留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

彩叶桂叶色变化及生理特征分析

金笑雨 王艺光 赵宏波 董彬

谭蕊, 于水强, 李玉, 等. 间伐恢复对松栎混交林表层土壤酶活性及酶化学计量的影响[J]. 浙江农林大学学报, 2024, 41(6): 1201-1210. DOI: 10.11833/j.issn.2095-0756.20240185
引用本文: 金笑雨, 王艺光, 赵宏波, 等. 彩叶桂叶色变化及生理特征分析[J]. 浙江农林大学学报, 2024, 41(5): 1056-1065. DOI: 10.11833/j.issn.2095-0756.20240160
TAN Rui, YU Shuiqiang, LI Yu, et al. Effect of thinning restoration on enzyme activity and enzyme stoichiometry in the topsoil of oak-pine mixed forest[J]. Journal of Zhejiang A&F University, 2024, 41(6): 1201-1210. DOI: 10.11833/j.issn.2095-0756.20240185
Citation: JIN Xiaoyu, WANG Yiguang, ZHAO Hongbo, et al. Color change and physiological characteristics in Osmanthus fragrans Colour Group[J]. Journal of Zhejiang A&F University, 2024, 41(5): 1056-1065. DOI: 10.11833/j.issn.2095-0756.20240160

彩叶桂叶色变化及生理特征分析

DOI: 10.11833/j.issn.2095-0756.20240160
基金项目: 浙江省农业(花卉新品种选育)新品种选育重大科技专项(2021C02071-1)
详细信息
    作者简介: 金笑雨(ORCID: 0009-0006-1708-1697),从事彩叶桂育种研究。E-mail: 810380404@qq.com
    通信作者: 赵宏波(ORCID: 0000-0003-4714-8240),教授,博士,从事观赏植物遗传育种研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S685.13

Color change and physiological characteristics in Osmanthus fragrans Colour Group

  • 摘要:   目的  探讨彩叶桂Osmanthus fragrans Colour Group在生长过程中叶色变化及相关生理特征,为彩叶桂的品种分类、筛选和改良提供理论依据。  方法  选取29份彩叶桂种质材料,运用量化标准并结合聚类分析方法对其进行分类。同时,从中选择2个代表性品系(‘罗彩3号’‘Luocai 3’和‘罗彩28号’‘Luocai 28’)进行色素分布观察、组分定性、质量分数测定以及生理指标测定。  结果  基于叶片变色30%的叶色参数进行聚类分析,将彩叶桂品系分为两大类共3个色系,即红棕色系(第Ⅰ类第1亚类)、橙棕色系(第Ⅰ类第2亚类)和紫粉色系(第Ⅱ类)。解剖结构显示:花青素主要分布在幼嫩叶片的上下表皮细胞中,并随着叶片生长逐渐减退。同时,花青素质量分数逐渐下降,叶绿素质量分数持续上升,而类胡萝卜素质量分数虽逐渐上升但变化不显著。在叶片生长过程中,2个品系可溶性蛋白和可溶性糖质量分数的变化无明显规律,但在叶片变色为0时相对较高;过氧化物酶(POD)活性不断增加,但‘罗彩3号’在每个时期均高于‘罗彩28号’;叶片pH无显著变化且始终处于酸性范围。  结论  基于叶片变色30%的叶色参数可对彩叶桂进行色系划分。彩叶桂叶色变化主要受花青素质量分数减少和叶绿素质量分数增加的影响,而POD在其中发挥了重要作用。红棕色系和橙棕色系之间的区别在于花青素和类胡萝卜素的质量分数及其比值。图7表1参29
  • 抚育间伐是常用的森林管理措施[1],因伐除林冠相对密集的部分树木,增加了太阳辐射,改变了森林小气候和土壤微生境,必然影响森林生态系统的养分和生物地球化学循环过程,以及该循环过程的核心环节——土壤微生物活动和酶活性。目前,土壤胞外酶研究更多关注于碳、氮和磷循环相关的降解酶,如碳酶[β-葡糖苷酶(BG)、纤维二糖水解酶(CBH)、β-木糖苷酶(BX)],氮酶[β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)]和磷酶[酸性或碱性磷酸酶(AcP)],其活性可作为微生物资源分配的代理指标[2]。在养分循环期间酶活性的相对丰度变化可反映微生物群落的代谢水平。SINSABAUGH等[3]最先通过整合分析发现:在全球尺度上碳、氮和磷循环相关酶计量比接近1∶1∶1,表明土壤酶化学计量比呈稳态性。但也有研究发现:土壤酶化学计量比呈非稳态性[46],说明微生物可能受到能量或关键营养物质(即碳、氮和磷)的限制[7]

    间伐措施对土壤胞外酶活性和酶化学计量的影响仍不确定。如土壤酶活性在森林间伐后会增加[8]、减少[9]或保持不变[10]。大多数研究主要围绕不同间伐强度对酶活性的影响[11]。间伐措施的影响效果还会随森林恢复过程而发生改变。如QIU等[12]对塞罕坝林场内华北落叶松Larix principis-rupprechtii人工林进行间伐恢复9 a后的结果显示:间伐措施显著增加了土壤BG、NAG+LAP和AcP活性。而LULL等[13]对地中海栎Quercus ilex林间伐后5个月至7 a内,氮和磷循环酶的活性并未发生显著改变。间伐处理和林下移除可在短时间内减少微生物对土壤资源的竞争,进而改变酶的活性[14]。但随树木生长速度和土壤养分含量的变化,微生物资源利用策略也发生改变,可能造成微生物受到不同养分的限制[15]

    目前,关于间伐处理对土壤胞外酶活性的研究大多侧重于间伐强度和人工林生态系统的研究,而对天然林生态系统间伐后不同恢复阶段土壤酶活性的研究较少。鉴于此,本研究采用空间代替时间的方法,探讨北亚热带秦岭松栎混交林在抚育间伐后不同恢复时间内林地表层土壤酶活性、酶化学计量比的变化规律,为制定森林可持续经营方案及合理的生态恢复措施提供理论依据。

    研究区位于陕西省安康市宁东林业局新矿林场(33°20′~33°26′N,108°32′~108°34′E),地处秦岭山脉,海拔为1 400.0~1 800.0 m。该区属于北亚热带与温带过渡区,年均气温为8.5 ℃,年平均降水量为908.0 mm,土壤为山地棕壤。研究区域为20世纪70年代末采伐后天然更新形成的次生针阔混交林[16],采取的是低强度间伐和林冠下补植等保护经营作业法。林内主要以油松Pinus tabuliformis、锐齿槲栎Quercus aliena var. acutiserrata、华山松Pinus armandii为主要建群种,伴生有漆树Toxicodendron vernicifluum、小叶女贞Ligustrum quihoui、青榨槭Acer davidii等树种。林下植被以卫矛Euonymus alatus、木姜子Litsea pungens、披针叶薹草Carex lanceolata、龙牙草Agrimonia pilosa、茜草Rubia cordifolia为主。

    2021年10月,根据研究区内实际间伐处理、林木生长和分布状况,选择立地条件基本一致的林分,设置3种间伐处理,即未间伐(ck)、间伐恢复5 a (5 a,2018年间伐)和间伐恢复13 a (13 a,2010年间伐)。每个间伐处理设置4块面积为20 m×30 m的样地,共计12块样地。为防止样地之间相互干扰,样方之间的间隔不小于100 m。进行间伐处理后林下物种数量增加,更新了枫杨Pterocarya stenoptera、栗Castanea mollissima、桤木Alnus cremastogyne、灯台树Cornus controversa和胡桃楸Juglans mandshurica等树种。其中各样地内物种丰富度和Shannon-Wiener指数参照刘思泽等[17]的方法计算。样地调查基本概况见表1

    表 1  试验样地基本概况
    Table 1  Basic survey of test plots
    间伐后恢
    复时间/a
    海拔/
    m
    株数密度/
    (株·hm−2)
    胸径/
    cm
    郁闭度 物种
    丰富度
    Shannon-Wiener
    指数
    凋落物量/
    (t·hm−2·a−1)
    林内主要树种
    ck 1 585.00±61.85 1 420±88 14.60±0.49 0.7 25 2.48 7.01±0.37 油松、锐齿槲栎、华山松、毛樱桃、垂柳、
     木姜子、三桠乌药
    5 1 457.32±13.14 1 208±355 13.80±0.84 0.5 32 2.78 5.69±0.26 锐齿槲栎、栗、油松、白桦、垂柳、
     榆树、桤木
    13 1 757.57±20.17 1 254±207 13.80±1.19 0.6 29 2.68 6.55±0.29 毛樱桃、油松、锐齿槲栎、漆树、水蜡树、
     木姜子、灯台树
      说明:毛樱桃Prunus tomentosa,垂柳Salix babylonica,三桠乌药Lindera obtusiloba,白桦Betula platyphylla,榆树Ulmus pumila,水蜡树Ligustrum obtusifolium
    下载: 导出CSV 
    | 显示表格

    2023年7月,根据S型取样方法,在ck、5 a、13 a间伐样地内,用直径为3.6 cm的土钻采集0~10 cm的表层土样,为避免样品受到污染,将土壤混合储存于灭菌自封袋中,再用便携冷藏箱带回实验室。在室内充分混匀后过2 mm筛。一份新鲜土样于4 ℃冰箱保存,用于有效氮、土壤酶活性和土壤微生物生物量的测定;另一份土壤样品自然风干,用于其他土壤理化性质的测定。

    1.3.1   土壤理化性质测定

    土壤含水率采用105 ℃烘干法;土壤pH采用电位法(土水体积质量比为1.0∶2.5);土壤总氮采用元素分析仪测定;土壤有机碳采用重铬酸钾氧化-外加热法;土壤有效氮指铵态氮和硝态氮的总和,分别采用2 mol·L−1氯化钾浸提-靛酚蓝比色法、氯化钾提取-双波长紫外分光光度法测定;土壤总磷采用硫酸-高氯酸-钼锑抗比色法[18]。微生物生物量碳、氮采用氯仿熏蒸法,使用岛津总有机碳分析仪测定。

    1.3.2   土壤胞外酶活性及酶计量的测定与计算

    参照SAIYA-CORK等[19]的方法,测定与碳、氮、磷循环密切相关的酶活性,各种土壤酶的名称、简称及底物见表2。其中,水解酶(BG、BX、CBH、NAG、LAP、AcP)活性采用微孔板荧光法,用多功能酶标仪在365 nm波长处激发,450 nm波长处荧光测定;氧化酶(POX、PER)活性采用DOPA-紫外分光光度法,用多功能酶标仪在450 nm波长处测定。

    表 2  土壤胞外酶的简称及所用底物
    Table 2  Soil enzyme along with their enzyme abbreviation and substrate of soil enzyme
    酶名称 简称 底物
    β-葡糖苷酶β-glucosidase BG 4-MUB-β-D-glucoside
    β-木糖苷酶β-xalosidase BX 4-MUB-β-D-xylopyranoside
    纤维二糖水解酶Cellobiohydrolase CBH 4-MUB-β-D-cellobioside
    β-N-乙酰氨基葡萄糖苷酶β-N-acetylglucosaminidase NAG 4-MUB-N-acetyl-β-D-glucosaminde
    亮氨酸氨基肽酶Leucine aminopeptidase LAP L-leucine-7-amido-4 methylcounarin
    酸性磷酸酶Acid phosphatase AcP 4-MUB-phosphatase
    酚氧化物酶Phenol oxidase POX L-dihydroxyphenylalanine(L-DOPA)
    过氧化物酶Peroxidase PER L-dihydroxyphenylalanine(L-DOPA) and H2O2
      说明:MUB为甲基伞形酮酰Methylumbelliferyl。
    下载: 导出CSV 
    | 显示表格

    通过计算碳、氮和磷酶活性的比值研究土壤胞外酶化学计量[20],同时,采用酶计量的载体分析,即用矢量长度(VL)及矢量角(VA)分析间伐处理对微生物能量和营养的相对限制状况[21],计算公式如下。

    $$ {E}_\text{C/N}\text{}\text=\text{}\text{ln}{H}_{\mathrm{B}\mathrm{G}}\text{/ln}\text{(}{H}_{\text{NAG}}\text+{H}_{\text{LAP}}\text{)}\text{;}\text{}\text{}\text{} $$ (1)
    $$ {E}_\text{C/P}\text{}\text=\text{}\text{ln}{H}_{\text{BG}}\text{/ln}{H}_{{\mathrm{Ac}}\mathrm{P}};\text{}\text{}\text{}\text{}\text{}$$ (2)
    $$ {E}_\text{N/P}\text{= ln}\text{(}{H}_{\text{NAG}}\text+{H}_{\text{LAP}}\text{)}\text{/ln}{H}_{{\mathrm{Ac}}\mathrm{P}}; $$ (3)
    $$ {V}_{\text{L}}\text=\text{SQRT}\text{[}\text{(}{E}_\text{C/N}\text{)}^2\text+\text{(}{E}_\text{C/P}\text{)}^2\text{]}\text{;} $$ (4)
    $$ {V}_{\text{A}}\text=\text{Degrees}\text{[}\text{ATAN2}\text{(}{E}_\text{C/P}\text{,}\text{}{E}_\text{C/N}\text{)}\text{]}\text{。}$$ (5)

    式(1)~(5)中:$ {E}_\text{C/N} $、$ {E}_\text{C/P} $、$ {E}_\text{N/P} $分别为土壤碳获取酶/氮获取酶比值、土壤碳获取酶/磷获取酶比值、土壤氮获取酶/磷获取酶比值;$ {H}_{\mathrm{B}\mathrm{G}}\mathrm{、}{H}_{\text{NAG}}\mathrm{、}{H}_{\text{LAP}}\mathrm{、}{H}_{{\mathrm{Ac}}\mathrm{P}} $分别为BG、NAG、LAP、AcP的酶活性;SQRT为平方根函数,Degrees为角度转换函数,ATAN2为反正切函数。VL越大,表明碳限制越严重。VA以45°为分界线,>45°为磷限制,<45°为氮限制。偏离程度越大,限制程度越强。

    使用SPSS 25.0对不同间伐恢复时间下的土壤理化性质、胞外酶活性、酶化学计量比、酶矢量长度和角度的差异进行单因素方差分析(one-way ANOVA)和最小显著性差异法(LSD)(P<0.05);利用Sperman检验分析与土壤酶活性和酶矢量变化显著相关的土壤因子,利用Origin 2021绘图。以酶活性及其矢量作为物种因子,土壤理化性质作为环境因子,利用Canoco 5.0进行冗余分析。通过方差膨胀因子(VIF)判断解释变量之间的线性关系,剔除共线性较强(VIF>5)的变量,对剩余的pH、有效氮、有机碳和全磷共4个变量进行研究。

    表3可见:间伐恢复对土壤pH、有效氮、全磷、碳氮比、氮磷比、有机碳、微生物量碳、微生物量氮和微生物量碳氮比均有显著影响(P<0.05)。恢复5 a的土壤pH显著高于ck (P<0.05)。恢复13 a的土壤全磷、微生物量碳和微生物量氮均显著高于ck (P<0.05),分别是ck的1.28、1.19和1.15倍。土壤有效氮、碳氮比和氮磷比均显著低于ck (P<0.05)。恢复5 a的土壤有机碳显著降低了25.93% (P<0.05),但恢复13 a的土壤有机碳质量分数逐渐恢复至未间伐前水平。间伐恢复对土壤含水率和全氮无显著影响。

    表 3  不同间伐恢复时间下土壤理化特性状况
    Table 3  Soil physical and chemical properties under different thinning treatments
    间伐后恢复时间/a pH 含水率/% 有效氮/(mg·kg−1) 全氮/(g·kg−1) 全磷/(g·kg−1) 碳氮比
    ck 5.48±0.10 b 37.28±4.01 a 21.34±1.96 a 4.58±0.86 a 0.60±0.08 b 10.02±1.16 a
    5 5.98±0.13 a 35.10±6.81 a 17.19±0.48 ab 3.28±0.68 a 0.52±0.10 b 9.34±1.41 ab
    13 5.76±0.17 ab 40.37±1.67 a 16.56±0.58 b 3.93±0.44 a 0.77±0.07 a 8.55±1.32 b
    间伐后恢复时间/a 氮磷比 有机碳/(g·kg−1) 微生物量碳/(g·kg−1) 微生物量氮/(g·kg−1) 微生物量碳氮比
    ck 7.49±0.71 a 35.94±3.84 a 1.14±0.04 b 0.20±0.01 b 5.97±0.37 ab
    5 6.45±0.95 ab 26.62±2.79 b 1.14±0.09 b 0.22±0.01 ab 5.09±0.13 b
    13 5.04±0.34 b 33.33±2.27 ab 1.36±0.02 a 0.23±0.01 a 6.11±0.33 a
    说明:数据均为平均值±标准误。不同小写字母表示不同处理间差异显著 (P<0.05)。
    下载: 导出CSV 
    | 显示表格

    图1可见:间伐恢复对不同土壤酶活性的影响并不一致。恢复13 a时土壤BX、AcP和NAG+LAP活性显著下降(P<0.05),较ck分别降低了25.39%、22.92%和46.25%,同时土壤BG活性还显著提高(P<0.05),是ck的1.34倍(P<0.05)。土壤氧化酶(POX、PER)和CBH活性变化趋势与前4种酶不同,在恢复5 a时活性最低,在恢复13 a时活性最高。

    图 1  间伐恢复对土壤酶活性的影响
    Figure 1  Effect of thinning treatment on soil enzyme activity

    通过矢量分析发现:VA>45°,且EN/P<1、EC/N>1 (图2A),表明研究区土壤微生物生长代谢主要受碳和磷共同限制。森林土壤EC/PEN/P显著偏离1,且随间伐后时间的持续而逐渐恢复或显著增大(P<0.05,图2B)。VAVL在3个间伐恢复间均有明显差异(图2C~D)。与ck相比,间伐恢复5 a的VA显著降低了4.42%,13 a的VL是ck的1.13倍(P<0.05)。表明间伐措施在恢复初期能够缓解土壤微生物受磷限制的状况,而后随恢复时间的持续,微生物受碳限制程度显著增加(P<0.05)。

    图 2  间伐恢复对土壤酶化学计量及酶矢量的影响
    Figure 2  Effects of thinning treatment on soil enzyme stoichiometry and enzyme vector

    相关性分析(表4)表明:水解酶活性与有效氮、有机碳和微生物量碳氮比均呈正相关关系。其中土壤碳获取酶(BG、CBH)与土壤全磷、有机碳、微生物量碳呈显著(P<0.05)或极显著(P<0.01)正相关,BX活性与土壤有效氮、微生物量碳氮比呈显著正相关(P<0.05)。土壤氮获取酶(NAG+LAP)和磷获取酶(AcP)均与土壤有效氮呈极显著正相关(P<0.01)。酚氧化物酶(PER)除与pH呈显著负相关外(P<0.05),还与有机碳、微生物量碳氮比呈极显著正相关(P<0.01)。VA仅与pH呈极显著负相关(P<0.01)。VL与全磷和微生物量碳呈显著正相关外(P<0.05),还与氮磷比呈极显著负相关(P<0.01)。

    表 4  土壤酶变化与土壤理化性质的相关性分析
    Table 4  Correlation analysis between soil enzyme changes and soil physical and chemical properties
    指标 pH IN TP SOC MBC MBC/MBN N/P
    POX −0.54 −0.29 −0.04 −0.07 0.26 0.30 −0.04
    PER −0.65* 0.19 0.32 0.45* 0.22 0.52** 0.21
    BG 0.28 0.35 0.73** 0.55** 0.63** 0.38 −0.25
    BX −0.53 0.54** −0.01 0.27 0.10 0.45* 0.56
    CBH −0.01 0.24 0.46* 0.43* 0.53** 0.65** 0.17
    AcP −0.72* 0.57** −0.38 0.06 −0.13 0.22 0.85**
    NAG+LAP 0.17 0.66** −0.08 0.14 −0.01 0.00 0.60
    VA −0.95** 0.01 −0.30 −0.06 −0.04 0.35 0.43
    VL 0.45 −0.28 0.70** 0.31 0.48* 0.15 −0.63*
      说明:IN为土壤有效氮,TP为土壤全磷,SOC为土壤有机碳,MBC为微生物量碳,MBN为微生物量氮,N/P为氮磷比。POX为酚氧化物酶,PER为过氧化物酶,BG为β-葡糖苷酶,BX为β-木糖苷酶,CBH为纤维二糖水解酶,AcP为酸性磷酸酶,NAG+LAP为氮获取酶(β-N-乙酰氨基葡萄糖苷酶和亮氨酸氨基肽酶总和),VA为酶矢量角度,VL为酶矢量长度。*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。
    下载: 导出CSV 
    | 显示表格

    冗余分析(图3)表明:剔除存在共线性关系的变量后,pH、有效氮、有机碳和全磷共解释了酶活性和酶矢量变异的73.71%。其中pH和有机碳是对土壤酶整体变化解释度最高的因子,分别解释了变量的48.80%和13.10%,且pH与酶指标变化显著相关(P<0.05)。

    图 3  土壤酶活性与理化性质关系的冗余分析
    Figure 3  Redundancy analysis of soil enzyme activity and physical and chemical properties

    间伐改变了秦岭松栎混交林表层土壤pH和养分质量分数,但在不同恢复阶段规律不一致。在本研究中,间伐导致pH提高,尤其是间伐恢复5 a后,这与许多学者的研究结果一致。如对云杉Picea crassifolia[22]林和火炬松Pinus taeda[23]林研究表明:间伐减少了针叶凋落物作为有机酸主要输入组分的产生,从而显著提高土壤表层pH。本研究中针叶树种的胸高断面积占比在间伐后有所降低,这在一定程度上能缓解土壤酸化。同时,间伐后土壤含水率、全氮、全磷和有机碳质量分数均呈先减少后逐步恢复的趋势。这可能是因为间伐短期内树冠层郁闭度减小,导致土壤蒸发增强的同时,也促进林下植被的快速生长,加快了土壤水分的消耗[24]。凋落物作为土壤最主要的有机碳源,通过微生物转化为腐殖质的同时也改变了土壤pH,影响凋落物的分解,改变土壤养分水平[25]。相较于ck,间伐恢复5、13 a后,凋落物量分别恢复至81.16%和93.41%,间伐恢复13 a的土壤全氮、全磷和有机碳质量分数有所提高,表明随时间的持续,林分结构及相关生态过程在一定程度上得到恢复。此外,本研究中微生物量碳、氮和土壤有效氮在间伐恢复13 a后的变化趋势不一致,可能因为间伐后林地内出现了栗、桤木和水蜡树等阳性植物,以及毛樱桃、白桦和漆树等阔叶树种,林地内相对多度增加,根系密度和根系分泌物增多,有利于土壤微生物生物量的积累[26]。而林下喜光物种的快速生长[27],对土壤游离态氮的需求增大,导致土壤有效氮质量分数有所降低。这与周璇等[28]对8年生柳杉Cryptomeria japonica人工林进行间伐后的研究结果一致。

    在本研究中,间伐恢复年限导致土壤BX、AcP和NAG+LAP活性显著降低,但对其他土壤酶活性影响趋势不同,如POX、PER、BG和CBH通常在间伐恢复5 a时活性最低,在13 a时恢复到间伐前水平或高于未间伐处理(如BG)。这与其他研究结果相似,但并不完全一致[2930]。这种结果可能是由于不同的林分环境以及微生物利用资源多寡的差异,导致土壤酶活性对同一干扰方式的不同改变[31]。随着间伐恢复时间的持续,易分解有机物质减少而难降解的碳相对较多[32],POX、PER和BG、CBH作为土壤中主要的木质素降解酶和纤维素降解酶,其活性得到显著提高,以增强微生物利用顽固性有机碳的能力。这与MEISAM等[33]的研究结果一致。而以分解几丁质和蛋白质、半纤维素等易分解物质为主的NAG+LAP、BX活性的显著降低也映证了SINSABAUGH等[34]的资源分配理论。

    土壤胞外酶与土壤养分输入和微生物量等密切相关[35]。通过相关分析发现:BG和CBH活性与微生物量碳、全磷显著正相关,表明土壤微生物数量的变化与碳循环土壤酶活性的变化关系最为密切,而全磷则是磷素限制环境中影响微生物生长的主要因素[7, 16]。有效氮质量分数的减少虽然在一定程度上能促使氮获取酶的产生,但同样也会降低土壤微生物的活性和限制酶促反应底物供应,从而减少部分酶的释放[36],这与孙鹏跃等[37]的研究结果一致。冗余分析发现:土壤pH也是影响土壤酶活性的主要因素,并与部分酶变化表现出负相关关系,这与多数研究结果是一致的[3]。有研究表明:大多数土壤酶在特定的pH范围(最适值在4.0~5.5)内表现出最大的活性和稳定性,当pH超过这个范围时,酶活性会降低[38]

    本研究中所有处理的土壤酶矢量角度均>45°,符合亚热带地区森林土壤微生物更受磷素限制的理论[39]。同时参与土壤碳、氮和磷循环相关酶计量比偏离了表层土壤中接近1∶1∶1的平均水平[3],也在一定程度上反映了秦岭区域松栎混交林间伐恢复过程中微生物受碳和磷的共同限制,这与薛悦等[40]对安康市火池塘林区撂荒地恢复过程的研究结果相一致。与未间伐样地相比,间伐后恢复5 a时显著降低的酶矢量角度表征了微生物受到的磷限制减弱,随时间进程减弱效应逐渐消失,林内物种丰富度的提高和凋落物量的增加,促使土壤微生物分泌更多碳获取酶(如BG)来降解有机质,释放磷以供给微生物活动,以缓解磷限制,这些过程都会导致微生物碳限制的进一步增加。相关性分析结果中,酶矢量长度与微生物量碳呈显著正相关,证实了微生物需要更多的碳源来满足代谢活动所耗的能量,这与CUI等[41]的研究结果相似。

    间伐改变了松栎混交林区域内的年凋落物总量及针叶与阔叶的凋落量比例,同时改变了林内物种丰富度和林分郁闭度,从而影响了土壤基本理化性质。抚育间伐在一定程度上能够缓解土壤微生物受磷限制的状况,但随恢复时间持续,林内凋落物量逐渐增加使土壤微生物受碳限制更为严重。

  • 图  1  不同时期彩叶桂叶色参数的空间关系

    Figure  1  Spatial relationship of color parameters of different strains of O. fragrans Colour Group

    图  2  不同色系彩叶桂叶色表型聚类图

    Figure  2  Cluster map of leaf color phenotype of different color series of O. fragrans Colour Group

    图  3  彩叶桂各色系表型分布图

    Figure  3  Phenotypic distribution map of different color series of O. fragrans Colour Group

    图  4  彩叶桂在不同叶色期的表型和显色反应

    Figure  4  Phenotype and color response of O. fragrans Colour Group at different leaf color stages

    图  5  彩叶桂在不同叶色期的色素质量分数及比例变化

    Figure  5  Changes in pigment content and ratio of O. fragrans Colour Group during different leaf color stages

    图  6  彩叶桂在不同叶色期的叶片生理指标变化

    Figure  6  Changes in leaf physiological indicators of O. fragrans Colour Group during different leaf color stages

    图  7  彩叶桂叶片变色过程中各指标间的相关性分析

    Figure  7  Correlation analysis of various parameters during leaf coloration process in O. fragrans Colour Group

    表  1  不同彩叶桂品系叶色变化

    Table  1.   Leaf color changes of 29 cultivars of O. fragrans Colour Group

    序号品系时期
    S1S2S3S4S5
    1‘罗彩2号’‘Luocai 2’紫粉色红色黄棕色黄绿色橄榄绿色
    2‘罗彩3号’‘Luocai 3’红色红棕色黄棕色黄绿色橄榄绿色
    3‘罗彩4号’‘Luocai 4’红棕色红橙色黄色黄绿色黄绿色
    4‘罗彩6号’‘Luocai 6’红色红色黄绿色黄绿色橄榄绿色
    5‘罗彩7号’‘Luocai 7’红橙色红橙色黄色黄绿色橄榄绿色
    6‘罗彩22号’‘Luocai 22’红橙色红橙色黄色黄绿色黄绿色
    7‘罗彩23号’‘Luocai 23’红棕色红棕色黄绿色黄绿色黄绿色
    8‘罗彩26号’‘Luocai 26’红橙色红色橄榄棕色黄绿色橄榄绿色
    9‘罗彩27号’‘Luocai 27’红橙色黄棕色橄榄棕色黄绿色橄榄绿色
    10‘罗彩28号’‘Luocai 28’红色红橙色黄色黄绿色橄榄绿色
    11‘罗彩29号’‘Luocai 29’红色红棕色橄榄棕色黄绿色橄榄绿色
    12‘罗彩30号’‘Luocai 30’红色红棕色橄榄棕色黄绿色橄榄绿色
    13‘罗彩31号’‘Luocai 31’红色紫粉色黄色黄绿色橄榄绿色
    14‘罗彩33号’‘Luocai 33’红橙色黄棕色黄色黄绿色橄榄绿色
    15‘罗彩34号’‘Luocai 34’红色红色黄色黄绿色橄榄绿色
    16‘罗彩36号’‘Luocai 36’棕色红橙色橄榄棕色黄绿色橄榄绿色
    17‘罗彩37号’‘Luocai 37’红色红橙色黄色黄绿色橄榄绿色
    18‘罗彩46号’‘Luocai 46’红色紫粉色黄色黄绿色橄榄绿色
    19‘罗彩47号’‘Luocai 47’红橙色橄榄棕色黄色黄绿色橄榄绿色
    20‘罗彩55号’‘Luocai 55’红棕色红棕色黄色黄绿色橄榄绿色
    21‘罗彩59号’‘Luocai 59’棕色红棕色黄棕色黄绿色橄榄绿色
    22‘罗彩62号’‘Luocai 62’红色红色黄色黄绿色橄榄绿色
    23‘罗彩65号’‘Luocai 65’红棕色红棕色黄色黄绿色黄绿色
    24‘罗彩66号’‘Luocai 66’红橙色红橙色黄色黄绿色橄榄绿色
    25‘罗彩77号’‘Luocai 77’红橙色红橙色黄色黄绿色黄绿色
    26‘罗彩82号’‘Luocai 82’红棕色红色黄色黄绿色橄榄绿色
    27‘罗彩88号’‘Luocai 88’红色红棕色黄色黄绿色黄绿色
    28‘罗彩151号’‘Luocai 151’红棕色橄榄棕色黄色黄绿色黄绿色
    29‘罗彩153号’‘Luocai 153’红色红棕色黄色黄绿色黄绿色
      说明:不同时期的叶色均是通过英国皇家园艺学会标准比色卡(RHSCC)测定得来。
    下载: 导出CSV
  • [1] 姜卫兵, 庄猛, 韩浩章, 等. 彩叶植物呈色机理及光合特性研究进展[J]. 园艺学报, 2005, 32(2): 352 − 358.

    JIANG Weibing, ZHUANG Meng, HAN Haozhang, et al. Progress on color emerging mechanism and photosynthetic characteristics of colored-leaf plants [J]. Journal of Horticulture, 2005, 32(2): 352 − 358.
    [2] ZHANG Qiong, WANG Lili, LIU Zhiguo, et al. Transcriptome and metabolome profiling unveil the mechanisms of Ziziphus jujuba Mill. peel coloration [J/OL]. Food Chemistry, 2020, 312: 125903[2024-01-15]. doi:10.1016/j.foodchem.2019.125903.
    [3] LEE W D, O’KEEFE J, HOLBROOK M N, et al. Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA [J]. Ecological Research, 2003, 18(6): 677 − 694.
    [4] ZHAO Minghui, LI Xiang, ZHANG Xinxin, et al. Mutation mechanism of leaf color in plants: a review [J/OL]. Forests, 2020, 11(8): 851[2024-01-15]. doi: 10.3390/f11080851.
    [5] HUGHES N M, MORLEY C B, SMITH W K. Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species [J]. The New Phytologist, 2007, 175(4): 675 − 685.
    [6] 梁玲, 江洁蓓, 张腾驹, 等. 不同色彩珙桐苞片与叶片的生理特性研究[J]. 植物研究, 2020, 40(4): 505 − 513.

    LIANG Ling, JIANG Jiebei, ZHANG Tengju, et al. Physiological characteristics of Davidia involucrata bracts and leaves with different colors [J]. Plant Research, 2020, 40(4): 505 − 513.
    [7] ZHU H, ZHANG T J, ZHANG P, et al. Pigment patterns and photoprotection of anthocyanins in the young leaves of four dominant subtropical forest tree species in two successional stages under contrasting light conditions [J]. Tree Physiology, 2016, 36(9): 1092 − 1104.
    [8] REHMAN U N R, YOU Yaohua, YANG Chengquan, et al. Characterization of phenolic compounds and active anthocyanin degradation in crabapple (Malus orientalis) flowers [J]. Horticulture,Environment,and Biotechnology, 2017, 58(4): 324 − 333.
    [9] 向民, 段一凡, 向其柏. 木犀属品种国际登录中心年报(1): 彩叶桂品种群的建立[J]. 南京林业大学学报(自然科学版), 2014, 38(1): 2, 187.

    XIANG Min, DUAN Yifan, XIANG Qibai. Annual report of the international registration center for Osmanthus species (1): establishment of a new group-Osmanthus fragrans Colour Group [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(1): 2, 187.
    [10] 冯园园. 彩叶桂种质资源调查与分类研究[D]. 杭州: 浙江理工大学, 2020.

    FENG Yuanyuan. Taxonomy and Germplasm Resources of Osmanthus fragrans Color [D]. Hangzhou: Zhejiang University of Technology, 2020.
    [11] 崔祺, 吴昀, 李东泽, 等. 彩叶桂叶片发育过程中叶色表型与色素成分变化[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 79 − 86.

    CUI Qi, WU Yun, LI Dongze, et al. Changes of coloration and pigment compositions during leaf development of Osmanthus fragrans colour group cultivar [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(2): 79 − 86.
    [12] GUO Peng, HUANG Ziqi, ZHAO Wei, et al. Mechanisms for leaf color changes in Osmanthus fragrans ‘Ziyan Gongzhu’ using physiology, transcriptomics and metabolomics [J]. BMC Plant Biology, 2023, 23(1): 453 − 453.
    [13] 杜庆鑫, 庆军, 朱景乐, 等. 7个变异红叶杜仲叶片色素及活性成分分析[J]. 植物研究, 2017, 37(3): 468 − 473.

    DU Qingxin, QING Jun, ZHU Jingle, et al. Pigments and active ingredients in leaves of seven Eucommia ulmoides variation-types [J]. Plant Research, 2017, 37(3): 468 − 473.
    [14] 白新祥, 胡可, 戴思兰, 等. 不同花色菊花品种花色素成分的初步分析[J]. 北京林业大学学报, 2006, 28(5): 84 − 89.

    BAI Xinxiang, HU Ke, DAI Silan, et al. Components of flower pigments in the petals of different color Chrysanthemum morifolium Ramat. cultivars [J]. Journal of Beijing Forestry University, 2006, 28(5): 84 − 89.
    [15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.

    LI Hesheng. Principles and Techniques of Plant Physiological and Biochemical Experiments [M]. Beijing: Higher Education Press, 2000.
    [16] 陈建, 吕长平, 陈晨甜, 等. 不同花色非洲菊品种花色素成分初步分析[J]. 湖南农业大学学报(自然科学版), 2009, 35(增刊 1): 73 − 76.

    CHEN Jian, LÜ Changping, CHEN Chentian, et al. Components of flower pigments in the petals of different color Gerbera jamesonii [J]. Journal of Hunan Agricultural University (Natural Science Edition), 2009, 35(suppl 1): 73 − 76.
    [17] 宋洋, 雷霆, 金雪花, 等. 蓝亚麻花瓣中类黄酮化合物及代谢途径分析[J]. 广西植物, 2017, 37(11): 1368 − 1377.

    SONG Yang, LEI Ting, JIN Xuehua, et al. Flavonoid related compounds and their biosynthesis pathways in Linum pernne [J]. Guangxi Plant, 2017, 37(11): 1368 − 1377.
    [18] 郭玉华, 杨伟华, 郁有祝, 等. 蒽酮比色法测定棉花成熟纤维中水溶性总糖含量[J]. 中国棉花, 2011, 22(12): 23 − 26.

    GUO Yuhua, YANG Weihua, YU Youzhu, et al. Determination of total sugar content in mature cotton fibers using anthrone colorimetry [J]. China Cotton, 2011, 22(12): 23 − 26.
    [19] 孔祥生, 易现峰. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2008: 124 − 243.

    KONG Xiangsheng, YI Xianfeng. Experimental Techniques for Plant Physiology [M]. Beijing: China Agricultural Publishing House, 2008: 124 − 243.
    [20] 唐前瑞, 陈德富, 陈友云, 等. 红檵木叶色变化的生理生化研究[J]. 林业科学, 2006, 42(2): 111 − 115.

    TANG Qianrui, CHEN Defu, CHEN Youyun, et al. Changes of physiology and biochemistry during leaf color transformation in Loropetalum chinense var. rubrum [J]. Forestry Science, 2006, 42(2): 111 − 115.
    [21] LI Wenji, LI Huigen, SHI Lisha, et al. Leaf color formation mechanisms in Alternanthera bettzickiana elucidated by metabolite and transcriptome analyses [J]. Planta, 2022, 255(3): 59 − 59.
    [22] TANG Yuhan, FANG Ziwen, LIU Mi, et al. Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony (Paeonia lactiflora Pall. ) [J/OL]. 3 Biotech, 2020, 10: 76[2024-01-15]. doi: 10.1007/s13205-020-2063-3.
    [23] XIE Yating, PEI Nancai, HAO Zezhou, et al. Juvenile leaf color changes and physiological characteristics of Acer tutcheri (Aceraceae) during the spring season [J/OL]. Forests, 2023, 14(2): 328[2024-01-15]. doi: 10.3390/f14020328.
    [24] 黄可, 王小德, 柳翼飞, 等. 红枫春季叶色变化与色素含量的相关性[J]. 浙江农林大学学报, 2012, 29(5): 734 − 738.

    HUANG Ke, WANG Xiaode, LIU Yifei, et al. Leaf color changes in Acer palmatum ‘Atropurpureum’ and relations to pigment content. Journal of Zhejiang A&F University, 2012, 29(5): 734 − 738.
    [25] 聂庆娟, 史宝胜, 孟朝, 等. 不同叶色红栌叶片中色素含量、酶活性及内含物差异的研究[J]. 植物研究, 2008, 28(5): 599 − 602.

    NIE Qingjuan, SHI Baosheng, MENG Chao, et al. The enzyme activities, pigment and inclusion contents in different leaves color of Cotinus coggygria ‘Royal Purple’ in autumn [J]. Plant Studies, 2008, 28(5): 599 − 602.
    [26] 唐生森, 陈虎, 覃永康, 等. 枫香秋季变色期叶色变化及其生理基础[J]. 广西植物, 2021, 41(12): 2061 − 2068.

    TANG Shengsen, CHEN Hu, QIN Yongkang, et al. Physiological basis of Liquidambar formosana leaves during leaf color transformation in autumn [J]. Guihaia, 2021, 41(12): 2061 − 2068.
    [27] YIN Guoping, WANG Yong, XIAO Yufei, et al. Relationships between leaf color changes, pigment levels, enzyme activity, photosynthetic fluorescence characteristics and chloroplast ultrastructure of Liquidambar formosana Hance [J]. Journal of Forestry Research, 2022, 33(5): 1559 − 1572.
    [28] SCHMITZER V, VEBERIC R, OSTERC G, et al. Color and phenolic content changes during flower development in ground cover rose [J]. Journal of the American Society for Horticultural Science, 2010, 135(3): 195 − 202.
    [29] 万仁平, 罗德义, 张少露, 等. 红罗宾石楠叶色变化及色素含量动态[J]. 应用与环境生物学报, 2023, 29(4): 954 − 960.

    WAN Renping, LUO Deyi, ZHANG Shaolu, et al. Changes in color and pigment content of the Photinia ×fraseri ‘Red Robin’ [J]. Journal of Applied and Environmental Biology, 2023, 29(4): 954 − 960.
  • [1] 王爽, 董彬, 王艺光, 赵宏波.  不同梅品种花果特性分析与评价 . 浙江农林大学学报, 2024, 41(1): 113-123. doi: 10.11833/j.issn.2095-0756.20230213
    [2] 毕彪, 杨建英, 钱云楷, 史常青, 艾宪锋.  密云水库上游地区不同雨型对坡面径流特征的影响 . 浙江农林大学学报, 2022, 39(3): 607-615. doi: 10.11833/j.issn.2095-0756.20210429
    [3] 吴金栋, 何勇, 朱祝军.  有机肥部分替代化肥对露地茄生长及品质的影响 . 浙江农林大学学报, 2021, 38(6): 1195-1202. doi: 10.11833/j.issn.2095-0756.20200767
    [4] 冯歌林, 高竞, 严淑娴, 王晶, 梁辰飞, 秦华, 陈俊辉, 徐秋芳.  3种竹子内生固氮菌特征及多样性 . 浙江农林大学学报, 2021, 38(6): 1203-1212. doi: 10.11833/j.issn.2095-0756.20190586
    [5] 李呈呈, 吴其超, 马燕, 栗雨昊, 臧德奎.  6个彩叶桂品种对低温胁迫的生理响应及抗寒性评价 . 浙江农林大学学报, 2021, 38(4): 828-836. doi: 10.11833/j.issn.2095-0756.20200606
    [6] 火艳, 招雪晴, 黄厚毅, 黄贤斌, 许云方, 祝遵凌, 苑兆和.  观赏石榴表型遗传多样性分析 . 浙江农林大学学报, 2020, 37(5): 939-949. doi: 10.11833/j.issn.2095-0756.20190619
    [7] 王祯, 王洁, 项海萍, 樊泽鹏, 孙诚蔓, 邢丙聪, 邵清松.  白及花花青素微波提取方法的优化 . 浙江农林大学学报, 2020, 37(5): 1020-1026. doi: 10.11833/j.issn.2095-0756.20190581
    [8] 夏雯, 芦建国, 景蕾.  镇江市低影响开发示范区植物群落特征与物种多样性 . 浙江农林大学学报, 2019, 36(4): 793-800. doi: 10.11833/j.issn.2095-0756.2019.04.020
    [9] 张素, 梁鹏, 吴胜春, 张进, 曹志洪.  节能灯产地竹林土壤重金属污染的时空分布特征 . 浙江农林大学学报, 2017, 34(3): 484-490. doi: 10.11833/j.issn.2095-0756.2017.03.014
    [10] 温星, 程路芸, 李丹丹, 许馨露, 高岩, 张汝民.  毛竹叶片发育过程中光合生理特性的变化特征 . 浙江农林大学学报, 2017, 34(3): 437-442. doi: 10.11833/j.issn.2095-0756.2017.03.008
    [11] 刘艳艳, 朱芳明, 刘小珍, 张汉尧.  兔眼蓝莓组培红色突变株CHS基因的克隆与分析 . 浙江农林大学学报, 2017, 34(5): 864-870. doi: 10.11833/j.issn.2095-0756.2017.05.013
    [12] 吴兴波, 陈登举, 马元丹, 高岩, 温国胜, 张汝民.  氯霉素对毛竹幼苗色素质量分数及叶绿素荧光的影响 . 浙江农林大学学报, 2016, 33(2): 209-215. doi: 10.11833/j.issn.2095-0756.2016.02.004
    [13] 张珊珊, 俞飞, 郭慧媛, 沈卫东, 王俊龙, 高荣孚, 张汝民, 侯平.  酸雨与凋落物复合作用对柳杉叶片色素和反射光谱的影响 . 浙江农林大学学报, 2014, 31(2): 254-263. doi: 10.11833/j.issn.2095-0756.2014.02.014
    [14] 许改平, 刘芳, 吴兴波, 温国胜, 王玉魁, 高岩, 高荣孚, 张汝民.  低温胁迫下毛竹叶片色素质量分数与反射光谱的相关性 . 浙江农林大学学报, 2014, 31(1): 28-36. doi: 10.11833/j.issn.2095-0756.2014.01.005
    [15] 高艳, 李厚华, 李玲, 王亚杰, 徐曼.  紫叶李叶片色素成分分析 . 浙江农林大学学报, 2014, 31(3): 481-487. doi: 10.11833/j.issn.2095-0756.2014.03.023
    [16] 吴月燕, 陶巧静, 李波, 许丹叶.  西洋杜鹃SRAP体系优化及遗传多样性分析 . 浙江农林大学学报, 2013, 30(6): 844-851. doi: 10.11833/j.issn.2095-0756.2013.06.007
    [17] 闫双喜, 闫丽君, 张志翔.  河南薄山种子植物区系特征及其与邻近地区的关系 . 浙江农林大学学报, 2011, 28(3): 391-399. doi: 10.11833/j.issn.2095-0756.2011.03.008
    [18] 梁健, 孙婷.  延安林区啮齿动物群落的聚类分析 . 浙江农林大学学报, 2004, 21(1): 70-74.
    [19] 唐娟娟, 范义荣, 朱睦元.  黄山松群体遗传多样性分析 . 浙江农林大学学报, 2003, 20(1): 23-26.
    [20] 刘安兴.  树高曲线聚类分析研究 . 浙江农林大学学报, 2001, 18(3): 228-232.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240160

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/5/1056

图(7) / 表(1)
计量
  • 文章访问数:  483
  • HTML全文浏览量:  89
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-01
  • 修回日期:  2024-05-16
  • 录用日期:  2024-05-23
  • 网络出版日期:  2024-07-03
  • 刊出日期:  2024-09-25

彩叶桂叶色变化及生理特征分析

doi: 10.11833/j.issn.2095-0756.20240160
    基金项目:  浙江省农业(花卉新品种选育)新品种选育重大科技专项(2021C02071-1)
    作者简介:

    金笑雨(ORCID: 0009-0006-1708-1697),从事彩叶桂育种研究。E-mail: 810380404@qq.com

    通信作者: 赵宏波(ORCID: 0000-0003-4714-8240),教授,博士,从事观赏植物遗传育种研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S685.13

摘要:   目的  探讨彩叶桂Osmanthus fragrans Colour Group在生长过程中叶色变化及相关生理特征,为彩叶桂的品种分类、筛选和改良提供理论依据。  方法  选取29份彩叶桂种质材料,运用量化标准并结合聚类分析方法对其进行分类。同时,从中选择2个代表性品系(‘罗彩3号’‘Luocai 3’和‘罗彩28号’‘Luocai 28’)进行色素分布观察、组分定性、质量分数测定以及生理指标测定。  结果  基于叶片变色30%的叶色参数进行聚类分析,将彩叶桂品系分为两大类共3个色系,即红棕色系(第Ⅰ类第1亚类)、橙棕色系(第Ⅰ类第2亚类)和紫粉色系(第Ⅱ类)。解剖结构显示:花青素主要分布在幼嫩叶片的上下表皮细胞中,并随着叶片生长逐渐减退。同时,花青素质量分数逐渐下降,叶绿素质量分数持续上升,而类胡萝卜素质量分数虽逐渐上升但变化不显著。在叶片生长过程中,2个品系可溶性蛋白和可溶性糖质量分数的变化无明显规律,但在叶片变色为0时相对较高;过氧化物酶(POD)活性不断增加,但‘罗彩3号’在每个时期均高于‘罗彩28号’;叶片pH无显著变化且始终处于酸性范围。  结论  基于叶片变色30%的叶色参数可对彩叶桂进行色系划分。彩叶桂叶色变化主要受花青素质量分数减少和叶绿素质量分数增加的影响,而POD在其中发挥了重要作用。红棕色系和橙棕色系之间的区别在于花青素和类胡萝卜素的质量分数及其比值。图7表1参29

English Abstract

谭蕊, 于水强, 李玉, 等. 间伐恢复对松栎混交林表层土壤酶活性及酶化学计量的影响[J]. 浙江农林大学学报, 2024, 41(6): 1201-1210. DOI: 10.11833/j.issn.2095-0756.20240185
引用本文: 金笑雨, 王艺光, 赵宏波, 等. 彩叶桂叶色变化及生理特征分析[J]. 浙江农林大学学报, 2024, 41(5): 1056-1065. DOI: 10.11833/j.issn.2095-0756.20240160
TAN Rui, YU Shuiqiang, LI Yu, et al. Effect of thinning restoration on enzyme activity and enzyme stoichiometry in the topsoil of oak-pine mixed forest[J]. Journal of Zhejiang A&F University, 2024, 41(6): 1201-1210. DOI: 10.11833/j.issn.2095-0756.20240185
Citation: JIN Xiaoyu, WANG Yiguang, ZHAO Hongbo, et al. Color change and physiological characteristics in Osmanthus fragrans Colour Group[J]. Journal of Zhejiang A&F University, 2024, 41(5): 1056-1065. DOI: 10.11833/j.issn.2095-0756.20240160
  • 彩叶植物是指在整个生长季节或生长季节的某一阶段全部或部分叶片较稳定地呈现非绿色的植物[1],在园林中应用非常广泛。叶色作为观赏植物的重要性状之一,其主要的呈色物质是叶绿素、类胡萝卜素和花青素[2],它们的类型、比例和分布是叶片颜色发生变化的基础[3]。花青素是一类重要的类黄酮色素,通常积聚在叶片的表皮或表皮细胞、栅栏组织和海绵组织中[4],彩叶植物叶片颜色的呈现在很大程度上受花青素含量的影响。花青素的合成、降解以及稳定性均会影响叶片和花瓣等组织的色泽变化[5]。此外,可溶性蛋白是植物体内重要渗透调节物质,糖类是花青素合成的前体和信号物质,它们也间接影响花青素的形成[6];过氧化物酶(POD)是一种可能与花青素降解有关的酶,能够促进花青素的降解[7];液泡内pH值的变化可以影响液泡中花青素的稳定性进而改变植物颜色[8]。因此,植物的叶色变化涉及多种因素,阐明植物叶色形成及变化机制有助于人们更好地选择和培育具有理想叶色的植物,为园林绿化和观赏植物的应用提供更多可能性。

    彩叶桂Osmanthus fragrans Colour Group主要特点在于枝条或叶片呈现鲜明的色彩变异,具有较高的观赏价值[9]。目前对于彩叶桂品种的分类主要是根据成型叶片的颜色[10],然而这种分类方式相对宽泛,对色系划分并不精确。对于彩叶桂叶片变色机制的研究集中在单个品种上[11],还未对不同品种之间的差异进行分析和比较。因此,本研究选取29份彩叶桂种质材料,运用量化标准并结合聚类分析方法对其进行分类[12]。同时,从中选择2个代表性品系(‘罗彩3号’‘Luocai 3’和‘罗彩28号’‘Luocai 28’)进行色素分布观察、组分定性、含量测定以及生理指标的测定,明确彩叶桂色素积累特征及变化规律,以期为彩叶桂的品种分类、筛选和改良提供理论依据。

    • 于2023年3—6月随机选择29个生长健壮、长势一致的彩叶桂品系进行调查。根据叶片的生长状态和变色情况,划分为S1 (0%变色)、S2 (30%变色)、S3 (50%变色)、S4 (80%变色)和S5 (100%变色) 5个时期。从中选取2个代表性品系(‘罗彩3号’和‘罗彩28号’)进行色素分布观察、组分定性、含量测定以及生理指标的测定。取样时每个品系选取10株以上,每株植株取当年生枝条的第2至3轮叶片。

    • 用便携式全自动色差仪(CR-10,日本)测定叶片上表皮的明度(L*)、红度(a*)、黄度(b*)、彩度(C*)和色相角(h)。采用英国皇家园艺学会标准比色卡(RHSCC)对29个不同品系的彩叶桂叶片的不同时期进行比对。每个品系5个生物学重复。

    • 色素分布观察采用徒手切片法[13];色素组分定性参照白新祥等[14]的方法;叶绿素测定采用体积分数为80%的丙酮浸提法[15];类胡萝卜素测定参照陈建等[16]的方法;花青素的提取使用甲醇∶水∶甲酸∶三氟乙酸=70∶27∶2∶1(体积比)的提取液[17],采用UPLC-Triple-TOF/MS系统对叶片中花青素进行测定。色谱柱为ACQUITY UPLC BEH-C18柱(1.7 μm,2.1 mm×100.0 mm),以体积分数为1%的甲酸水溶液(A)和1%的甲酸乙腈(B)为流动相,进样量为3 μL,柱温为40 ℃,流速0.4 mL·min−1。洗脱程序为:0 min,95%A和5%B (体积分数);2 min,90%A和10%B (体积分数);12 min,5%A和95%B (体积分数);14 min,5%A和95%B (体积分数);15 min,95%A和5%B (体积分数);17 min,95%A和5%B (体积分数)。花青素的检测波长为520 nm,通过标准品半定量法计算叶片中花青素相对于标准品的含量。花青素标准品为矢车菊素-3-O-芸香糖苷。

    • 可溶性蛋白测定采用考马斯亮蓝法[15];可溶性糖测定采用蒽酮比色法[18];POD活性测定采用愈创木酚法[19];pH值测定参照唐前瑞等[20]的方法。

    • 叶片色素和生理指标测定均进行3个生物学重复。使用Excel 2020、Origin 2021以及SPSS 27.0软件进行数据统计分析和作图,采用邓肯新复极差法对不同时期各指标数据进行差异显著性分析,采用皮尔逊系数对叶色表型参数和影响因素进行相关性分析。

    • 在变色前期(S1和S2时期),彩叶桂叶片颜色呈现多样性,包括紫粉色、红色、红棕色、红橙色、黄棕色和橄榄棕色等多种颜色;而在变色中后期(S3至S5时期),叶片颜色相对趋于一致,普遍呈现从黄色、黄绿色到橄榄绿色的变化(表1)。从图1A~B可见:明度、红度、黄度在S1和S2时期相对接近,S3和S4时期也相对接近。S1和S2时期具有较高的红度,而S4和S5时期则具有较高的黄度。此外,S1、S2和S5时期具有较高的重叠度,S3则和S4时期具有较高的重叠度,同时S3和S4时期的明度和彩度均高于S1、S2和S5时期(图1C)。

      表 1  不同彩叶桂品系叶色变化

      Table 1.  Leaf color changes of 29 cultivars of O. fragrans Colour Group

      序号品系时期
      S1S2S3S4S5
      1‘罗彩2号’‘Luocai 2’紫粉色红色黄棕色黄绿色橄榄绿色
      2‘罗彩3号’‘Luocai 3’红色红棕色黄棕色黄绿色橄榄绿色
      3‘罗彩4号’‘Luocai 4’红棕色红橙色黄色黄绿色黄绿色
      4‘罗彩6号’‘Luocai 6’红色红色黄绿色黄绿色橄榄绿色
      5‘罗彩7号’‘Luocai 7’红橙色红橙色黄色黄绿色橄榄绿色
      6‘罗彩22号’‘Luocai 22’红橙色红橙色黄色黄绿色黄绿色
      7‘罗彩23号’‘Luocai 23’红棕色红棕色黄绿色黄绿色黄绿色
      8‘罗彩26号’‘Luocai 26’红橙色红色橄榄棕色黄绿色橄榄绿色
      9‘罗彩27号’‘Luocai 27’红橙色黄棕色橄榄棕色黄绿色橄榄绿色
      10‘罗彩28号’‘Luocai 28’红色红橙色黄色黄绿色橄榄绿色
      11‘罗彩29号’‘Luocai 29’红色红棕色橄榄棕色黄绿色橄榄绿色
      12‘罗彩30号’‘Luocai 30’红色红棕色橄榄棕色黄绿色橄榄绿色
      13‘罗彩31号’‘Luocai 31’红色紫粉色黄色黄绿色橄榄绿色
      14‘罗彩33号’‘Luocai 33’红橙色黄棕色黄色黄绿色橄榄绿色
      15‘罗彩34号’‘Luocai 34’红色红色黄色黄绿色橄榄绿色
      16‘罗彩36号’‘Luocai 36’棕色红橙色橄榄棕色黄绿色橄榄绿色
      17‘罗彩37号’‘Luocai 37’红色红橙色黄色黄绿色橄榄绿色
      18‘罗彩46号’‘Luocai 46’红色紫粉色黄色黄绿色橄榄绿色
      19‘罗彩47号’‘Luocai 47’红橙色橄榄棕色黄色黄绿色橄榄绿色
      20‘罗彩55号’‘Luocai 55’红棕色红棕色黄色黄绿色橄榄绿色
      21‘罗彩59号’‘Luocai 59’棕色红棕色黄棕色黄绿色橄榄绿色
      22‘罗彩62号’‘Luocai 62’红色红色黄色黄绿色橄榄绿色
      23‘罗彩65号’‘Luocai 65’红棕色红棕色黄色黄绿色黄绿色
      24‘罗彩66号’‘Luocai 66’红橙色红橙色黄色黄绿色橄榄绿色
      25‘罗彩77号’‘Luocai 77’红橙色红橙色黄色黄绿色黄绿色
      26‘罗彩82号’‘Luocai 82’红棕色红色黄色黄绿色橄榄绿色
      27‘罗彩88号’‘Luocai 88’红色红棕色黄色黄绿色黄绿色
      28‘罗彩151号’‘Luocai 151’红棕色橄榄棕色黄色黄绿色黄绿色
      29‘罗彩153号’‘Luocai 153’红色红棕色黄色黄绿色黄绿色
        说明:不同时期的叶色均是通过英国皇家园艺学会标准比色卡(RHSCC)测定得来。

      图  1  不同时期彩叶桂叶色参数的空间关系

      Figure 1.  Spatial relationship of color parameters of different strains of O. fragrans Colour Group

      在S2时期,彩叶桂的叶色呈现出丰富的色彩,而且叶片发育相对成熟。因此,基于S2时期的叶色参数,对29个彩叶桂品系进行聚类分析,将其分为两大类共3个色系(图2):即红棕色系(第Ⅰ类第1亚类,包括‘罗彩23号’‘Luocai 23’至‘罗彩34号’‘Luocai 34’等12个品系)、橙棕色系(第Ⅰ类第2亚类,包括‘罗彩47号’‘Luocai 47’至‘罗彩27号’‘Luocai 27’等14个品系)和紫粉色系(第Ⅱ类,包括‘罗彩6号’‘Luocai 6’至‘罗彩46号’‘Luocai 46’等3个品系)。彩叶桂叶色参数在红度、黄度坐标上均分布在正数范围内,且各色系之间可明显区分(图3A)。在以明度、红度和黄度构建的三维象限图中,各色系集中分布在1条主线附近,呈带状分布(图3B)。通过对3个色系的明度、红度和黄度分析发现:橙棕色系的明度和黄度最高,红棕色系次之,而紫粉色系最低。尽管橙棕色系与红棕色系部分样本的明度存在重叠,但是可以通过红度和黄度进行区分。

      图  2  不同色系彩叶桂叶色表型聚类图

      Figure 2.  Cluster map of leaf color phenotype of different color series of O. fragrans Colour Group

      图  3  彩叶桂各色系表型分布图

      Figure 3.  Phenotypic distribution map of different color series of O. fragrans Colour Group

    • 对红棕色系和橙棕色系这2个颜色相近的色系进行研究发现:在叶片生长过程中,红棕色系的‘罗彩3号’叶片呈红色—红棕色—黄棕色—黄绿色—橄榄绿色的变化(图4A),橙棕色系的‘罗彩28号’‘Luocai 28’叶片呈红色—红橙色—黄色—黄绿色—橄榄绿色的变化(图4B)。这2个色系在叶片生长过程中的颜色变化略有不同,其中‘罗彩3号’在颜色过渡中呈现出较多的红色和红棕色调,而‘罗彩28号’则有更多的橙色和橙棕色调。解剖结构发现:在S1和S2时期,2个品系叶片的叶肉和叶脉横截面细胞中以红色色素为主,且主要分布在表皮细胞中。其中‘罗彩3号’细胞颜色逐渐加深,‘罗彩28号’的红色色素由多变少。随着叶片生长到S3至S5时期,叶肉细胞中的绿色色素逐渐增加,表皮细胞中红色色素逐渐减少。

      图  4  彩叶桂在不同叶色期的表型和显色反应

      Figure 4.  Phenotype and color response of O. fragrans Colour Group at different leaf color stages

      此外,显色反应表明:‘罗彩3号’和‘罗彩28号’在S1至S3时期石油醚的提取液呈接近透明的状态,推测叶片中可能不含或仅含少量类胡萝卜素;然而,在S4至S5时期,提取液逐渐呈现黄色,表明类胡萝卜素质量分数逐渐增加。在体积分数为10%的盐酸反应中,‘罗彩3号’和‘罗彩28号’在S1和S2时期的提取液呈现不同程度的红色,说明叶片中含有较多的花青素;然而,在S3至S5时期,提取液的颜色逐渐减淡,说明花青素质量分数逐渐减少。在体积分数为30%的氨水反应中,所有样品的提取液呈现浅棕色,表明叶片中均含有黄酮类或黄酮醇类化合物(图4C图4D)。

    • 色素测定(图5)发现:在叶片生长过程中,‘罗彩3号’和‘罗彩28号’的叶绿素a、叶绿素b呈明显的增加趋势,‘罗彩3号’在S5时期显著增加(P<0.05),而‘罗彩28号’在S4时期显著增加(P<0.05),这与叶片变绿的过程一致;同样,类胡萝卜素质量分数也随着叶片生长逐渐增加。相反的,花青素质量分数在叶片生长过程中显著减少(P<0.05)。2个品系的花青素/叶绿素以及花青素/类胡萝卜素均呈下降趋势。‘罗彩3号’在S1和S3时期类胡萝卜素/叶绿素相对较高,而‘罗彩28号’则在S1时期相对较高。

      图  5  彩叶桂在不同叶色期的色素质量分数及比例变化

      Figure 5.  Changes in pigment content and ratio of O. fragrans Colour Group during different leaf color stages

    • 生理指标测定发现:在叶片生长过程中,可溶性蛋白质量分数没有明显的变化规律(图6A),但可溶性糖质量分数整体上呈先下降后上升的趋势。从S3时期开始,2个品系叶片中的可溶性糖质量分数开始增加,但‘罗彩3号’在S5时期出现轻微下降趋势(图6B)。此外,POD活性在叶片生长过程中呈上升趋势,‘罗彩3号’的POD活性持续增加,而‘罗彩28号’的POD活性前期上升较小,中后期上升幅度较大(图6C)。2个品系叶片细胞液的pH在整个生长过程中保持弱酸性水平,整体上无明显变化(图6D)。

      图  6  彩叶桂在不同叶色期的叶片生理指标变化

      Figure 6.  Changes in leaf physiological indicators of O. fragrans Colour Group during different leaf color stages

    • 相关性分析(图7)显示:彩叶桂叶片的明度色相角与各色素及生理指标间均无显著相关;红度与花青素、花青素/叶绿素、类胡萝卜素/叶绿素间呈显著正相关(P<0.05),与花青素/类胡萝卜素间呈极显著正相关(P<0.01),与叶绿素和POD活性呈显著负相关(P<0.05),与类胡萝卜素呈极显著负相关(P<0.01);黄度与花青素、花青素/叶绿素、花青素/类胡萝卜素间呈极显著负相关(P<0.01);彩度与可溶性糖呈显著负相关(P<0.05)。此外,叶绿素与类胡萝卜、POD活性呈极显著正相关(P<0.01),与类胡萝卜素/叶绿素呈极显著负相关(P<0.01);类胡萝卜素与POD活性呈极显著正相关(P<0.01),与类胡萝卜素/叶绿素、花青素/类胡萝卜素间呈显著负相关(P<0.05);花青素与类胡萝卜素/叶绿素呈显著正相关(P<0.05),与花青素/叶绿素、花青素/类胡萝卜素间呈极显著正相关(P<0.01)。

      图  7  彩叶桂叶片变色过程中各指标间的相关性分析

      Figure 7.  Correlation analysis of various parameters during leaf coloration process in O. fragrans Colour Group

    • 彩叶桂以其丰富的叶色变化而备受青睐,具有较高的观赏价值。冯园园[10]根据成型叶叶片颜色将彩叶桂划分为红色系和黄色系,其中红色系在特定时期转为黄色。然而,这种分类方式相对宽泛,对色系划分不够精细。本研究通过对S2时期叶片颜色变化分析发现:叶片不仅呈色丰富,而且发育相对成熟。通过聚类分析将彩叶桂划分为两大类共3个色系,即红棕色系(第Ⅰ类第1亚类)、橙棕色系(第Ⅰ类第2亚类)和紫粉色系(第Ⅱ类)。其中,橙棕色系具有较高的明度和黄度,红棕色系次之,而紫粉色系则具有较高的红度。以上结果表明:彩叶桂整体上可分为2个明显的颜色类别,但第Ⅰ类可以进一步区分,这表明即使在同一主色系下,彩叶桂叶色仍存在差异。

      叶片中的色素种类、质量分数、比例及分布位置等的差异都是影响叶色变化的关键因素[1]。叶绿素、类胡萝卜素和花青素变化时将导致叶片颜色发生改变[21]。在本研究中,2个品系的花青素主要分布在彩叶桂幼嫩叶片的上、下表皮细胞中。随着叶片的生长,红色色素逐渐减少,而绿色色素不断增加,最终导致成熟叶片呈现出稳定的绿色形态。通过对不同变色时期叶片的色素质量分数比较发现:花青素的减少伴随着叶绿素的持续上升,这可能是叶片颜色变化的重要因素之一;与此同时,虽然类胡萝卜素质量分数逐渐上升,但其变化并不显著,可能在叶片颜色形成过程中的作用相对较小。类似的变化也在其他植物如芍药Paeonia lactifora[22]、岭南槭Acer tutcheri[23]和红枫Acer palmatum‘Atropurpureum’ [24]中观察到。在S2时期,‘罗彩3号’和‘罗彩28号’叶片的叶绿素质量分数分别为67.42、64.04 μg·g−1;类胡萝卜素质量分数分别为18.14、29.01 μg·g−1;花青素质量分数分别为66.40、28.81 μg·g−1。2个品系的叶绿素质量分数相对接近,但花青素和类胡萝卜素的质量分数和比值存在差异。‘罗彩3号’的花青素/类胡萝卜素大于‘罗彩28号’,表明红棕色系和橙棕色系的区别在于花青素和类胡萝卜素的质量分数和比值。

      糖类不仅是花青素合成的前体,还扮演着信号物质的角色;可溶性蛋白质在植物体内被认为是重要的渗透调节物质,通过一定生理代谢来调节花青素的形成[6]。聂庆娟等[25]对美国红栌Cotinus coggygria ‘Royal Purple’研究发现:变色期的红色叶片中具有较高的可溶性蛋白和可溶性糖。类似地,本研究2个品系在S1时期的红色叶片中也显示出相对较高的可溶性蛋白和可溶性糖。然而,两者均与叶片内花青素的相关性不显著,这与唐生森等[26]在枫香Liquidambar formosana中的研究结果相似。POD是以花青素为底物的酶,其作用是催化花青素的氧化过程,导致花青素失去颜色[7]。在本研究中,2个品系的POD活性均呈上升趋势。与此同时,POD活性与叶绿素和类胡萝卜素呈显著正相关,但与花青素的相关性则不显著,这与枫香[27]的研究结果相似。这暗示着POD可能不是彩叶桂叶片中影响花青素降解的主要酶,但对叶绿素和类胡萝卜素质量分数的积累具有正向促进作用,作用强弱因品系不同而略有差异。pH是液泡环境的重要特征,对水溶性色素的稳定性和活性产生影响;随着pH的升高,花色苷稳定性降低[28]。以红罗宾石楠Photinia × fraseri ‘Red Robin’[29]为例,其叶色变绿主要与叶片细胞液中的pH上升引起的花青素质量分数下降有关。然而,在整个变色期内,2个品系彩叶桂叶片的pH基本保持稳定,且始终保持在弱酸性水平,与叶色参数及色素间均不存在显著相关,这说明彩叶桂的叶色变化与pH无关。

    • 综上所述,基于S2时期的叶色参数可对彩叶桂进行详细的色系划分。彩叶桂叶色变化主要受花青素质量分数减少和叶绿素质量分数增加的影响,而POD在其中发挥了重要作用。花青素和类胡萝卜素的质量分数及其比值可区分红棕色系和橙棕色系,不同品种的彩叶桂叶色变化受其自身特性的影响。

参考文献 (29)

目录

/

返回文章
返回