-
昆虫在生长发育过程中,体内许多酶发挥着重要作用,如昆虫中肠上皮细胞能形成和分泌消化酶,将食物中的糖类、蛋白质和脂肪等营养物质消化分解成小分子物质供生长发育需要[1−3]。乳酸脱氢酶(LDH)是参与糖酵解的重要酶类,可将丙酮酸催化成乳酸并释放腺嘌呤核苷三磷酸(ATP),从而完成葡萄糖的酵解过程。丙酮酸激酶(PK)可调节细胞中腺嘌呤核苷三磷酸、腺嘌呤核苷二磷酸(ADP)和糖酵解的中间产物,对糖酵解速率的控制起关键作用[4]。超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)是昆虫体内重要的保护酶,SOD能够清除超氧阴离子自由基(${\mathrm{O}}_2^{\;\cdot -} $),形成过氧化氢( H2O2 ),而过氧化物酶、过氧化氢酶又具有分解H2O2的作用。在这3种酶的共同作用下,细胞内的自由基维持较低水平,保护昆虫不受伤害[5−6]。羧酸酯酶(CarE)、酸性磷酸酶(ACP)、谷胱甘肽-S-转移酶(GSTs)是昆虫体内重要的解毒酶,能分解代谢农药、植物次生代谢产物等外源毒物,维持昆虫正常生理生化活动[7−9]。
昆虫是变温动物,温度的变化能直接影响其体内酶的活性[10],如在不同温度处理下,桃小食心虫Carposina niponensis体内超氧化物歧化酶活性差异均达到显著水平,在22 ℃时活性最低,28 ℃时活性达最高,34 ℃时活性急剧下降。过氧化物酶和过氧化氢酶活性均低于超氧化物歧化酶活性,整体呈先上升后下降趋势,在28 ℃时活性最高[11]。经过34、36、38 ℃高温处理后,褐飞虱Nilaparvata lugens若虫体内过氧化氢酶活性有随温度升高而升高的趋势,但以36 ℃处理影响最大,高于36 ℃则过氧化氢酶活性受抑制;若虫体内超氧化物歧化酶活性明显高于对照,超氧化物歧化酶活性随温度升高而缓慢上升[12]。酶活性的高低决定了昆虫生理代谢能力的强弱,从而对昆虫发生数量和消长动态产生重要影响[13−15]。研究环境温度对昆虫酶活性的影响,可以为深入探讨昆虫与环境适应性的生理生化机制提供参考。
金银花尺蠖Heterolocha jinyinhuaphaga属鳞翅目Lepidoptera尺蛾科Geometridae昆虫,别名拱腰虫,是金银花Lonicera japonica主要食叶害虫之一,常将金银花叶片咬成缺刻或孔洞,受害严重的地块金银花叶片被全部吃光,常造成金银花的大面积减产,甚至成片死亡,给金银花生产带来严重损失[16−20]。笔者在前期研究了温度对金银花尺蠖幼虫消化酶活性的影响[21],在此基础上继续研究温度对金银花尺蠖幼虫、蛹、雌蛾、雄蛾体内乳酸脱氢酶、过氧化物酶、羧酸酯酶、酸性磷酸酶活性的影响,分析金银花尺蠖幼虫、蛹、雌蛾、雄蛾对不同环境温度的生理生化适应性,为深入研究金银花尺蠖对环境适应性的生理生化机制提供科学依据。
Effect of temperature on the activity of four enzymes in Heterolocha jinyinhuaphaga
-
摘要:
目的 探究温度对金银花尺蠖Heterolocha jinyinhuaphaga体内酶活性的影响。 方法 试验用金银花尺蠖采自安徽省滁州市三界镇,于室内饲养,试验的光周期为白天14 h∶黑暗10 h,相对湿度为70%。测定了金银花尺蠖幼虫、蛹、雌蛾和雄蛾在不同温度(16、19、22、25、28、31和34 ℃)下乳酸脱氢酶、过氧化物酶、羧酸酯酶和酸性磷酸酶的活性。 结果 不同温度下金银花尺蠖幼虫、蛹、雌蛾和雄蛾体内的4种酶活性均存在差异,在16~34 ℃,4种酶活性均随着温度的升高表现为先上升后下降的趋势。幼虫、蛹、雌蛾和雄蛾体内的乳酸脱氢酶活性在22 ℃最高,分别为17.93×16.67、15.25×16.67、19.63×16.67和18.81×16.67 μkat·g−1;过氧化物酶活性在25 ℃最高,分别为34.63×16.67、31.83×16.67、37.19×16.67和36.87×16.67 μkat·g−1;羧酸酯酶活性在28 ℃最高,分别为26.78×16.67、23.36×16.67、29.44×16.67和28.32×16.67 μkat·g−1;酸性磷酸酶活性在25℃最高,分别为13.82×16.67、11.37×16.67、15.43×16.67和14.38×16.67 μkat·g−1。根据回归模型,得出金银花尺蠖幼虫、蛹、雌蛾和雄蛾的乳酸脱氢酶活性最高的最适温度分别为21.45、21.44、22.32和21.56 ℃,过氧化物酶活性最高的最适温度分别为26.16、25.94、25.67和25.54 ℃,羧酸酯酶活性最高的最适温度分别为29.20、29.65、28.93和28.92 ℃,酸性磷酸酶活性最高的最适温度分别为25.05、26.39、24.86和25.24 ℃。方差分析表明:温度和虫态的交互作用对金银花尺蠖4种酶活性没有显著影响。 结论 温度能影响金银花尺蠖幼虫、蛹、雌蛾和雄蛾体内乳酸脱氢酶、过氧化物酶、羧酸酯酶和酸性磷酸酶的活性。图4参26 Abstract:Objective The objective is to investigate the effect of temperature on enzyme activity in Heterolocha jinyinhuaphaga. Method The experimental insects were collected from Sanjie Town, Chuzhou City in Anhui Province and reared in a laboratory. The photoperiod was 14 h of daylight and 10 h of darkness, and the relative humidity was 70%. The activity of lactate dehydrogenase (LDH), peroxidase (POD), carboxylesterase (CarE) and acid phosphate (ACP) was measured in larvae, pupae, female and male moths of H. jinyinhuaphaga at different temperatures (16, 19, 22, 25, 28, 31, and 34 ℃). Result There were differences in the activity of four enzymes in larvae, pupae, female and male moths of H. jinyinhuaphaga at different temperatures. At 16−34 ℃, the activity of the four enzymes increased first, and then decreased with increasing temperature. LDH activity in larvae, pupae, female, and male moths was the highest at 22 ℃ (17.93×16.67, 15.25×16.67, 19.63×16.67 , and 18.81×16.67 μkat·g−1, respectively), POD activity was the highest at 25 ℃ (34.63×16.67, 31.83×16.67, 37.19×16.67, and 36.87×16.67 μkat·g−1, respectively), CarE activity was the highest at 28 ℃ (26.78×16.67, 23.36×16.67, 29.44×16.67, and 28.32×16.67 μkat·g−1, respectively), ACP activity was the highest at 25 ℃ (13.82×16.67, 11.37×16.67, 15.43×16.67, and 14.38×16.67 μkat·g−1, respectively). According to the established regression model, the optimal temperatures for the highest LDH activity in larvae, pupae, female, and male moths were found to be 21.45, 21.44, 22.32 and 21.56 ℃, respectively, the optimal temperatures for the highest POD activity were 26.16, 25.94, 25.67and 25.54 ℃, respectively, the optimal temperatures for the highest CarE activity were 29.20, 29.65, 28.93 and 28.92 ℃, respectively, the optimal temperatures for the highest ACP activity were 25.05, 26.39, 24.86 and 25.24 ℃, respectively. Two-way ANOVA showed that the interaction between temperature and insect stage had no significant effect on the activity of four enzymes. Conclusion Temperature can affect the activity of LDH, POD, CarE and ACP in larvae, pupae, female and male moths of H. jinyinhuaphaga. [Ch, 4 fig. 26 ref.] -
Key words:
- Heterolocha jinyinhuaphaga /
- temperature /
- enzyme activity
-
[1] ATHENSTAEDT K, DAUM G. The life cycle of neutral lipids: synthesis, storage and degradation [J]. Cellular and Molecular Life Sciences, 2006, 63(12): 1355 − 1369. [2] 孔玉萍, 黄青春, 刘曼慧, 等. 黏虫中肠淀粉酶活性测定方法的参数优化[J]. 昆虫学报, 2007, 50(10): 981 − 988. KONG Yuping, HUANG Qingchun, LIU Manhui, et al. Parametric optimization on the sensitive determination of midgut α-amylase in larvae of Mythimna separata Walker [J]. Acta Entomologica Sinica, 2007, 50(10): 981 − 988. [3] 姜丽娜, 钱蕾, 喜超, 等. CO2浓度升高对不同寄主植物上西花蓟马和花蓟马成虫体内消化酶活性的影响[J]. 昆虫学报, 2017, 60(3): 237 − 246. JIANG Lina, QIAN Lei, XI Chao, et al. Effects of elevated CO2 on the digestive enzyme activities in the adults of Frankliniella occidentalis and F. intonsa (Thysanoptera: Thripidae) on different host plants [J]. Acta Entomologica Sinica, 2017, 60(3): 237 − 246. [4] 何超, 孟泉科, 花蕾. 梨小食心虫滞育过程中几种代谢酶活力的相关变化[J]. 植物保护学报, 2012, 39(5): 401 − 405. HE Chao, MENG Quanke, HUA Lei. Related changes of activities of several metabolic enzymes in larvae of oriental fruit moth, Grapholita molesta, during diapause period [J]. Acta Phytophylacica Sinica, 2012, 39(5): 401 − 405. [5] 郭文娟, 陆驰宇, 熊应强, 等. 转cry1Ab /cry1Ac基因水稻对大螟幼虫体内三种保护酶活性的影响[J]. 昆虫学报, 2012, 55(8): 958 − 963. GUO Wenjuan, LU Chiyu, XIONG Yingqiang, et al. Effects of transgenic cry1Ab /cry1Ac rice on the activities of three protective enzymes in larvae of Sesamia inferens (Lepidoptera: Noctuidae) [J]. Acta Entomologica Sinica, 2012, 55(8): 958 − 963. [6] 刘建业, 钱蕾, 蒋兴川, 等. CO2浓度升高对西花蓟马和花蓟马成虫体内解毒酶和保护酶活性的影响[J]. 昆虫学报, 2014, 57(7): 754 − 761. LIU Jianye, QIAN Lei, JIANG Xingchuan, et al. Effects of elevated CO2 concentration on the activities of detoxifying enzymes and protective enzymes in adults of Frankliniella occidentalis and F. intonsa (Thysanoptera: Thripidae) [J]. Acta Entomologica Sinica, 2014, 57(7): 754 − 761. [7] LINDROTH R L, JUNG S M, FEUKER A M. Chemical ecology of the luna moth: effects of host plant on detoxification enzyme activity [J]. Journal of Chemical Ecology, 1993, 19: 357 − 367. [8] PISKORSKI R, DORN S. How the oligophage codling moth Cydia pomonella survives on walnut despite its secondary metabolite juglone [J]. Journal of Insect Physiology, 2011, 57(6): 744 − 750. [9] 朱香镇, 雒珺瑜, 张帅, 等. 植物源次生物质棉酚和芸香苷对绿盲蝽保护酶与解毒酶活性的影响[J]. 植物保护学报, 2018, 45(5): 1044 − 1053. ZHU Xiangzhen, LUO Junyu, ZHANG Shuai, et al. Effects of plant secondary metablites gossypol and rutin on the activities of protective enzymes and detoxification enzymes in green mirid bug Apolygus lucorum [J]. Journal of Plant Protection, 2018, 45(5): 1044 − 1053. [10] 李宁, 张世泽, 刘同先. 二氧化碳浓度和温度升高对烟粉虱主要保护酶和解毒酶活性的影响[J]. 植物保护学报, 2016, 43(1): 99 − 104. LI Ning, ZHANG Shize, LIU Tongxian. Effects of elevated CO2 concentration and temperature on protective enzymes and detoxification enzymes of Bemisia tabaci (Hemiptera: Aleyrodidae) [J]. Journal of Plant Protection, 2016, 43(1): 99 − 104. [11] 邢俊, 李佳睿, 王洪平. 不同温度对桃小食心虫保护酶系活性的影响[J]. 贵州农业科学, 2012, 40(6): 107 − 109. XING Jun, LI Jiarui, WANG Hongping. Effect of different temperature on the activity of protective enzymes of Carposina niponensis [J]. Guizhou Agicultural Sciences, 2012, 40(6): 107 − 109. [12] 冯从经, 戴华国, 武淑文. 褐飞虱高温条件下应激反应及体内保护酶系活性的研究[J]. 应用生态学报, 2001, 12(3): 409 − 413. FENG Congjing, DAI Huaguo, WU Shuwen. Stress response of Nilaparvata lugens at high temperature and activities of its protective enzyme systems [J]. Chinese Journal of Applied Ecology, 2001, 12(3): 409 − 413. [13] KIM DS, LEE J H, YIEM M S. Temperature-dependent development of Carposina sasakii (Lepiloptera: Carposinidae) and its stage emergence models [J]. Environmental Entomology, 2001, 30(2): 298 − 305. [14] HODKINSON I D, BIRD J M. Flexible responses of insects to changing environmental temperature-early season development of Craspedolepta species on fireweed [J]. Global Change Biology, 2006, 12(7): 1308 − 1314. [15] NETHERER S, SCHOPF A. Potential effects of climate change on insect herbivores in European forests-general aspects and the pine processionary moth as specific example [J]. Forest Ecology and Management, 2010, 259(4): 831 − 838. [16] 姜敏, 邵明果, 赵伯林. 金银花尺蠖的生物学特性及防治技术[J]. 山东林业科技, 2005(1): 62 − 63. JIANG Min, SHAO Mingguo, ZHANG Bolin. Biology characteristic of Heterolocha jinyinhuaphaga Chu and the control methods [J]. Shandong Forestry Science and Technology, 2005(1): 62 − 63. [17] 王广军, 张国彦, 王江蓉. 金银花尺蠖的发生规律与防治技术[J]. 中国植保导刊, 2005, 25(3): 22 − 23. WANG Guangjun, ZHANG Guoyan, WANG Jiangrong. Occuring laws of Heterolocha jinyinhuaphaga Chu and the control methods [J]. China Plant Protection, 2005, 25(3): 22 − 23. [18] 倪云霞, 刘新涛, 刘玉霞, 等. 金银花尺蠖的药剂防治[J]. 河南农业科学, 2006(12): 78 − 79. NI Yunxia, LIU Xintao, LIU Yuxia, et al. Pesticide control to Heterolocha jinyinhuaphaga Chu [J]. Journal of Henan Agricultural Sciences, 2006(12): 78 − 79. [19] 张文冉, 高殿滑, 刘爱华. 金银花尺蠖的发生与气象条件的关系[J]. 气象与环境科学, 2007, 30(4): 60 − 62. ZHANG Wenran, GAO Dianhua, LIU Aihua. Relationships between honeysuckle geometrid occurrence and meteorological condition [J]. Meteorological and Environmental Sciences, 2007, 30(4): 60 − 62. [20] 向玉勇, 刘克忠, 殷培峰, 等. 安徽金银花尺蠖的生物学特性[J]. 滁州学院学报, 2010, 12(5): 35 − 37. XIANG Yuyong, LIU Kezhong, YIN Peifeng, et al. The biological characteristics of honeysuckle geometrid in Anhui Province [J]. Journal of Chuzhou University, 2010, 12(5): 35 − 37 . [21] 向玉勇, 孙星, 殷培峰. 寄主植物、温度对金银花尺蠖幼虫消化酶活性的影响[J]. 浙江农林大学学报, 2020, 37(2): 311 − 318. XIANG Yuyong, SU Xin, YIN Peifeng. Effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae [J]. Journal of Zhejiang A&F University, 2020, 37(2): 311 − 318. [22] 向玉勇, 彭晶晶, 张帆, 等. 温度对金银花尺蠖幼虫取食量及食物利用效率的影响[J]. 环境昆虫学报, 2015, 37(6): 1158 − 1162. XIANG Yuyong, PENG Jingjing, ZHANG Fan, et al. Effects of temperature on the feeding capacity and food utilization efficiency of Heterolocha jinyinhuaphaga Chu larvae [J]. Journal of Environmental Entomology, 2015, 37(6): 1158 − 1162. [23] 李东坡, 韩岚岚, 张旭霞, 等. 大豆食心虫滞育期间体内代谢酶对温度诱导的响应[J]. 大豆科学, 2018, 37(3): 415 − 423. LI Dongpo, HAN Lanlan, ZHANG Xuxia, et al. Metabolic response of the soybean pod borer (Leguminirora glycinioorella) during diapause to temperature [J]. Soybean Science, 2018, 37(3): 415 − 423. [24] 刘玉坤, 王渭霞, 傅强, 等. 寄主植物对3种稻飞虱解毒酶和保护酶活性的影响[J]. 中国水稻科学, 2011, 25(6): 659 − 666. LIU Yukun, WANG Weixia, FU Qiang, et al. Effects of host plants on activities of detoxification and protective enzymes in three rice plant hoppers [J]. Chinese Journal of Rice Science, 2011, 25(6): 659 − 666. [25] 王彦阳, 梁广文. 温度对中华真地鳖生长发育及酶保护活性的的影响[J]. 环境昆虫学报, 2017, 39(2): 679 − 686. WANG Yanyang, LIANG Guangwen. Effects of temperature on the growth, development and protective enzyme activity of Eupolyphaga sinensis Walker (Blattaria: Polyphagidae) [J]. Journal of Environmental Entomology, 2017, 39(2): 679 − 686. [26] 马敏, 张宾, 李生才. 温度对星豹蛛保护酶系影响的研究[J]. 化学与生物工程, 2011, 28(1): 59 − 61. MA Min, ZHANG Bin, LI Shengcai. Effect of temperature on protection enzymes of Pardosa astrigera [J]. Chemistry and Bioengineering, 2011, 28(1): 59 − 61. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240471