 唐洪辉, 赵庆, 严俊, 杨清.  珠三角地区城镇绿道森林景观特征 . 浙江农林大学学报, 2016, 33(5): 784-789. doi: 10.11833/j.issn.2095-0756.2016.05.009
    [7] 肖玖金, 林宏贵, 周鑫, 尤花, 李云, 张健.  不同坡位柳杉人工林夏季土壤动物群落特征 . 浙江农林大学学报, 2016, 33(2): 257-264. doi: 10.11833/j.issn.2095-0756.2016.02.010
    [8] 廖小锋, 龙秀琴, 李安定, 谢元贵.  草海湿地喜旱莲子草基于株高和盖度的水深生态幅研究 . 浙江农林大学学报, 2015, 32(4): 643-647. doi: 10.11833/j.issn.2095-0756.2015.04.022
    [9] 姚智, 张晓丽.  基于WebGIS平台的森林郁闭度遥感反演信息系统研建 . 浙江农林大学学报, 2015, 32(3): 392-398. doi: 10.11833/j.issn.2095-0756.2015.03.009
    [10] 赵晓, 吕玉龙, 王聪, 李亚丹, 杜华强.  毛竹林叶面积指数和郁闭度空间分布协同克里格估算 . 浙江农林大学学报, 2014, 31(4): 560-569. doi: 10.11833/j.issn.2095-0756.2014.04.011
    [11] 张梦弢, 亢新刚, 蔡烁.  长白山云冷杉林下主要树种幼树生物量 . 浙江农林大学学报, 2012, 29(5): 655-660. doi: 10.11833/j.issn.2095-0756.2012.05.003
    [12] 范叶青, 周国模, 施拥军, 董德进, 周宇峰.  坡向坡位对毛竹林生物量与碳储量的影响 . 浙江农林大学学报, 2012, 29(3): 321-327. doi: 10.11833/j.issn.2095-0756.2012.03.001
    [13] 姚兆斌, 高勇, 詹敏, 张建国.  乡村避暑老年游客满意度研究 . 浙江农林大学学报, 2011, 28(6): 949-952. doi: 10.11833/j.issn.2095-0756.2011.06.019
    [14] 李金良, 郑小贤.  人工林造林密度样圆调查圆心点位设置研究 . 浙江农林大学学报, 2008, 25(1): 55-59.
    [15] 金春德, 张美淑, 文桂峰, 刘继生, 张鹏.  不同坡位人工林赤松木材材性的径向变异 . 浙江农林大学学报, 2004, 21(2): 119-124.
    [16] 林青兰, 李克恩, 徐文成, 蔡一敏.  鞭角华扁叶蜂生物学特性及防治 . 浙江农林大学学报, 2001, 18(4): 420-423.
    [17] 吴延熊, 郭仁鉴, 周国模.  区域森林资源预警的警度划分 . 浙江农林大学学报, 1999, 16(1): 70-75.
    [18] 许安芳, 吴隆高, 胡中成, 吴伟刚, 邱润生, 郭有意.  杉木地理种源胸径与冠幅相关检验及其应用 . 浙江农林大学学报, 1998, 15(2): 131-137.
    [19] 何福基, 吴明安, 倪荣新, 谢正成, 张建忠.  杉木种子园郁闭度对种子产量的影晌 . 浙江农林大学学报, 1995, 12(3): 311-315.
    [20] 吕晓平, 金根明, 赵仁友, 章华祥.  鞭节华扁叶蜂生物学习性研究 . 浙江农林大学学报, 1993, 10(1): 16-22.
  • 期刊类型引用(0)

    其他类型引用(13)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230581

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/4/735

图(5) / 表(3)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  78
  • PDF下载量:  22
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-12-01
  • 修回日期:  2024-03-24
  • 录用日期:  2024-03-27
  • 网络出版日期:  2024-07-12
  • 刊出日期:  2024-07-12

宁夏罗山松阿扁叶蜂幼虫发生的关键影响因子

doi: 10.11833/j.issn.2095-0756.20230581
    基金项目:  宁夏回族自治区重点研发计划项目 (2021BEG02009)
    作者简介:

    兰珍珍 (ORCID: 0009-0005-7438-7062),从事农业昆虫与害虫防治研究。E-mail: lzz15383644190@163.com

    通信作者: 王新谱 (ORCID: 0000-0003-3725-4242),教授,博士,从事农业昆虫与害虫防治研究。E-mail: wangxinpu@nxu.edu.cn
  • 中图分类号: S763

摘要:   目的  研究松阿扁叶蜂Acantholyda posticalis幼虫的发生与林分因子和立地因子的关系,筛选影响松阿扁叶蜂幼虫发生的关键因子。  方法  2022—2023年,在宁夏罗山国家级自然保护区松阿扁叶蜂主要发生区域设立21块样地,调查松阿扁叶蜂幼虫虫口密度和林分因子及立地因子。应用逐步回归分析法筛选出影响松阿扁叶蜂幼虫平均虫口密度的关键因子;采用方差分析和相关性分析法得出松阿扁叶蜂幼虫平均虫口密度与关键因子之间的关系。  结果  逐步回归法筛选出草本盖度、冠幅、郁闭度和坡位是影响松阿扁叶蜂幼虫发生的关键因子。根据关键因子建立了幼虫平均虫口密度的线性预测方程。筛选出的4个关键因子中,草本盖度和坡位对松阿扁叶蜂幼虫的发生有抑制作用,冠幅和郁闭度对松阿扁叶蜂幼虫的发生有促进作用。  结论  松阿扁叶蜂幼虫在林下草本盖度低、林分郁闭度和冠幅大的上坡位林地易发生。建议将这些林地作为防治重点区域,调整位于上坡位的林木草本盖度至0.3以上,冠幅至2.5 m以下,郁闭度至0.7以下,实现对宁夏罗山松阿扁叶蜂幼虫种群数量的生态控制。图5表3参39

English Abstract

凡婷婷, 张佳琦, 刘会君, 等. 核桃铵态氮转运蛋白基因JrAMT2的功能分析[J]. 浙江农林大学学报, 2024, 41(1): 79-91. DOI: 10.11833/j.issn.2095-0756.20230296
引用本文: 兰珍珍, 王新谱, 施兴文, 等. 宁夏罗山松阿扁叶蜂幼虫发生的关键影响因子[J]. 浙江农林大学学报, 2024, 41(4): 735-743. DOI: 10.11833/j.issn.2095-0756.20230581
FAN Tingting, ZHANG Jiaqi, LIU Huijun, et al. Functional analysis of ammonium nitrogen transporter gene JrAMT2 in Juglans regia[J]. Journal of Zhejiang A&F University, 2024, 41(1): 79-91. DOI: 10.11833/j.issn.2095-0756.20230296
Citation: LAN Zhenzhen, WANG Xinpu, SHI Xingwen, et al. Key factors affecting the occurrence of Acantholyda posticalis larvae in Luoshan Mountains, Ningxia[J]. Journal of Zhejiang A&F University, 2024, 41(4): 735-743. DOI: 10.11833/j.issn.2095-0756.20230581
  • 松阿扁叶蜂Acantholyda posticalis是危害油松Pinus tabuliformis、赤松P. densiflora、华山松P. armandii等松类的主要食叶害虫[1]。该虫1 a发生1代,越冬幼虫4月下旬在地下化蛹,5月初成虫羽化,6月上、中旬幼虫在树上取食松针,7月下旬老熟幼虫在树冠下方吐丝下树进入土壤表层做土室越夏、越冬[2]。该幼虫危害严重时,针叶全无,只留下叶柄,受灾后的油松枝梢上布满残渣和粪屑,林分似火烧,松林成橘褐色,连续受害2~3 a,林木会干枯死亡[3]。昆虫作为森林生态系统的重要有机组成部分,其种群暴发受森林植被及环境的直接或间接影响[45],对系统内的物种组成、空间结构、生态功能产生极大的负面作用[67]。影响森林害虫种群进一步扩散暴发的因素既包括植物、动物、微生物等生物因子,也包括海拔、坡向、坡位等非生物因子[89]

    在森林生态系统中,林分因子和立地因子与森林虫害关系密切[1011]。林分因子和立地因子与有害生物共同建立了相互依存和制约的关系,特别是林分因子中森林群落结构作用于食叶害虫来调控害虫的种群密度。如中华松针蚧Matsucoccus sinensis在低密度油松林中种群数量多,高密度林分低;枝下高较高的油松受中华松针蚧危害严重,枝下高较低的油松林受危害程度低[12]。立地因子通常是以影响寄主植物的质量来调控害虫种群密度。如WERNER等[13]认为:随坡度的减小,土壤厚度和养分储量会增加,有利于叶片中的营养物质升高,从而促进森林虫害的发生。苹果小吉丁虫Agrilus mali虫口密度与坡度、海拔呈显著负相关,与林木胸径呈显著正相关[14]。因此,加快森林虫害生态调控理论和可操作体系的系统研究显得尤为迫切,急需在生态系统的尺度上开展林分因子和立地因子与有害生物关系的研究。通过调整林分结构来实现对害虫的生态调控,是一项重要且可持续的森防措施。本研究以宁夏罗山国家级自然保护区林区的食叶害虫松阿扁叶蜂幼虫为研究对象,开展罗山森林生态系统林分因子和立地因子对松阿扁叶蜂幼虫种群数量影响的研究,旨在探讨该幼虫平均虫口密度与各因子间多重复杂的关系,揭示影响罗山区域松阿扁叶蜂幼虫平均虫口密度的关键因子,为控制松阿扁叶蜂提供依据。

    • 宁夏罗山国家级自然保护区(37°11′~37°25′N,106°04′~106°24′E)位于宁夏回族自治区红寺堡区,地处贺兰山和六盘山之间的过渡带,是宁夏三大天然林区之一。保护区海拔为1 560.0~2 624.5 m,由呈南北走向的大、小罗山2个山体构成,南北长36 km,东西宽18 km。保护区属典型温带大陆性气候,温差大,降水少,蒸发量是降水量的9倍;全年主风向为东南风,其次西北风,四季分明,且冬春长、夏秋短。土壤类型单一,有普通山地灰褐土、淡灰钙土、风沙土和山地侵蚀灰褐土。森林覆盖率为9.6%,总蓄积量2.03×105 m3,乔木以油松和青海云杉Picea crassifolia为主,主要灌木有灰栒子Cotoneaster acutifolius、银露梅Potentilla glabra、紫丁香Lilium tenuifolium、榆树Ulmus pumila、水栒子Cotoneaster multiflorus、甘肃山楂Lonicera tangutica、黄刺玫Caragana frutex、绣线菊Spiraea salicifolia和虎榛子Ostryopsis davidiana;主要地被植物有蓬子菜Galium verum、小花草玉梅Anemone rivularis、大戟Euphorbia pekinensis、四叶葎Galium bungei、山丹Lilium pumilum等。

    • 于2022和2023年6—9月,对研究区进行实地调查。根据林木分布海拔,随机设立有代表性林分作为样地,其中不同坡向(半阳坡、阴坡、半阴坡)、坡位(上坡、中坡和下坡)、坡度(16°≤坡度<26°为斜坡,26°≤坡度<36°为陡坡,36°≤坡度<46°为急坡)的样地至少重复3次,共21块。每块标准样地面积为20 m×20 m,同一坡向保留10 m以上保护行,同一坡位保留20 m以上隔离带。用全球定位系统(GPS)获得地理坐标。调查每块样地松阿扁叶蜂幼虫数量,计算虫口密度。另外,调查标准样地林分和立地因子。样地基本信息如表1所示。

      表 1  调查样地基本信息

      Table 1.  Basic information of the sample site

      样地号海拔/m坡度/(°)坡向坡位优势树种林分类型样地号海拔/m坡度/(°)坡向坡位优势树种林分类型
      12286.0834.042油松纯林122324.7325.062油松纯林 
      22290.6133.041油松纯林132322.7224.061油松纯林 
      32227.3942.051油松纯林142315.6023.542青海云杉+油松混交林
      42217.6340.052油松纯林152323.4924.551油松纯林 
      52196.9533.053油松纯林162307.9925.052油松纯林 
      62201.7530.053油松纯林172418.0029.562青海云杉+油松混交林
      72390.7846.051油松纯林182415.0330.062青海云杉+油松混交林
      82383.4537.352油松纯林192431.0036.063青海云杉纯林 
      92345.2336.553油松纯林202432.8937.063青海云杉纯林 
      102397.5541.061油松纯林212496.9733.062青海云杉纯林 
      112335.5639.061油松纯林
    • 在松阿扁叶蜂幼虫危害时,按“五点法”在每块样地4个角及中心各取1株油松,共5株,进行虫口密度调查,按树冠东、西、南、北4个方位的上、中、下3层各选1条50 cm延长枝,共选12条,记录虫口数,以“头·株−1”为统计单位,计算平均虫口密度,并统计这5株松树的树高、枝下高、胸径、冠幅和林下草本盖度,计算各因子平均值。按“五点法”记录标准样地海拔、坡位、坡向、坡度和腐殖层厚度,坡位、坡向等定性因子参考邵方丽等[15]的方法将其赋值量化,即用1、2、3分别代表上坡、中坡和下坡,用4、5、6分别代表半阳坡、阴坡、半阴坡。郁闭度采用对角线法测定,在每块样地每条对角线上,隔1 m设1个测点,即每条对角线上分别设置28个测点,共设置56个测点,采用抬头法观测每个测点是否被树冠所遮盖,分别记录为覆盖或无覆盖,最后统计标准地内设置的总观测点数和有树冠覆盖的点数,据此计算郁闭度[16]。每个标准样地调查胸径≥5 cm的树种数和株数,计算每个样地林分密度;按“五点法”设置5个5 m×5 m的灌木样方,每个灌木样方设置1个1 m×1 m草本植物样方,进行林下灌木层种类、数量和草本层盖度的调查。

      根据周润惠等[17]采用的方法计算灌木物种丰富度和灌木Shamnon多样性指数。

    • 采用Excel 2007和SPSS 22.0对数据进行分析。对松阿扁叶蜂幼虫平均虫口密度与林分因子和立地因子进行逐步回归分析,筛选出影响松阿扁叶蜂幼虫平均虫口密度的关键影响因子。单因素方差分析(one-way ANOVA)、Duncan法多重比较、Pearson相关系数法探究松阿扁叶蜂平均虫口密度与林分因子和立地因子的关联性。用GraphPad Prism 10和Origin 2021作图。

    • 为了同时表达林分因子和立地因子对松阿扁叶蜂幼虫危害情况,对数据进行多重回归分析,建立幼虫平均虫口密度与各因子的方程,设幼虫平均虫口密度(y)、树种(x1)、林分密度(x2)、郁闭度(x3)、树高(x4)、枝下高(x5)、冠幅(x6)、胸径(x7)、草本盖度(x8)、灌木丰富度(x9)、灌木多样性指数(x10)、海拔(x11)、腐殖层厚度(x12)、坡度(x13)、坡向(x14)、坡位(x15)为自变量,得到回归模型:y=−319.750−7.936x1+75.212x3−0.176x4−0.804x5+8.621x6+0.128x7−112.264x8−6.284x9+62.243x10+0.163x11−4.877x12−0.573x13−3.969x14−5.645x15,决定系数(R2)为0.941,调整后R2=0.907。从表2可以看出:F值为27.796,P<0.001,表明各因子多元线性模式的分析效果好。

      表 2  林分因子和立地因子与松阿扁叶蜂幼虫平均虫口密度的方差分析

      Table 2.  Analysis of variance between stand and site factors and average population density of A. posticalis larvae

      误差来源平方和自由度均方FP
      回归37 135.254152 475.68427.796<0.001
      残差2 315.7502689.067
      总计39 451.00441
    • 表3所示:通过逐步回归分析,筛选出了郁闭度(x3)、冠幅(x6)、草本盖度(x8)及坡位(x15)等4个因子是影响松阿扁叶蜂幼虫平均虫口密度的关键因子。建立关键因子影响平均虫口密度的多元线性预测模型为:y=22.832+54.377x3+14.279x6−195.339x8−6.531x15R2=0.856,调整后R2=0.840。分析结果表明:郁闭度、冠幅、草本盖度及坡位与松阿扁叶蜂幼虫平均虫口密度间存在极显著的线性关系(P<0.01)。4个关键因子组成的线性决定系数(R2=0.840)与上述15个因子影响幼虫平均虫口密度的决定系数接近(R2=0.907),说明这4个因子能够较准确地预测松阿扁叶蜂幼虫平均虫口密度的变化。F=54.847,P<0.001,郁闭度、冠幅、草本盖度和坡位的膨胀因子(VIF)分别为1.377、1.480、1.483和1.610,均远小于10,说明各项因子间没有高度共线性,多元线性模式的分析效果好。

      表 3  平均虫口密度与关键因子逐步回归分析

      Table 3.  Average insect population density and key factors were analyzed by stepwise regression

      因子系数a系数biFPR2膨胀因子
      郁闭度(x3) 22.83254.37754.847<0.0010.8401.377
      冠幅(x6)  14.2791.480
      草本盖度(x8)−195.3391.483
      坡位(x15)  −6.5311.610
    • 图1所示:根据样地林下草本盖度的实际调查结果,将2022与2023年调查的草本盖度数据均分为3组,第1组:0.11~0.20,第2组:0.20~0.30,第3组:0.30~0.40(上限排除法)。方差分析结果表明:2022年(F=12.635,P<0.01)与2023年(F=11.599,P<0.01)不同草本盖度对松阿扁叶蜂幼虫平均虫口密度的影响达到极显著水平。Duncan多重比较表明:不同年份林下草本盖度为0.20~0.30(第2组)和0.30~0.40(第3组)时的松阿扁叶蜂幼虫平均虫口密度差异不显著,2022年幼虫平均虫口密度分别为25.82、10.56头·株−1,2023年幼虫平均虫口密度分别为32.43、12.89头·株−1,但第2组和第3组与第1组的幼虫平均虫口密度存在极显著差异(P<0.01),第1组2022与2023年幼虫平均虫口密度分别为61.30、74.50头·株−1

      图  1  草本盖度对松阿扁叶蜂幼虫平均虫口密度的影响

      Figure 1.  Effect of herbaceous coverage on the average population density of A. posticalis

    • 图2所示:根据样地林木冠幅的实际调查结果,将2022与2023年调查的冠幅数据均分为3组,第1组:1.50~2.51 m,第2组:2.51~3.41 m,第3组:3.41~4.30 m(上限排除法)。方差分析结果表明:2022年不同冠幅对松阿扁叶蜂幼虫平均虫口密度的影响差异极显著(F=7.082,P<0.01),2023年影响差异显著(F=4.939,P<0.05)。经多重比较发现:2022与2023年冠幅第1组和第3组的松阿扁叶蜂幼虫平均虫口密度差异极显著(P<0.01),且2022年第3组的幼虫平均虫口密度(55.35头·株−1)显著高于第1组(11.93头·株−1),2023年第3组的幼虫平均虫口密度(40.30头·株−1)显著高于第1组(13.47头·株−1),2022年冠幅第2组幼虫平均虫口密度(41.76头·株−1)显著高于第1组(11.93头·株−1)。

      图  2  冠幅对松阿扁叶蜂幼虫平均虫口密度的影响     

      Figure 2.  Effect of crown size on the average population density of A. posticalis

    • 图3所示:根据样地林分郁闭度的实际调查结果,将2022与2023年调查的林分郁闭度数据均分为3组,第1组:0.40~0.55,第2组:0.55~0.70,第3组:0.70~0.86(上限排除法)。方差分析结果表明:2 a的调查结果均显示在郁闭度小于0.70时松阿扁叶蜂幼虫平均虫口密度较小,Duncan多重比较表明:2022与2023年第2组和第3组郁闭度林分中的松阿扁叶蜂幼虫平均虫口密度存在显著差异(P<0.05),2022年幼虫平均虫口密度分别为21.32、51.92头·株−1,2023年幼虫平均虫口密度分别为24.32、62.42头·株−1

      图  3  郁闭度对松阿扁叶蜂幼虫平均虫口密度的影响

      Figure 3.  Effect of canopy cover on the average population density of A. posticalis

    • 图4所示:2022年坡位对松阿扁叶蜂幼虫平均虫口密度的影响达到显著水平(F=4.249,P<0.05),2023年坡位对松阿扁叶蜂幼虫平均虫口密度的影响达到极显著水平(F=6.270,P<0.01)。Duncan多重比较表明:2022与2023年中坡位和下坡位的松阿扁叶蜂幼虫平均虫口密度差异不显著,但两者与上坡位比较差异显著。2022与2023年上坡位的幼虫平均虫口密度平均值分别是50.90、65.62头·株−1,显著高于中坡位(23.91、29.16头·株−1)和下坡位(12.31、11.06头·株−1)。

      图  4  坡位对松阿扁叶蜂幼虫平均虫口密度的影响    

      Figure 4.  Effect of slope position on the average population density of A. posticalis

    • 图5所示:2022年(r=−0.793,P<0.01)、2023年(r=−0.779,P<0.01)林下草本盖度与松阿扁叶蜂幼虫平均虫口密度均呈极显著负相关,即松阿扁叶蜂幼虫平均虫口密度大小随草本盖度的增大而减小;2022年(r=0.613,P<0.01)、2023年(r=0.586,P<0.01)松阿扁叶蜂幼虫平均虫口密度随冠幅的增大呈极显著上升的趋势;2022年(r=0.588,P<0.01)、2023年(r=0.540,P<0.01)松阿扁叶蜂幼虫平均虫口密度均随林分郁闭度的增大极显著增大;2022年(r=−0.549,P<0.01)、2023年(r=−0.626,P<0.01)林木分布坡位与松阿扁叶蜂幼虫平均虫口密度均呈极显著负相关,即松阿扁叶蜂幼虫平均虫口密度在上坡位最大,中坡位次之,下坡位最小。

      图  5  松阿扁叶蜂幼虫平均虫口密度与关键因子相关性及显著性检验

      Figure 5.  Correlation and significant test coefficients between key factors and A. posticalis larvae population density

    • 松阿扁叶蜂是一种暴发性强,危害程度高的食叶害虫,作为森林生态系统的组成部分,与生态系统中的林分因子和立地因子共同建立了相互依存和制约的关系,对林木的危害过程就是林分因子和立地因子与松阿扁叶蜂幼虫对抗的过程[18]。因此,从森林生态系统出发,找出林分因子和立地因子与松阿扁叶蜂发生危害的关系,充分利用这种关系实现森林有害生物生态控制就显得尤为重要。

      在自然条件下,影响害虫发生的影响因子一般不能独立起作用,即任意2个及多个因子间相互作用会影响害虫的发生。因此,需要将本研究调查的林分因子和立地因子通过逐步回归筛选出最显著、最能解释因变量的因子,即筛选关键影响因子[1921]。胡瑞瑞等[22]研究发现:影响昆嵛山腮扁叶蜂Cephalcia kunyushanica发生的关键因子是昆嵛山赤松林林木的冠幅、枝下高和林分密度。唐艳龙等[23]研究发现:影响松褐天牛深沟茧蜂Iphiaulax monochamusi寄生率的关键环境因子是寄主树木的生长坡位和其他天敌寄生率,其中,坡位与松褐天牛深沟茧蜂寄生率呈显著正相关,其他天敌寄生率与松褐天牛深沟茧蜂寄生率呈显著负相关。韩大校等[24]研究发现:影响落叶松毛虫Dendrolimus superans发生的关键因子为坡向和草本盖度。本研究通过逐步回归法筛选出影响松阿扁叶蜂幼虫平均虫口密度的关键因子为郁闭度、冠幅、草本盖度和坡位。对4项因子进行多重共线诊断,方差膨胀因子远小于10,说明各关键影响因子之间互相独立[25]。为进一步明确某一自变量与因变量的相关性,所得系数能真实反映2个变量间的相关程度与性质,对本研究中的关键因子与松阿扁叶蜂幼虫平均虫口密度进行相关分析,4项因子中草本盖度、坡位均对松阿扁叶蜂幼虫平均虫口密度有极显著负影响,冠幅、郁闭度均有极显著正影响。可见,对松阿扁叶蜂幼虫平均虫口密度的影响程度从大到小依次为草本盖度、冠幅、郁闭度、坡位。

      植被作为植食性昆虫的食物来源和庇护场所,其结构是影响害虫发生的因子之一[26]。林下草本植物是森林群落重要组成部分,在森林生态系统中扮演着重要角色。本研究中松阿扁叶蜂幼虫平均虫口密度和草本盖度的关系,与庞圣江等[27]发现西南桦Betula alnoides人工林林下植被盖度越大,拟木蠹蛾Arbela spp.危害率越低的结论一致。究其原因,可能与林下草本盖度的增加,提高了植物群落多样性,进而为松阿扁叶蜂幼虫的天敌提供了良好的生活栖息环境有关[28],符合天敌假说,即植物多样性的增加提高了天敌昆虫多样性和庇护所复杂性,最终提高了天敌昆虫的生物防治作用,对植食性昆虫产生上调控制作用[29];也可能是松阿扁叶蜂老熟幼虫在土层中越冬,草本的增加,其根系阻碍了越冬幼虫下潜入土,或者下潜浅,易被天敌发现,从而减轻了林地害虫的发生[2]。韩大校等[24]发现:落叶松毛虫随着草本盖度的增加,发生概率增加,这可能是研究空间尺度或者区域地理环境不同引起的差异,如所在温度带及优势树种的不同。冠幅反映了林木长期生长过程中的竞争水平[30],冠幅的大小影响林分空间结构[31],进而导致微气候发生变化,对虫害的发生产生一定影响。本研究中松阿扁叶蜂幼虫平均虫口密度随林木冠幅的增大而增大,可能是因为冠幅大的林分树冠衔接程度更高,提供给害虫更充分的营养,扩大了其生存空间,造成更大范围的扩散[32]。郁闭度是森林生态系统中重要的林分因子,是林木拥挤程度和林冠衔接程度的重要体现,直接影响林木生长发育、林内温湿度和光照条件等,间接影响林下植物组成和分布[33],也对虫害的发生造成影响。周泓杨等[34]研究林分郁闭度对土壤动物群落的影响中,发现郁闭度大的凋落物层捕食性土壤动物个体和类群数少,在罗山也可能存在林分郁闭度大时捕食性土壤动物少的情况,故而造成松阿扁叶蜂越冬幼虫数量增多。

      地形作为植被格局和资源利用的代表,可以通过重新分配土壤水分和太阳辐射影响植物的生长势,从而影响森林害虫对资源的选择及分布[35]。坡度、坡向、坡位等局部地形因子与虫害的发生存在非直接关系。坡度影响山坡上树冠之间的距离,控制水分的运动,从而影响森林害虫的传播;坡向和坡位影响日照时数和光照强度,并引起温度、水分和土壤条件的变化,最终会影响森林虫害的蔓延[36]。本研究中上坡位松阿扁叶蜂幼虫平均虫口密度最大,中坡次之,下坡最少。可能与害虫种类有关,不同害虫对生存环境的要求不同,造成不同坡位害虫分布不均匀。相关研究发现:在中坡位寄主植物占比高的混交林黄褐天幕毛虫Malacosoma neustria testacea危害严重[37];在下坡位舞毒蛾Lymantria dispar的平均虫口密度最大[38]。肖玖金等[39]研究发现:土壤动物密度随着坡位的上升而减少,从而增加了天敌昆虫数量,也可能是造成害虫数量变化的原因。

    • 在宁夏罗山国家级自然保护区林区,影响松阿扁叶蜂幼虫种群数量变化的关键因子是林下草本盖度(x8)、冠幅(x6)、郁闭度(x3)和坡位(x15)。根据关键因子建立了幼虫平均虫口密度的线性预测方程y=22.832+54.377x3+14.279x6−195.339x8−6.531x15R2=0.856,调整后R2=0.840。松阿扁叶蜂幼虫平均虫口密度与草本盖度、坡位均呈极显著负相关,与冠幅、郁闭度均呈极显著正相关,即松阿扁叶蜂幼虫在林下草本盖度低、林分郁闭度和冠幅大的上坡位易发生,因此,防治重点区域可以通过调控林下草本盖度、林分郁闭度、林木冠幅等的大小,将虫害控制在低水平。

参考文献 (39)

目录

/

返回文章
返回