-
1964年Shinozaki等[1-2]在研究各种植物群落的生产结构图时,首次发现在某一高度之上的累计叶量与该高度的非同化组织密度之间具有明显的线性关系,从而提出单位管道模型(unit pipe model)。该模型把树木以及整个群落视为一个均一的单位管道的集合,管道将叶子和根连接起来,管道既起到机械支撑的作用,又有输导水分的作用,认为树干内单位管道支持着单位数量的叶片。管道模型假说提出至今,在解释树木形态[3-4]、资源分配[5]、森林生产力评估[6]以及通过木质部横截面积预测茎段末端叶面积和干物质量[7-9]等方面发挥了重要的作用。这些研究都说明了这个假说的合理性。然而,通过管道理论研究单株林木的水分运输效率及其调控机制的研究鲜有报道。水力结构理论形成于20世纪70年代[10],它是指植物在特定的环境条件下,为适应生存竞争的需要所形成的不同的形态结构和水分运输供给策略。通常用导水率(Kh),比导率(Ks),叶比导率(Kl)和胡伯尔值(Hv)等参数来描述。本研究拟通过对刺槐Robinia pseudoacacia 不同生长时期水力结构参数的测定探讨管道理论及其适用性。
The pipe model theory based on the hydraulic architecture parameter with Robinia pseudoacacia seedlings
-
摘要: 为了解刺槐Robinia pseudoacacia苗木对体内水分运输过程的调控机制,基于水力结构理论,在充分供水条件下,利用改良的"冲洗法"对2年生刺槐苗木的水力结构参数进行测定,并探讨了管道理论的合理性和适用范围。结果表明:在充分供水条件下,刺槐苗木茎段导水率、比导率、叶比导率和胡伯尔值均随被测茎段直径的增加而增大;苗木不同生长阶段,其导水率、比导率和叶比导率差异显著(P<0.05),且均为生长旺期>生长初期>生长末期,胡伯尔值为生长初期最大,生长旺期和生长末期差异不显著(P>0.05)。由此可推断,①在水分胁迫条件下,苗木更倾向于保护那些较粗茎段;②苗木水力结构特征与提体内生理活动呈正相关关系;③管道模型假说虽然有其存在的合理性,但也有其局限性和适用性,在对于水分在林木体内的运输过程以及调控机制的解释,管道模型假说过于简单化了。Abstract: To better understand the pipe model theory and hydraulic architecture characteristics of Robinia pseudoacacia seedlings in different growth stages (early, fast, and last), the improved flushing method was used to measure the hydraulic architecture parameters of two-year-old R.pseudoacacia seedlings with an adequate water supply for three growth stages (early, fast, and last) and there are 20 repeats in every growth stages.Significance tests were done between hydraulic architecture parameters and stem segment diameter and different growth stages by ANOVA.Then the pipe theory was discussed based on hydraulic architecture theory.Results showed that with sufficient water, the hydraulic conductivity (Kh), stem area specific hydraulic conductivity (Ks), leaf specific conductivity (Kl), and Huber value (Hv) of R.pseudoacacia seedlings increased (P<0.05) as the stem segment diameter enlarged.For the three seedling growth stages, Kh, Ks, and Kl were significantly different (P<0.05) with early growth stage> fast growth stage> last growth stage.Hv was greatest (P>0.05) in the early growth stage with no significant differences in fast and last growth stages.Thus, (1) with sufficient water, water transportation efficiency of thicker stems is greater than the thinner stems; (2) hydraulic architecture characteristics of seedlings were different (P<0.05) in three growth stages; and (3) the pipe model theory was not perfect, especially for understanding the inner water transportation processes of a tree and their control mechanism.
-
[1] SHINOZAKI K, YODA K, HOZUMI K, et al.A quantitative analysis of plant form the pipe model theory(Ⅰ):basic analysis[J].Jpn J Ecol, 1964, 14(3):97-105. [2] SHINOZAKI K, YODA K, HOZUMI K, et al.A quantitative analysis of plant form the pipe model theory(Ⅱ):further evidence of the theory and its application in forest ecology[J].Jpn J Ecol, 1964, 14(4):133-139. [3] 刘盛,李国伟.基于管道模型理论的树形结构分析[J].东北林业大学学报, 2006,34(6):15-16. LIU Sheng, LI Guowei.Tree structure based on pipe model theory[J].J Northeast For Univ, 2006, 34(6):15-16. [4] 殷晖,关文彬.基于树体管道模型的林冠结构对降水截留的影响[J].科技通报,2012,28(5):89-93,98. YIN Hui, GUAN Wenbin.The effect of rainfall interception by canopy structure based on pipe model[J].Bull Sci Technol, 2012, 28(5):89-93, 98. [5] 刘盛,刘成,张士民.基于管道模型的榆树水分年轮输导模式研究[J].北华大学学报:自然科学版,2002,3(5):438-440. LIU Sheng, LIU Cheng, ZHANG Shimin.On the water transportation along Ulmus pumila L.growth ring based on the pipe model theory[J].J Beihua Univ Nat Sci, 2002, 3(5):438-440. [6] 彭孝飞,王百田,迟璐,等.油松林木地上部分生物量研究[J].广东农业科学,2012,39(1):42-45. PENG Xiaofei, WANG Baitian, CHI Lu, et al.Research on the aboveground biomass of Pinus tabulaeformis[J].Guangdong Agric Sci, 2012, 39(1):42-45. [7] CHIBA Y.Architectural analysis of relationship between biomass and basal area based on pipe model theory[J].Ecol Model, 1998, 108(1):219-225. [8] 刘盛,刘成.长白落叶松水分输导模式及叶生物量估测方法[J].东北林业大学学报, 2005,33(5):35-37. LIU Sheng, LIU Cheng.The model of water transportation and the estimation methods of leave biomass for Larix olgensis[J].J Northeast For Univ, 2005, 33(5):35-37. [9] 杨洪国,李治宇.应用管道模型原理建立柏木桤木叶面积叶量估测模型[J].四川林勘设计,2012,106(1):35-37. YANG Hongguo, LI Zhiyu.Estimation models for leaf area and amount of cedar wood and alder based on the pipeline model[J].Sichuan For Expl Des, 2012, 106(1):35-37. [10] ZIMMERMANN M H.Hydraulic architecture of some diffuse-porous trees[J].Can J Bot, 1978, 56(18):2286-2295. [11] SPERRY J S,DONNELLY J R, TYREE M T.A method for measuring hydraulic conductivity and embolism in xylem[J].Plant Cell&Environ, 1988, 11(1):35-40. [12] ZOTZ G, TYREE M T, PATINO S.Hydraulic architecture and water relations of a flood-tolerant tropical tree, Annona glabra[J].Tree Physiol, 1997, 17(6):359-365. [13] TYREE M T, EWERS F W.The hydraulic architecture of tree and other woody plants[J].New Phytol, 1991, 119(3):345-360. [14] 孙青,郭锐,沈繁宜,等.木本植物木质部栓塞修复机制的探讨[J].北京林业大学学报,2007,29(5):94-98. SUN Qing, GUO Rui, SHEN Fanyi, et al.Discussion on the embolism repairing in xylem of woody plants[J].J Beijing For Univ, 2007, 29(5):94-98. [15] KLEIN T, COHEN S, YAKIR D, et al.Hydraulic adjustments underlying drought resistance of Pinus halepensis[J].Tree Physiol, 2011, 31(6):637-648. [16] ROSSI L,SEBASTIANI L,TOGNETTI R, et al.Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability[J].Plant Soil, 2013,372(11):567-579. [17] 樊大勇,谢宗强.木质部导管空穴化研究中的几个热点问题[J].植物生态学报,2004,28(1):126-132. FAN Dayong, XIE Zongqiang.Several controversial viewpoints in studying the cavitation of xylem vessels[J].China J Plant Ecol, 2004, 28(1):126-132. [18] 王丁,姚健,薛建辉.土壤干旱胁迫对樟树Cinnamomum camphora (L.) Presl苗木水力结构特征的影响[J].生态学报,2009,29(5):2725-2731. WANG Ding, YAO Jian, XUE Jianhui.Effects of soil drought stress on hydraulic architecture characteristics of camphor seedlings[J].Acta Ecol Sin, 2009, 29(5):2725-2731. [19] 翟洪波,李吉跃,姜金璞,等.油松、侧柏苗木水力结构特征的对比研究[J].生态学报,2002,22(11):1890-1895. ZHAI Hongbo, LI Jiyue, JIANG Jinpu, et al.Comparative study on hydraulic architecture characteristic of Pinus tabulaeformis and Platycladus orientalis seedlings[J].Acta Ecol Sin, 2002, 22(11):1890-1895. [20] 刘晓燕,李吉跃,翟洪波.从树木水力结构特征探讨植物耐旱性[J].北京林业大学学报,2003,25(3):48-54. LIU Xiaoyan, LI Jiyue, ZHAI Hongbo, et al.Discussion on drought resistance through hydraulic architecture of trees[J].J Beijing For Univ, 2003, 25(3):48-54. [21] 李晶,高玉葆,郑志荣,等.内蒙古高原不同生境3种锦鸡儿属植物的水力结构特征及其对环境因子的响应[J].生态学报,2007,27(3):837-845. LI Jing, GAO Yubao, ZHENG Zhirong, et al.The hydraulic architecture of three Caragana species and its relationship with environmental factors in different habitats of the Inner Mongolia Plateau[J].Acta Ecol Sin, 2007, 27(3):837-845. [22] YANG Qiliang, ZHANG Fuang, LI Fusheng, et al.Hydraulic conductivity and water-use efficiency of young pear tree under alternate drip irrigation[J].Agric Water Manage, 2013, 119(3):80-88. [23] 魏亚冉,张侦珍,李清芳,等.珍珠梅和榆叶梅水力结构特征比较研究[J].天津师范大学学报:自然科学版,2011,31(1):71-74. WEI Yaran, ZHANG Zhenzhen, LI Qingfang, et al.Comparative study on hydraulic architecture parameters of Sorbaria sorbifolia A.Br and Prunus triloba Lindl.[J].J Tianjin Norm Univ Nat Sci Ed, 2011, 31(1):71-74. [24] IOGNA P A, BUCCI S J, SCHOLZ F G, et al.Water relations and hydraulic architecture of two patagonian steppe shrubs:effect of slope orientation and microclimate[J].J Arid Environ, 2011, 75(9):763-772. [25] 刘娟娟,李吉跃,张建国.干旱胁迫对油松和侧柏水分运输安全性和有效性的影响[J].生态学报,2010,30(9):2507-2514. LIU Juanjuan, LI Jiyue,ZHANG Jianguo.Influences of drought stress on hydraulic safety and efficiency in the saplings of Pinus tabulaeformis and Platycladus orientalis[J].Acta Ecol Sin, 2010, 30(9):2507-2514. [26] ZHAI Hongbo, LI Jiyue, NIE Lishui.Discussion on pipe model through hydraulic architecture of Pinus tabulaeformis seedling[J].Chin For Sci Technol, 2004, 3(1):53-58. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.03.024