-
在陆地生态系统中,碳汇功能体现在碳库的贮量和积累速率,而碳源则体现在碳的排放强度。全球约1 400~1 500 Gt碳以有机态储存于土壤中,是陆地植被碳库(500~600 Gt)的2~3倍,是全球大气碳库(750 Gt)的2倍多。在陆地生态系统中,森林是最大的有机碳储存库,占整个陆地生态系统碳储量的56%[1]。森林土壤有机碳(SOC)主要分布于土层1 m深度以内,碳总储量为1 220 Pg,约占陆地土壤碳库的40%[2]。土壤碳库的稳定、增长或衰减都与大气二氧化碳(CO2)变化密切相关。据推测,在2 m土层中的土壤有机质质量分数增加5%~15%可减少大气中16%~30% CO2[3]。因此,增加土壤碳库和保持土壤碳库的稳定性对缓解全球变暖趋势具有同样重要意义。土壤微生物是养分和土壤有机质动态的主要调控者。作为森林生态系统的重要组成部分,土壤微生物参与了有机物分解和土壤物质转化过程,其种类组成与活性直接影响森林物质循环和养分供应[4]。土壤微生物是构成土壤肥力的重要因素,在维持土壤质量中起着重要作用。土壤微生物还具有固碳机制:生物体死亡后形成难以降解的碳源物质(如木质素、几丁质等),及土壤微生物通过提高其活性加快有机质的分解来积累有机碳[5]。土壤微生物的生物量、活性、群落组成都直接影响着土壤碳的固存及周转过程,土壤碳储量的大小与其密切相关。因而,开展土壤微生物及相关指标的研究对理解森林土壤有机碳的碳库动态与特征具有重要意义。杉木Cunninghamia lanceolata是中国特有的优良速生针叶用材树种,在中国森林系统中占据了重要地位。杉木栽培遍及中国亚热带多个省(自治区),栽培面积约17×106 hm2[6]。杉木林不仅提供了大量的商品用材[7-8],在固碳、涵养水源等生态功能方面也发挥了巨大的作用[9]。土壤质量下降已成为杉木人工林可持续经营的主要障碍,而生物多样性减少以及林地凋落物质量下降是导致土壤质量退化的重要原因。多代连栽杉木人工林出现了地力衰退、微生物多样性及数量下降、林分生产力下降等生态问题[10-11]。土壤有机碳和微生物特征是表征土壤质量的2个最重要指标,而且两者之间的关系又极其密切[12-13]。近年来,随着森林土壤有机碳在碳封存过程中被日益重视,以及高通量测序技术在土壤微生物研究中的广泛应用,杉木林土壤有机碳和微生物特征的研究取得了很多重要的进展。鉴于此,本研究对杉木林土壤有机碳和微生物群落特征及其影响因素的研究进展进行综述,为提高杉木林地生产力,增强杉木林生态系统的碳封存潜力,探究杉木人工林的连作障碍提供理论依据。
Research progress on soil organic carbon and microbial characteristics of Cunninghamia lanceolata plantation and their influencing factors
-
摘要: 土壤有机碳作为土壤碳库的重要组成部分,其稳定、增长或衰减都与大气二氧化碳变化密切相关。土壤微生物作为森林生态系统不可或缺的一部分,参与了有机物分解和土壤物质转化过程,在维持土壤质量中起着重要作用。近年来对杉木Cunninghamia lanceolata林土壤的研究主要集中在杉木凋落物分解、土壤养分周转、土壤微生物特征等方面,尤其是高通量测序技术的广泛应用,使杉木林土壤有机碳和微生物特征的研究取得了较多重要进展。本研究对杉木林土壤有机碳的碳库特征、活性、稳定性和土壤微生物的群落结构与多样性及其影响因素的研究进展进行了综述,并提出了未来杉木林土壤有机碳与土壤微生物的研究方向。参79Abstract: As an important part of soil carbon pool, the stability, growth or attenuation of soil organic carbon are closely related to the change of atmospheric CO2 concentration. Soil microorganisms, an indispensable part of forest ecosystem, participate in the decomposition of organic matter and the transformation of soil matter and play an important role in maintaining soil quality. The relationship between soil organic carbon and microbial characteristics is extremely close. In recent years, the research on soil in Cunninghamia lanceolata plantation in China has mainly focused on litter decomposition, soil nutrient turnover, soil microbial characteristics and so on. With the wide application of high-throughput sequencing technology, the research on soil organic carbon and microbial characteristics of C. lanceolata plantation has made a lot of important progress. In this study, the research progress on pool characteristics, activity, and stability of soil organic carbon as well as community structure and diversity of soil microorganisms and their influencing factors in C. lanceolata plantation were reviewed, and the future research direction of soil organic carbon and soil microorganism in C. lanceolata plantation was put forward. [Ch, 79 ref.]
-
[1] 余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4829 − 4838. YU Jian, FANG Li, BIAN Zhengfu, et al. A review of the composition of soil carbon pool [J]. Acta Ecol Sin, 2014, 34(17): 4829 − 4838. [2] DIXON R K, SOLOMON A M, BROWN S, et al. Carbon pools and flux of global forest ecosystems [J]. Science, 1994, 263(5144): 185 − 190. [3] KELL D B. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration [J]. Ann Bot, 2011, 108(3): 407 − 418. [4] ZECHMEISTER-BOLTENSTERN S, MICHEL K, PFEFFER M. Soil microbial community structure in European forests in relation to forest type and atmospheric nitrogen deposition [J]. Plant Soil, 2011, 343(1/2): 37 − 50. [5] EKSCHMITT K, LIU Manqiang, VETTER S, et al. Strategies used by soil biota to overcome soil organic matter stability-why is dead organic matter left over in the soil [J]. Geoderma, 2005, 128(1): 167 − 176. [6] 陈春林, 周国英, 吴毅, 等. 湖南黄丰桥林场杉木速生丰产林健康评价[J]. 生态学杂志, 2012, 31(11): 2872 − 2876. CHEN Chunlin, ZHOU Guoying, WU Yi, et al. Health assessment of fast-growing and high-yielding Cunninghamia lanceolata plantations in Huangfengqiao forest farm of Hunan Province, south-central China [J]. Chin J Ecol, 2012, 31(11): 2872 − 2876. [7] 江京辉, 李伯涛, 周凡, 等. 杉木生材含水率分布及其对气干的影响[J]. 林产工业, 2019, 46(1): 25 − 29. JIANG Jinghui, LI Botao, ZHOU Fan, et al. Study on distribution of moisture content of green sawn Chinese fir lumber and its effect on air drying [J]. China For Prod Ind, 2019, 46(1): 25 − 29. [8] 王雯, 田健夫, 彭尧. 速生杉木改性技术研究进展[J]. 林产工业, 2019, 56(11): 52 − 55. WANG Wen, TIAN Jianfu, PENG Yao. Research progress on modification technologies of fast-growing Chinese fir [J]. China For Prod Ind, 2019, 56(11): 52 − 55. [9] 夏丽丹, 张虹, 杨靖宇, 等. 杉木凋落物土壤生态功能研究进展[J]. 世界林业研究, 2019, 32(2): 7 − 12. XIA Lidan, ZHANG Hong, YANG Jingyu, et al. Research advances in soil ecological functions of Cunninghamia lanceolata litters [J]. World For Res, 2019, 32(2): 7 − 12. [10] YU Yuanchun, YANG Jingyu, ZENG Shucai, et al. Soil pH, organic matter, and nutrient content change with the continuous cropping of Cunninghamia lanceolata plantations in south China [J]. J Soils Sediment, 2017, 17(9): 2230 − 2238. [11] WU Zeyan, LI Jianjuan, ZHENG Jie, et al. Soil microbial community structure and catabolic activity are significantly degenerated in successive rotations of Chinese fir plantations[J]. Sci Rep, 2017, 7(1): 6691. doi: 10.1038/s41598-017-06768-x. [12] LI Yongchun, LI Yongfu, CHANG S X, et al. Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests [J]. Soil Biol Biochem, 2017, 107: 19 − 31. [13] DEMOLING F, NILSSON L O, BÅÅTH E. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils [J]. Soil Biol Biochem, 2007, 40(2): 370 − 379. [14] POST W M, KWON K C. Soil carbon sequestration and land use change: processes and potential [J]. Global Change Biol, 2000, 6: 317 − 327. [15] 张金波. 不同发育阶段杉木人工林土壤碳库稳定性研究[J]. 生态与农村环境学报, 2010, 26(6): 539 − 543. ZHANG Jinbo. Stability of soil carbon pool under Chinese fir plantation ecosystems different in growing stage [J]. J Ecol Rural Environ, 2010, 26(6): 539 − 543. [16] 周咪, 肖海兵, 聂小东, 等. 近30年国内外土壤有机碳研究进程解析与展望[J]. 水土保持研究, 2020, 27(3): 391 − 400. ZHOU Mi, XIAO Haibing, NIE Xiaodong, et al. Analysis and prospect of soil organic carbon research process in recent 30 years at home and abroad [J]. Res Soil Water Conserv, 2020, 27(3): 391 − 400. [17] 刘曦乔. 不同发育阶段杉木人工林土壤团聚体碳特征及稳定性机理[D]. 北京: 中国科学院大学, 2017. LIU Xiqiao. Carbon Characteristics and Stability Mechanism of Soil Aggregates in Chinese Fir Plantation with Different Development Stages[D]. Beijing: University of Chinese Academy of Sciences, 2017. [18] 刘曦乔, 梁萌杰, 陈龙池, 等. 湖南省森林生态系统碳储量、碳密度及其空间分布[J]. 生态学杂志, 2017, 36(9): 2385 − 2393. LIU Xiqiao, LIANG Mengjie, CHEN Longchi, et al. Carbon storage, carbon density and spatial distribution of forest ecosystems in Hunan Province [J]. Chin J Ecol, 2017, 36(9): 2385 − 2393. [19] 吴敏娟. 杉木林皆伐改造对土壤呼吸及林分碳储量的影响[D]. 杭州: 浙江农林大学, 2019. WU Minjuan. Effects of Clear Cutting and Stand Conversion of Chinese Fir Forest on Soil Respiration and Stand Carbon Stocks[D]. Hangzhou: Zhejiang A&F University, 2019. [20] 王艳霞. 福建主要人工林生态系统碳贮量研究[D]. 福州: 福建农林大学, 2010. WANG Yanxia. Carbon Storage in Main Plantation Ecosystems, Fujian Province[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. [21] 李平, 郑阿宝, 阮宏华, 等. 苏南丘陵不同林龄杉木林土壤活性有机碳变化特征[J]. 生态学杂志, 2011, 30(4): 778 − 783. LI Ping, ZHENG Abao, RUAN Honghua, et al. Variation of soil labile organic carbon in different age Chinese fir plantations in south Jiangsu [J]. Chin J Ecol, 2011, 30(4): 778 − 783. [22] 李智超, 张勇强, 宋立国, 等. 江西大岗山不同林龄杉木人工林土壤碳氮储量[J]. 中南林业科技大学学报, 2019, 39(10): 116 − 122. LI Zhichao, ZHANG Yongqiang, SONG Liguo, et al. Storage of soil carbon and nitrogen in Chinese fir plantations at different ages in Dagang mountain of Jiangxi Province [J]. J Cent South Univ For Technol, 2019, 39(10): 116 − 122. [23] CHEN Longchi, WANG Hua, YU Xin, et al. Recovery time of soil carbon pools of conversional Chinese fir plantations from broadleaved forests in subtropical regions [J]. Sci Total Environ, 2017, 587/588: 296 − 304. [24] 张仕吉. 湘中丘陵区不同土地利用方式土壤养分及碳库特征研究[D]. 长沙: 中南林业科技大学, 2015. ZHANG Shiji. Characteristics of Soil Nutrients and Carbon Pools in Different Land Use Modes in Hilly Regions of Central Hunan[D]. Changsha: Central South University of Forestry Science and Technology, 2015. [25] 陈琴, 戴俊, 廖兴文, 等. 杉木与固氮树种混交对土壤有机质及氮含量的影响[J]. 广西林业科学, 2016, 45(2): 149 − 153. CHEN Qin, DAI Jun, LIAO Xingwen, et al. Effects of mixture of Cunninghamia lanceolata and nitrogen fixing trees on contents of soil organic matter and nitrogen [J]. Guangxi For Sci, 2016, 45(2): 149 − 153. [26] 何姗, 刘娟, 姜培坤, 等. 经营管理对森林土壤有机碳库影响的研究进展[J]. 浙江农林大学学报, 2019, 36(4): 818 − 827. HE Shan, LIU Juan, JIANG Peikun, et al. Effects of forest management on soil organic carbon pool: a review [J]. J Zhejiang A&F Univ, 2019, 36(4): 818 − 827. [27] 徐雪蕾, 孙玉军, 周华, 等. 间伐强度对杉木人工林林下植被和土壤性质的影响[J]. 林业科学, 2019, 55(3): 1 − 12. XU Xuelei, SUN Yujun, ZHOU Hua, et al. Effects of thinning intensity on understory growth and soil properties in Chinese fir plantation [J]. Sci Silv Sin, 2019, 55(3): 1 − 12. [28] 吴传敬, 郭剑芬, 许恩兰, 等. 采伐残余物不同处理方式对杉木幼林土壤有机碳组分和相关酶活性的影响[J]. 土壤学报, 2019, 56(6): 1504 − 1513. WU Chuanjing, GUO Jianfen, XU Enlan, et al. Effects of logging residue on composition of soil carbon and activity of related enzymes in soil of a young Chinese fir plantation as affected by residue handling mode [J]. Acta Pedol Sin, 2019, 56(6): 1504 − 1513. [29] 阮超越, 刘小飞, 吕茂奎, 等. 杉木人工林凋落物添加与去除对土壤碳氮及酶活性的影响[J]. 土壤学报, 2020, 57(4): 954 − 962. RUAN Chaoyue, LIU Xiaofei, LÜ Maokui, et al. Effects of litter carbon, nitrogen and enzyme activity in soil under Chinese fir [J]. Acta Pedol Sin, 2020, 57(4): 954 − 962. [30] 毛行元, 唐学君, 王伟峰. 基于FORECAST模型模拟造林密度对杉木人工林碳储量的影响[J]. 江西农业学报, 2018, 30(1): 41 − 44. MAO Xingyuan, TANG Xuejun, WANG Weifeng. Effect of plantation density on carbon storage of Chinese fir plantation based on simulation of FORECAST mode [J]. Acta Agric Jiangxi, 2018, 30(1): 41 − 44. [31] WEI Xiaohua, BLANCO J A, JIANG Hong, et al. Effects of nitrogen deposition on carbon sequestration in Chinese fir forest ecosystems [J]. Sci Total Environ, 2012, 416: 351 − 361. [32] 尹艳, 刘岩, 尹云锋, 等. 生物质炭添加对杉木人工林土壤原有有机碳矿化的影响[J]. 应用生态学报, 2018, 29(5): 1389 − 1396. YIN Yan, LIU Yan, YIN Yunfeng. Effects of biochar addition on the mineralization of native soil organic carbon in Cunninghamia lanceolata plantation [J]. Chin J Appl Ecol, 2018, 29(5): 1389 − 1396. [33] 任玉连, 陆梅, 曹乾斌, 等. 南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征[J]. 北京林业大学学报, 2019, 41(11): 104 − 115. REN Yulian, LU Mei, CAO Qianbin, et al. Spatial distribution characteristics of soil organic carbon and total nitrogen stocks across the different typical vegetation types in Nangunhe National Nature Reserve, southwestern China [J]. J Beijing For Univ, 2019, 41(11): 104 − 115. [34] 张莎莎, 李爱琴, 王会荣, 等. 不同海拔杉木人工林土壤碳氮磷生态化学计量特征[J]. 生态环境学报, 2020, 29(1): 97 − 104. ZHANG Shasha, LI Aiqin, WANG Huirong, et al. Ecological stoichiometry of soil carbon nitrogen and phosphorus in Cunninghamia lanceolata plantation across an elevation gradient [J]. Ecol Environ Sci, 2020, 29(1): 97 − 104. [35] 蒲玉琳, 叶春, 张世熔, 等. 若尔盖沙化草地不同生态恢复模式土壤活性有机碳及碳库管理指数变化[J]. 生态学报, 2017, 37(2): 367 − 377. PU Yulin, YE Chun, ZHANG Shirong, et al. Effects of different ecological restoration patterns on labile organic carbon and carbon pool management index of desertification grassland soil in Zoige [J]. Acta Ecol Sin, 2017, 37(2): 367 − 377. [36] 李艳鹏, 贺同鑫, 王清奎. 施肥对杉木林土壤酶和活性有机碳的影响[J]. 生态学杂志, 2016, 35(10): 2722 − 2731. LI Yanpeng, HE Tongxin, WANG Qingkui. Impact of fertilization on soil organic carbon and enzyme activities in a Cunninghamia lanceolata planation [J]. Chin J Ecol, 2016, 35(10): 2722 − 2731. [37] 徐道炜, 刘金福, 何中声, 等. 毛竹向杉木林扩张对土壤活性有机碳及碳库管理指数影响[J]. 西部林业科学, 2019, 48(5): 22 − 28, 36. XU Daowei, LIU Jinfu, HE Zhongsheng, et al. Effect of Phyllostachys edulis to Cunninghamia lanceolata forest on soil active organic carbon and carbon management index [J]. J West China For Sci, 2019, 48(5): 22 − 28, 36. [38] 徐睿, 姜春前, 白彦锋, 等. 杉木纯林和混交林土壤温室气体通量的差异[J]. 浙江农林大学学报, 2019, 36(2): 307 − 317. XU Rui, JIANG Chunqian, BAI Yanfeng, et al. Soil greenhouse gas fluxes in pure and mixed stands of Chinese fir [J]. J Zhejiang A&F Univ, 2019, 36(2): 307 − 317. [39] 杨洋. 凋落物和林下植被对杉木林土壤微生物活性的影响[D]. 哈尔滨: 哈尔滨师范大学, 2017. YANG Yang. Effects of Litter and Understory Vegetation on Soil Microbial Activity in Chinese Fir Plantation[D]. Harbin: Harbin Normal University, 2017. [40] 王珍, 陈爱玲, 曹光球, 等. 不同凋落物配比对杉木土壤微生物量碳氮的影响[J]. 南方农业学报, 2017, 48(10): 1849 − 1857. WANG Zhen, CHEN Ailing, CAO Guangqiu, et al. Effects of different litter compositions on soil microbial biomass carbon and nitrogen contents in Chinese fir plantation [J]. J South Agric, 2017, 48(10): 1849 − 1857. [41] 盛浩, 李洁, 周萍, 等. 土地利用变化对花岗岩红壤表土活性有机碳组分的影响[J]. 生态环境学报, 2015, 24(7): 1098 − 1102. SHENG Hao, LI Jie, ZHOU Ping, et al. Effect of land use change on labile organic carbon fractions of soil derived from Granite [J]. Ecol Environ Sci, 2015, 24(7): 1098 − 1102. [42] 李艳鹏. 施N、P肥对杉木人工林土壤活性碳库组成及碳释放的影响[D]. 北京: 中国科学院大学, 2016. LI Yanpeng. Effects of N, P Fertilizer Application on Soil Active Carbon Pool Composition and Carbon Release in Chinese Fir Plantation[D]. Beijing: University of Chinese Academy of Sciences, 2016. [43] 张秀兰, 王方超, 方向民, 等. 亚热带杉木林土壤有机碳及其活性组分对氮磷添加的响应[J]. 应用生态学报, 2017, 28(2): 449 − 455. ZHANG Xiulan, WANG Fangchao, FANG Xiangmin, et al. Responses of soil organic carbon and its labile fractions to nitrogen and phosphorus additions in Cunninghamia lanceolata plantations in subtropical [J]. Chin J Appl Ecol, 2017, 28(2): 449 − 455. [44] 张剑, 汪思龙, 隋艳晖, 等. 不同发育阶段杉木人工林土壤碳库稳定性研究[J]. 生态与农村环境报, 2010, 26(6): 539 − 543. ZHANG Jian, WANG Silong, SUI Yanhui, et al. Stability of soil carbon pool under Chinese fir plantation ecosystems different in growing stage [J]. J Ecol Rural Environ, 2010, 26(6): 539 − 543. [45] 张冰冰, 万晓华. 不同林龄杉木人工林土壤易变性碳、氮含量的变化[J]. 福建农业科技, 2020(1): 33 − 39. ZHANG Bingbing, WAN Xiaohua. Changes of soil labile carbon and nitrogen contents in Cunninghamia lanceolata plantations with different stand age [J]. Fujian Agric Sci Technol, 2020(1): 33 − 39. [46] 徐香茹, 汪景宽. 土壤团聚体与有机碳稳定机制的研究进展[J]. 土壤通报, 2017, 48(6): 1523 − 1529. XU Xiangru, WANG Jingkuan. A review on different stabilized mechanisms of soil aggregates and carbon [J]. Chin J Soil Sci, 2017, 48(6): 1523 − 1529. [47] 张云晴, 张振, 孙凯, 等. 不同马尾松种源树干植硅体碳封存潜力比较[J]. 浙江农林大学学报, 2020, 37(5): 883 − 890. ZHANG Yunqing, ZHANG Zhen, SUN Kai, et al. A comparative study of the PhytOC sequestration potential in the trunk of Pinus massoniana of different provenances [J]. J Zhejiang A&F Univ, 2020, 37(5): 883 − 890. [48] 何珊琼, 孟赐福, 黄张婷, 等. 土壤植硅体碳稳定性的研究进展与展望[J]. 浙江农林大学学报, 2016, 33(3): 506 − 515. HE Shanqiong, MENG Cifu, HUANG Zhangting, et al. Research progress and forecast of phytolith-occluded organic carbon stability in soil [J]. J Zhejiang A&F Univ, 2016, 33(3): 506 − 515. [49] PARR J F, SULLIVAN L A. Soil carbon sequestration in phytoliths [J]. Soil Biol Biochem, 2005, 37(1): 117 − 124. [50] 孟赐福, 姜培坤, 徐秋芳, 等. 植物生态系统中的植硅体闭蓄有机碳及其在全球土壤碳汇中的重要作用[J]. 浙江农林大学学报, 2013, 30(6): 921 − 929. MENG Cifu, JIANG Peikun, XU Qiufang, et al. PhytOC in plant ecological system and its important roles in the global soil carbon sink [J]. J Zhejiang A&F Univ, 2013, 30(6): 921 − 929. [51] 许子娟, 左昕昕, 范百龄, 等. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151 − 159. XU Zijuan, ZUO Xinxin, FAN Bailing, et al. Advances in geochemical study of phytolith occluded carbon [J]. Adv Earth Sci, 2017, 32(2): 151 − 159. [52] 张芸. 杉木人工林土壤有机碳的稳定机制研究[D]. 福州: 福建农林大学, 2017. ZHANG Yun. Stability Mechanism of Soil Organic Carbon in Chinese Fir Plantation[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. [53] 朱浩宇, 陆畅, 高明, 等. 缙云山4种林分土壤植硅体碳分布特征[J]. 土壤学报, 2020, 57(2): 359 − 369. ZHU Haoyu, LU Chang, GAO Ming, et al. Distribution of PhytoOC in soils under four different types of forest in Jinyun Mountain [J]. Acta Pedol Sin, 2020, 57(2): 359 − 369. [54] 林维雷, 应雨骐, 姜培坤, 等. 浙江南部亚热带森林土壤植硅体碳的研究[J]. 土壤学报, 2015, 52(6): 1365 − 1373. LIN Weilei, YING Yuqi, JIANG Peikun, et al. Study on phytolith-occluded organic carbon in soil of subtropical forest of southern Zhejiang [J]. Acta Pedol Sin, 2015, 52(6): 1365 − 1373. [55] 王珍. 酸雨区不同配比凋落物分解过程中微生物多样性分析[D]. 福州: 福建农林大学, 2017. WANG Zhen. Analysis of Microbial Diversity During Litter Decomposition with Different Ratios in Acid Rain Regions[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. [56] 袁颖红. 模拟氮沉降对杉木人工林土壤微生物性状及有机碳库的影响[D]. 南京: 南京农业大学, 2013. YUAN Yinghong. Effect of Simulated Nitrogen Deposition on Soil Microbial Properties and Organic Carbon Pool in Chinese Fir Plantation[D]. Nanjing: Nanjing Agricultural University, 2013. [57] 李雪, 万晓华, 周富伟, 等. 南亚热带6种人工林土壤微生物生物量和群落结构特征[J]. 亚热带资源与环境学报, 2020, 15(1): 33 − 40. LI Xue, WAN Xiaohua, ZHOU Fuwei, et al. Characteristics of soil microbial biomass and community structure under six different tree species plantations southern subtropical of China [J]. J Subtrop Resour Environ, 2020, 15(1): 33 − 40. [58] 石丽娜, 林开敏, 陈梦瑶, 等. 近自然杉木林经营对土壤微生物量碳氮特征的影响[J]. 土壤通报, 2018, 49(1): 112 − 118. SHI Lina, LIN Kaimin, CHEN Mengyao, et al. Effect of near-natural management of Chinese fir plantation on characteristics of soil microbial biomass carbon and nitrogen [J]. Chin J Soil Sci, 2018, 49(1): 112 − 118. [59] 李延茂, 胡江春, 汪思龙, 等. 森林生态系统中土壤微生物的作用与应用[J]. 应用生态学报, 2004, 15(10): 1943 − 1946. LI Yanmao, HU Jiangchun, WANG Silong, et al. Function and application of soil microorganisms in forest ecosystem [J]. Chin J Appl Ecol, 2004, 15(10): 1943 − 1946. [60] 李红军, 周国英, 吴毅, 等. 杉木人工林化感作用研究综述[J]. 中南林业科技大学学报, 2013, 33(1): 31 − 34, 89. LI Hongjun, ZHOU Guoying, WU Yi, et al. Research advances on allelopathy of Cunninghamia lanceolata plantation [J]. J Cent South Univ For Technol, 2013, 33(1): 31 − 34, 89. [61] 严绍裕. 杉木连栽地土壤的细菌群落结构与其特性的关系研究[J]. 西南林业大学学报(自然科学), 2020, 40(3): 19 − 27. YAN Shaoyu. Analysis of the soil bacterial community structure and its relationship with soil properties in different successive rotation Cunninghamia lanceolata plantations [J]. J Southwest For Univ Nat Sci, 2020, 40(3): 19 − 27. [62] 吴则焰, 赵紫檀, 林文雄. 基于T-RFLP方法的连栽杉木根际土壤细菌群落变化研究[J]. 生态学报, 2019, 39(19): 7134 − 7143. WU Zeyan, ZHAO Zitan, LIN Wenxiong. Analysis of terminal restriction fragment length polymorphisms in soil bacterial communities in Chinese fir plantations that have undergone continuous cultivation [J]. Acta Ecol Sin, 2019, 39(19): 7134 − 7143. [63] 覃祚玉, 邓小军, 宋贤冲, 等. 广西杉木连栽幼林根际与非根际土壤特性研究[J]. 湖北林业科技, 2017, 46(2): 10 − 13, 88. QIN Zuoyu, DENG Xiaojun, SONG Xianchong, et al. Rhizosphere and non-rhizosphere soil properties analysis of Cunninghamia lanceolata plantations under different rotations of continuously planting in Guangxi [J]. Hubei For Sci Technol, 2017, 46(2): 10 − 13, 88. [64] WANG Chaoqun, LIN Xue, DONG Yuhong, et al. Responses of soil microbial community structure to stand densities of Chinese fir plantations [J]. J For Res, 2019, 24(3): 162 − 167. [65] 张勇强, 李智超, 厚凌宇, 等. 林分密度对杉木人工林下物种多样性和土壤养分的影响[J]. 土壤学报, 2020, 57(1): 239 − 250. ZHANG Yongqiang, LI Zhichao, HOU Lingyu, et al. Effects of stand density on understory species diversity and soil nutrients in Chinese fir plantation [J]. Acta Pedol Sin, 2020, 57(1): 239 − 250. [66] 佘宇晨, 陈彩虹, 丁思一, 等. 间伐和修枝对杉木人工林土壤微生物群落结构的影响[J]. 中南林业科技大学学报, 2016, 36(3): 23 − 27. SHE Yuchen, CHEN Caihong, DING Siyi, et al. Effects of pruning and thinning effects on soil microbial community structure of Chinese fir plantation [J]. J Cent South Univ For Technol, 2016, 36(3): 23 − 27. [67] 丁波, 丁贵杰, 赵熙州, 等. 间伐对杉木人工林土壤酶活性及微生物的影响[J]. 林业科学研究, 2017, 30(6): 1059 − 1065. DING Bo, DING Guijie, ZHAO Xizhou, et al. Impacts of thinning on soil enzymes activity and microorganisms in Cunninghamia lanceolata plantation [J]. For Res, 2017, 30(6): 1059 − 1065. [68] 胡海清, 罗斯生, 罗碧珍, 等. 林火干扰对广东省杉木林土壤有机碳及其组分的影响[J]. 北京林业大学学报, 2019, 41(12): 108 − 118. HU Haiqing, LUO Sisheng, LUO Bizhen, et al. Effects of forest fire disturbance on soil organic carbon and its components of Cunninghamia lanceolata forest in Guangdong Province, southern China [J]. J Beijing For Univ, 2019, 41(12): 108 − 118. [69] 费裕翀, 吴庆锥, 路锦, 等. 林下植被管理措施对杉木大径材林土壤细菌群落结构的影响[J]. 应用生态学报, 2020, 31(2): 407 − 416. FEI Yuchong, WU Qinzhui, LU Jin, et al. Effects of undergrowth vegetation management measures on the soil bacterial community structure of large diameter timber plantation of Cunninghamia lanceolata [J]. Chin J Appl Ecol, 2020, 31(2): 407 − 416. [70] 张冰杰. 经营措施对10年生杉木人工林根际土壤养分及微生物群落的影响[D]. 长沙: 中南林业科技大学, 2019. ZHANG Bingjie. Effects of Management Measures on Soil Nutrients and Microbial Communities in Rhizosphere Soil of 10-Year-old Chinese Fir Plantation[D]. Changsha: Central South University of Forestry Science and Technology, 2019. [71] DONG Wenyi, ZHANG Xinyu, LIU Xiyu, et al. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China [J]. Biogeosciences, 2015, 12(18): 5537 − 5546. [72] 沈芳芳, 徐晋, 陈官鹏. 长期氮沉降对杉木人工林土壤微生物生物量和群落组成的影响[J]. 南昌工程学院学报, 2019, 38(4): 29 − 35. SHEN Fangfang, XU Jin, CHEN Guanpeng. Responses of soil microbial biomass and microbial community composition to long-term nitrogen deposition in Chinese fir plantation [J]. J Nanchang Inst Technol, 2019, 38(4): 29 − 35. [73] 郝亚群, 谢麟, 陈岳民, 等. 中亚热带地区氮沉降对杉木幼林土壤细菌群落多样性及组成的影响[J]. 应用生态学报, 2018, 29(1): 53 − 58. HAO Yaqun, XIE Lin, CHEN Yuemin, et al. Effects of nitrogen deposition on diversity and composition of soil bacterial community in a subtropical Cunninghamia lanceolata plantation [J]. Chin J Appl Ecol, 2018, 29(1): 53 − 58. [74] 丁文沙, 魏志超, 孟李群, 等. 生物炭对杉木人工林土壤细菌多样性的影响[J]. 森林与环境学报, 2019, 39(6): 584 − 592. DING Wensha, WEI Zhichao, MENG Liqun, et al. Effects of biochar on soil bacterial diversity in Chinese fir plantations [J]. J For Environ, 2019, 39(6): 584 − 592. [75] 胡华英, 张虹, 曹升, 等. 杉木人工林土壤施用生物炭对细菌群落结构及多样性的影响[J]. 林业科学, 2019, 55(8): 184 − 193. HU Huaying, ZHANG Hong, CAO Sheng, et al. Effects of biochar application on soil bacterial community structure and diversity in Cunninghamia lanceolata plantations [J]. Sci Silv Sin, 2019, 55(8): 184 − 193. [76] 万晓华, 黄志群, 何宗明, 等. 改变碳输入对亚热带人工林土壤微生物生物量和群落组成的影响[J]. 生态学报, 2016, 36(12): 3582 − 3590. WAN Xiaohua, HUANG Zhiqun, HE Zongming, et al. Changes of above- and belowground carbon input affected soil microbial biomass and community composition in two tree species plantations in subtropical China [J]. Acta Ecol Sin, 2016, 36(12): 3582 − 3590. [77] 雷海迪, 尹云锋, 刘岩, 等. 杉木凋落物及其生物炭对土壤微生物群落结构的影响[J]. 土壤学报, 2016, 53(3): 790 − 799. LEI Haidi, YIN Yunfeng, LIU Yan, et al. Effects of fir (Cunninghamia lanceolata) litter and its biochar on soil microbial community structure [J]. Acta Pedol Sin, 2016, 53(3): 790 − 799. [78] 费裕翀, 路锦, 刘丽, 等. 铝胁迫对不同林分土壤中杉木幼苗根际土壤酶活性和微生物的影响[J]. 东北林业大学学报, 2020, 48(1): 74 − 79. FEI Yuchong, LU Jin, LIU Li, et al. Effects of Al stress on enzyme activity and microorganism in rhizosphere soil of Cunninghamia lanceolata in different stand soil [J]. J Northeast For Univ, 2020, 48(1): 74 − 79. [79] 郭育红. 铝胁迫对不同类型杉木人工林土壤微生态的影响[D]. 福州: 福建农林大学, 2010. GUO Yuhong. Study on the Effect of Al Stress on the Soil Microbial Ecosystem of Chinese Fir Forest[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200598
计量
- 文章访问数: 1218
- HTML全文浏览量: 235
- PDF下载量: 225
- 被引次数: 0