-
植物体细胞胚胎(体胚)发生是指已分化的体细胞不经过性细胞融合,经历类似合子胚发育的途径直接形成植株的过程[1],是除合子胚发育途径之外另一种获得完整植株的重要手段,也是植物细胞全能性的一种体现。自首次在胡萝卜Daucus carota中发现体胚发生现象以来,人们在大量不同植物的组织培养、单细胞悬浮培养、原生质体培养和花粉培养的过程中都观察到或实现了体胚发生[2-3]。因具有相对的遗传稳定性、可重复性和高效性等优点,体胚发生已经成为了重要的生物技术工具,在种质资源保存、优质种苗生产、人工种子、分子及细胞工程育种和基础研究等方面都有着广泛的应用。
植物体胚发生是一个涉及生长素、细胞分裂素等激素信号和复杂基因调控网络的过程。近年来的研究表明:一些关键的转录因子是体胚发生的主要介导者,其在生长素和细胞分裂素等激素信号刺激下启动和调控下游基因的表达,从而启动体胎发生,调控体胚发育[2]。此外,基因组的表观修饰也被认为是影响植物体胚发生的重要因素,DNA甲基化、组蛋白去乙酰化等表观修饰都是植物体胚发生调控途径的重要组成部分[4-6]。随着研究的深入,一些体胚发生的关键基因(如Baby Boom、Wuschel等)也被用于提高体胚发生的频率和转基因效率,已在玉米Zea mays等较难转化的植物中获得了成功[7-8]。本研究将对体胚发生的途径、体胚发生关键基因及其调控机制、表观遗传修饰对体胚发生的调控及体胚发生关键基因的利用等进行综述,以期为后续的研究和技术开发提供科学依据。
-
体胚发生的过程极其复杂,从体细胞向胚性细胞转变是体胚发生的前提,也是其中最关键的一步。这个过程需经过脱分化,激活细胞分裂周期和重新组织生理、代谢与基因表达等多个步骤。外植体经过诱导产生体胚的途径主要有2种,即间接体胚发生和直接体胚发生。
间接体胚发生是最常见的途径,即在离体条件下细胞经过愈伤组织诱导再分化形成体细胞胚。间接体胚发生需要经过3个阶段:第1阶段是愈伤组织的形成,愈伤组织是一种看似无组织的原始空泡细胞团,由活的薄壁细胞组成,表现不同程度的紧实度和致密性;第2阶段是愈伤组织的胚性化,胚性的愈伤组织由周细胞和非周细胞共同发育而来[9-10],其质地一般较为坚实,颜色呈乳白色或黄色,表面具球形颗粒,由直径细胞组成,细胞较小,无液泡,且常富含淀粉粒;第3阶段是体细胞胚的形成,胚性愈伤组织形成之后,在愈伤组织的表面或内部产生原胚团,单个细胞或细胞团再从中发育成胚[11]。在以幼胚、胚或子叶为外植体时,通常可以直接诱导胚性愈伤组织产生,进而产生体细胞胚。因此,就经过愈伤组织的间接体胚发生而言,胚性愈伤组织的形成是体胚发生的关键。
直接体胚发生,即从培养中的器官、组织、细胞或原生质体直接分化成胚,不经过愈伤组织阶段。这种途径中,外植体增殖较少,且致密细胞分裂更规则[2]。单个或多个细胞层中的单个或多个细胞无须进一步处理即可分裂并膨大,形成形态可识别的胚胎[1]。直接体胚发生主要可分为2个阶段:第1阶段为诱导期,在此阶段,细胞进入分裂状态;第2阶段为胚胎发育期,前一阶段形成的瘤状物继续发育,经过球形胚、心形胚等发育过程,最终形成体细胞胚。下胚轴、子叶、茎表皮等外植体体细胞脱分化后,由表皮细胞或亚表皮细胞经过不等分裂,产生1个胚细胞和1个胚柄细胞,后者发育类似胚柄,前者进一步分裂,由原胚发育为成熟胚。
直接途径和间接途径产生的体胚在形态学上相似,但由于间接途径的组织培养时间较长,产生的体胚更容易发生基因组水平上的变化(体细胞变异)[12]。体胚也可以用来诱导新一轮的胚胎发生,称为次生或重复体胚发生[13]。次生胚可以直接从原胚诱导,也可以在胚性愈伤组织形成后间接诱导。另外,体胚发生经历直接途径或间接途径往往取决于外植体的年龄:外植体离合子胚胎阶段越远,就需要越多的重编程过程将外植体重新转化为体胚[14]。尽管从发育成熟或较老的组织和器官中诱导获得体胚通常比较困难,但无论组织的年龄如何,它们都可以通过直接途径或间接途径产生体胚[9, 15]。因此,在确定体胚发生是通过直接途径还是间接途径时,细胞或组织与培养环境相结合的发育背景会比其距离胚胎阶段的时间更为重要。
-
SERK基因是在研究胡萝卜体细胞向胚性细胞转变的过程中被发现的。SCHMIDT等[16]从胡萝卜下胚轴悬浮培养的胚性细胞中分离出了第1个SERK基因(即DcSERK),其只在胚性细胞内表达且只表达到体胚发育的球形期,而在非胚性细胞及球形期后的体胚中均不表达。随后在许多其他植物的研究中也鉴定到了不同的SERK同源基因,如椰子Cocos nucifera (CnSERK)、柑橘Citrus reticulata (CrSERK1)、鸭茅Dactylis glomerata (DgSERK)、蒺藜苜蓿Medicago truncatula (MtSERK)、水稻Oryza sativa (OsSERK)、小麦Triticum aestivum (TaSERK)和葡萄Vitis vinifera (VvSERK)等[17]。在拟南芥Arabidopsis thaliana中过量表达SERK基因,能使体细胞胚胎发生的能力增加3~4倍,表明它能够促进植物体胚的发生[18]。进一步研究发现:当SERK在细胞表面过表达时,可以通过识别分子信号介导其蛋白LRR区与胞外蛋白结合,这种结合能诱导细胞内部的信号级联放大(如油菜素甾醇信号通路)[19]。这些信号可以识别不同的靶点,并通过染色质重塑增强体胚发生早期基因的表达(例如Leafy Cotyledon和Baby Boom),进而诱导细胞或组织向胚胎发生转变[18-19]。因此,SERK可能是体胚发生过程中促使体细胞向胚性细胞转变的关键。
-
LEC属于nuclear factor Y(NF-Y)转录因子家族,也是涉及许多功能的B3结构域蛋白大家族的成员,诸如LEC1、LEC2和FUSCA3(FUS3)等LEC基因都被认为是调节植物胚胎发生的转录因子[20]。LEC基因(LEC1和LEC2)最先在拟南芥中发现,lec突变体具有胚胎发育不正常、缺少胚胎特异性蛋白、胚胎提早萌发等特征,表明LEC基因对于维持植物胚胎特性具有重要的功能[21-22]。与其他调控因子只在胚胎发育特定阶段起作用不同,LEC基因在早期的胚胎形态发生阶段及后期的胚胎成熟阶段都起着重要的作用。在胚胎发育早期,LEC基因决定胚柄细胞命运,控制子叶特性,对维持体胚发生和促进球形胚的产生也具有重要作用;而在后期的胚胎成熟阶段,LEC基因的表达与种子成熟过程相关,包括储藏物质的积累和胚抗脱水性的获得等[23]。
研究发现:LEC2基因的过表达会表现出异常发育的现象,如异位愈伤组织的产生等,但无法进一步分化为体胚[24],这表明LEC2基因可能提供了实现体胚发生所需的条件,但仅在体胚发生的诱导阶段起着重要作用[25-26]。而LEC1基因在转基因植物中的异位表达会诱导体细胞胚样结构的形成[27],并在拟南芥体胚发生的整个过程中表现出差异表达模式。这表明LEC1基因可能参与了体胚的分化和发育,而不是体胚的诱导[28]。FUS3和LEC2有43%的同源性,均为VP1/ABI3-like B3家族转录因子[29]。FUS3基因在顶端分生组织中的特异表达,可以促使转基因植物顶端分生组织产生体胚[30]。
-
BBM是AP2/ERF转录因子家族AINTEGUMENTA-LIKE(AIL)进化枝的成员。最初是在利用甘蓝型油菜Brassica napus未成熟花粉诱导单倍体胚胎时,发现的1个花粉体胚发生调节基因(BnBBM),在甘蓝型油菜和拟南芥中异位表达时可诱导体胚的发生,该基因被认为在体胚发生过程中能促进细胞分裂和形态发生[31]。后续研究表明:BBM基因是植物细胞全能性的关键调控因子,在没有外源植物生长调节剂或胁迫的情况下也能诱导体细胞胚的形成[8]。比如BnBBM的异位表达可以在无需施加植物生长调节剂的条件下诱导拟南芥幼苗叶片和子叶上的体胚发生[31]。利用BnBBM基因还可促进毛白杨Populus tomentosa愈伤组织形成体胚[32],而在再生困难的辣椒Capsicum annuum中异源表达BnBBM基因能有效克服辣椒遗传转化过程中再生及转化困难的瓶颈问题[33]。BBM基因过表达还可以诱导其他类型的再生,包括愈伤组织、不定芽和根的形成,它的这种特性已被用于改善作物和模式植物的遗传转化效率[32, 34-35]。
-
WUS基因编码1个同源盒转录因子,它具有1个高度保守的同源盒结构域和保守的C末端区(包含3个功能性结构域:1个酸性结构域、1个WUS-box和1个EAR-like元件)[36]。WUS基因的1个重要特征是它具有可移动性,它会从其生物合成的位置(干细胞龛中央区)移动到周边区的子细胞中,并在周边区激活1个负调控因子CLAVATA3(CVL3)的转录[37]。CLV3移动到胞外与CLV1结合,反过来抑制WUS的转录,这种WUS-CLV反馈系统维持了干细胞库的稳定和顶端分生组织的发育[38-39]。因此,WUS基因被认为是体胚发生和芽再生过程中所必需的[39-40]。
与LEC2类似,WUS基因会对生长素作出响应,生长素能促发1个调控营养组织向胚性组织转变的信号级联途径,而这种转变是受WUS基因调控的[41]。大量研究表明:在蒺藜苜蓿、陆地棉Gossypium hirsutum和中粒咖啡Coffea canephora等不同植物体胚发生过程中,WUS同源基因的表达都会明显上调[42-45]。WUS基因在拟南芥中的过表达可以诱导体胚发生以及芽和根尖的器官发生[46]。拟南芥WUS基因经过雌二醇诱导,在中粒咖啡中异源表达,能够诱导愈伤组织的产生,并促进中粒咖啡体胚的循环发生[42],而在陆地棉中则可通过启动生长素运输和信号转导途径提高胚性愈伤组织的分化效率[45]。
-
近年来,大量的染色质免疫共沉淀和基因表达研究表明:植物体胚发生存在复杂的转录调控网络和信号转导途径(尤其是生长素途径),不同的转录因子之间存在转录交互(cross-talk)调控[2]。
BRAYBROOK等[47]以过表达LEC2的拟南芥幼苗为材料,利用基因芯片分析确定了LEC2的靶基因,其中包括生长素途径基因和AGAMOUS-LIKE 15(AGL15)转录因子。LEC2能够激活生长素生物合成途径中的关键酶TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1)以及YUCCA2和YUCCA4 (YUC)的表达。而LEC2过量表达可以补偿不足量2,4-二氯苯氧乙酸(2,4-D)或效率较低的生长素[如吲哚乙酸(IAA)或萘乙酸(NAA)]在体胚诱导中的作用[48]。反之,在正常的2,4-D含量下,LEC2的异位过表达不利于体胚的发生,往往会产生愈伤组织而非体胚[26, 48]。LEC2与AGL15间存在转录交互调控作用,即LEC2能够上调AGL15的表达,AGL15也可以上调LEC2的表达。AGL15的过量表达会促进未成熟胚的体胚形成,但不会诱导种子苗自发的体胚发生,这表明AGL15只是增强了胚性组织的体胚发生能力[49]。值得注意的是,LEC2和AGL15均能激活INDOLE-3-ACETIC ACID INDUCIBLE 30 (IAA30)的表达,该基因编码一种非典型的Aux/IAA蛋白质,且AGL15促进的体胚发生在iaa30突变体中明显受到削弱[47, 50]。这暗示LEC2和AGL15可能共同通过生长素途径调控体胚发生,但目前AGL15和IAA30在LEC2诱导的体胚发生中作用尚不明确。
通过染色质免疫沉淀,在经2,4-D和BBM诱导的体胚中都鉴定出了BBM的下游靶基因,发现BBM能够结合LAFL (LEC1-ABI3-FUS3-LEC2)和AGL15基因的启动子区域[2]。在lec1和fus3突变体中,BBM不能诱导体胚的发生,而在lec2和agl15突变体中,BBM诱导的体胚明显减少,说明BBM调控的LAFL/AGL15表达是BBM途径关键的下游路径[2]。反过来BBM的表达也受到LAFL蛋白质的调节:BBM的表达量在lafl突变体种子中降低,说明LAFL转录因子正向调节BBM的表达[2]。这些发现表明:BBM和LAFL基因间也存在转录交互调控作用,是生长素信号通路的一部分。
WOUND INDUCED DEDIFFERENTIATION1(WIND1)是AP2/ERF转录因子家族的另一成员,其过表达也能诱导体胚发生[51]。WIND1及其同源基因WIND2~4由伤口诱导,并在组织损伤后刺激愈伤组织增殖[52]。与BBM/LAFL蛋白不同,WUS和WOUND INDUCED DEDIFFERENTIATION1 (WIND1)蛋白通过细胞分裂素信号通路调控体胚发生。WUS通过抑制A型ARR基因来控制茎分生组织的生长,该基因是细胞分裂素应答的负调节因子[53],而WIND1通过B型ARR基因刺激愈伤组织的形成,该基因是细胞分裂素应答的正调节因子。WUS和WIND1也与LEC途径相互作用。比起单独激活WIND1或LEC2,按顺序激活WIND1和LEC2在外植体中能诱导更多的胚性愈伤组织[54]。WIND1的过表达增加了外植体中胚性细胞的数量,这些细胞对LEC2作出响应后就形成体胚[54]。反之,WUS被诱导表达后会降低其诱导的体胚组织中LEC1的表达水平,这表明WUS抑制了LEC途径[41]。综上所述,在植物体胚发生过程中,LEC、BBM和WUS等重要的转录因子构成了1个复杂的转录调控网络。
-
表观遗传调控也是植物体胚发生的关键因素。近年来,DNA甲基化、组蛋白去乙酰化/甲基化等重要的表观遗传机制均已被证实可以控制植物体胚发生的过程[55-56]。
-
DNA甲基化是涉及生物学过程的重要表观遗传机制,它是表观基因组调节和维持基因表达程序的关键因素[57]。DNA甲基化对体胚发育具有重要作用。通常,非胚性组织的基因组甲基化水平更高,而胚性组织的基因组甲基化水平则较低[58-60]。在白橡Quercus alba中,体胚诱导时基因组DNA会被去甲基化,但随着胚胎发育,甲基化水平逐渐提高[61]。在进行中粒咖啡体胚诱导时,原胚组织的DNA甲基化水平较低,而随着体胚的成熟,甲基化水平逐渐升高[62]。在拟南芥中研究发现:DNA甲基化及其维持对体胚发生的调控是必需的[63],类似的结果在挪威云杉Picea abies中也有发现[64]。
DNA甲基化也可通过引起特定基因的沉默,从而在体胚发生中发挥重要作用。如LEC1基因的启动子区域在体胚发生开始之前发生低甲基化,随后在胚胎成熟及营养生长期中甲基化水平增加;利用RNA导向的DNA甲基化对LEC1基因的启动子区域进行超甲基化会下调其转录,表明LEC1基因的转录受其启动子的甲基化调节[65]。此外,还发现甲基化抑制剂5-azacitidine的应用可抑制或阻断胡萝卜培养物中的体细胞胚发生[66],而药物5-aza-2′脱氧胞苷可以通过抑制甲基转移酶1的活性来促进体胚发生,并且它还增加了体胚发生的关键调控因子STM的转录。这些证据表明:基因组DNA的甲基化水平和特定基因区域的DNA甲基化修饰与体胚发生有直接的联系。
-
组蛋白甲基化是由组蛋白甲基化转移酶完成的。组蛋白甲基化转移酶在决定细胞命运中的重要性首先在动物上得到了证实,研究发现Polycomb抑制复合体2 (PRC2)成员进行组蛋白H3K27me3标记,是干细胞多能性所必需的[67]。在拟南芥中,PRC2基因CURLY LEAF (CLF)和SWINGER (SWN)或VERNALIZATION 2 (VRN2)和EMBRYONIC FLOWER 2 (EMF2)双突变体在茎尖上形成愈伤组织,最终会引起间接的体胚发生和异位根[68]。CLF还抑制成熟胚胎中的大量基因,包括AGL15、FUS3、ABI3、AIL5和AIL6/PLT3等与体胚发生相关的转录因子[69]。IKEUCHI等[70]也发现:PRC2突变体的根毛无法维持其已分化的状态,反而会形成无组织的细胞团,并且最终通过愈伤组织形成体胚,其部分原因是由于PRC2基因的突变导致其靶基因WIND3和LEC2的表达抑制被解除,进而诱导根毛细胞脱分化。这些研究说明:PRC2通过组蛋白甲基化抑制相关基因的表达来促进细胞分化的过程,反之则会引起细胞的脱分化,进而诱导体胚的发生。
-
组蛋白H3和H4的乙酰化对基因表达有正向的调控作用,组蛋白乙酰化的水平和位置受到组蛋白乙酰转移酶(HATs)和组蛋白去乙酰化酶(HDACs)的严格控制。组蛋白去乙酰化也是与体胚发生密切相关的表观遗传修饰。TANAKA等[71]提供了组蛋白去乙酰化在体胚发生过程中起主要作用的第1个证据。他们研究表明:HDAC抑制剂曲古抑菌素A(TSA)能使拟南芥种子苗的萌发生长停滞,并诱导胚胎标记基因LEC1、FUS3和ABI3的表达上调,导致胚胎不能完成向幼苗生长的过渡。类似现象在2个HDACs-hda6/hda19双突变体中也可以观察到,且该双突变体能在拟南芥叶片上产生体胚结构[71]。后续的研究进一步揭示了这2个HDACs抑制胚胎基因表达的机制。其中,HDA19会特异性地结合VAL2[72],HDA6则特异性结合VAL1[73],VAL1和VAL2又会与转录中介复合体(mediator complex)的抑制性亚基CDK8结合,进而招募这2个HDACs和抑制形态的转录中介复合体抑制LAFL基因的表达[73]。
组蛋白去乙酰化促进体胚发生的作用在其他植物的体胚诱导实验中也获得了证实。萌动的云杉Picea asperata体胚经TSA处理后会维持其体胚的状态,而不会转化为幼苗[74]。在小麦中,TSA和丁酸钠(另一种HDACs抑制剂)的处理可以增加胚性愈伤的诱导率和芽的分化率,但TSA有广谱的效果,丁酸钠对不同基因型的效果有差异[6, 75]。TSA处理还可显著提高热胁迫后的甘蓝型油菜小孢子单倍体体胚发生的效率,表明热激处理和组蛋白去乙酰化可能共同作用于体胚发生调控因子的上游,从而启动体胚发生的程序[76]。与H3K27me3类似,组蛋白乙酰化水平和HDACs的活性在激素诱导的间接体胚发生中会发生变化[77-78],暗示在间接体胚发生的早期阶段,组蛋白去乙酰化作用可能参与了体细胞的重编程。这些研究表明:在植物中组蛋白去乙酰化是调控体胚发生的保守途径。
-
目前,植物的高效遗传转化仍然是一个巨大挑战,其主要原因是转基因细胞往往难以发育成完整的植株。虽然,通过组培方法、农杆菌侵染等条件的优化,水稻、拟南芥、杨树Populus等少数植物的遗传转化获得了成功,但仍存在基因型依赖严重、转化效率低等问题。随着体胚发生机制研究的深入,一些关键的体胚发生调控基因被逐渐用于提高植物遗传转化和再生的效率[79]。
BBM和WUS是2个最常用于植物遗传转化的体胚发生关键基因。例如,甜椒Capsicum frutescens是具有重要营养和经济价值的蔬菜,但也是公认的难以转化的顽拗材料。HEIDMANN等[35]研究发现:在甜椒中瞬时表达BnBBM基因可以高效地诱导细胞再生,并产生大量可发育成植株的体胚,认为利用该基因可以为难转化的植物开发一种有效的遗传转化和再生的体系。在玉米中,ZmBBM和ZmWUS2基因共转化未成熟胚时,转基因愈伤的比例显著提升,且在多个难转化的玉米近交系中均有明显效果[80]。此外,ZmBBM和ZmWUS2的共转化还可以在高粱Sorghum bicolor、甘蔗Saccharum officinarum和水稻中提高转化效率[80]。因此,BBM和WUS被认为是单子叶作物基因工程中具有重要潜在利用价值的关键基因[79]。而在双子叶植物中,MAHER等[81]将WUS2和ipt或WUS2和STM共转化烟草Nicotiana tabacum无菌种子苗,在烟草叶片上实现了芽的原位诱导,避免了繁琐的组培过程;且利用该策略,成功地对PDS基因进行了基因编辑,获得了基因编辑的后代。针对栽培的烟草植株,MAHER等[81]通过注射携带WUS2和ipt或WUS2和STM基因的农杆菌在伤口处直接诱导了芽的形成,并且也可以实现对PDS基因的编辑获得后代。该方法在番茄Solanum lycopersicum、葡萄中也获得了成功试验,证明了WUS等基因在双子叶植物基因工程中的应用潜力。
-
体胚发生是体现植物细胞全能性的一种重要形式,一直是植物学研究的热点。对于植物体胚发生的研究,从最初的激素含量和组合方式等诱导条件的优化,到在多种植物中鉴定和表征了许多参与体胚发生的基因,并通过操纵关键基因的表达来启动及调控体胚的发生发育,再到全面研究体胚发生的通路和基因调控网络,观察再生过程中的动态表观遗传变化,标志着对体胚发生规律的认识一直在不断深入和完善。
细胞和分子生物学的进步以及各种新技术的出现,为进一步研究植物体胚发生过程涉及的更深层次细胞和分子生物学机制提供了条件和机遇。深入探究体胚发生过程中激素信号与基因表达之间,以及调控基因间复杂的网络关系,解析体胚发生的分子机制及信号途径,将为阐明体胚发生的内在规律提供更多的证据。表观遗传修饰在体胚发生调控中的重要性已得到证实,但表观遗传修饰如何参与体胚发生,在体胚发生过程中如何维持和建立DNA甲基化,以及基因不同区域的甲基化如何参与植物体胚发生中的基因转录调控等问题仍没有答案,需深入的研究来解开表观遗传修饰调控体胚发生的谜团。
此外,将关键基因的表达与遗传转化技术有机结合起来,在更多的植物中实现体胚发生,进而提高植物的再生能力和遗传转化的效率,可为更多植物实现基因编辑等高效和精细的遗传操作提供新的途径,这对加快优良品种的繁育和分子育种平台的建立,促进转基因植物的产业化开发都具有十分重要的意义。
Research progress in plant somatic embryogenesis and its molecular regulation mechanism
-
摘要: 植物的每个细胞都包含着该物种的全部遗传信息,具备发育成完整植株的遗传能力,这被称为植物细胞的全能性。体细胞胚胎(体胚)发生是指在没有受精的情况下,由体细胞或营养细胞发育成胚胎,是诱导植物细胞全能性的一种形式。体胚发生在种质资源保存、种苗生产、分子育种和植物基础研究等方面都有着广泛的应用,已成为重要的植物生物技术工具和研究平台。多年来的分子遗传学研究表明:体胚发生受到由众多转录因子、激素信号途径及表观遗传修饰等构成的复杂网络的调控。本研究概述了植物体胚发生的途径,并重点综述了体胚发生关键基因的功能与调控机制、体胚发生的表观遗传修饰以及体胚发生关键基因在基因工程中的应用。随着研究的深入和新技术的出现,体胚发生过程中涉及的代谢组分动态变化、转录调控、激素信号转导与表观遗传调控等复杂生物学过程有望得到更深入地阐释,将更进一步地解析植物体胚发生的分子调控机制。此外,利用体胚发生关键基因的功能与调控机制,开发更高效的体胚诱导和遗传转化方法,有望为更多植物的基因功能研究和遗传改良提供新的思路和技术。参81Abstract: Each plant cell harboring all the genetic information of the species has the genetic potential to develop into a whole plant, which is termed plant cell totipotency. Somatic embryogenesis is a form of induced plant cell totipotency, by means of which embryos develop from somatic or vegetative cells in the absence of fertilization. Somatic embryogenesis, an increasingly important tool of plant biotechnology, has been widely applied in germplasm reservation, seedling propagation, molecular breeding and basic research of many plants and it has been implied in previous studies on molecular genetics that somatic embryogenesis is subject to the regulation by a complex network composed of transcription factors, hormone signaling pathways and epigenetic modifications. Therefore, this review, with a summary of the development routes of plant somatic embryogenesis, is aimed to give a comprehensice overview of the research progress achieved in the functions of key genes and epigenetic modification in the process of somatic embryogenesis along with an introduction to the applications of several key genes in genetic engineering. The development of new technologies is conducive to better and more profound insigts into the dynamic changes of of metabolic components, transcriptional regulation, phytohormone signal transduction and epigenetic modification during plant somatic embryogenesis, which will promote the understanding of the underlying molecular mechanism of somatic embryogenesis. Besides, by using those key genes of plant somatic embryogenesis, it is possible to development new methods and technologies to improve the efficiency of somatic embryogenesis induction and genetic transformation. [Ch, 81 ref.]
-
竹材和竹制品的环保特性已成为竹产业的标志属性。毛竹Phyllostachys edulis的微观结构是由维管束纤维与基体组成的两相复合材料,维管束纤维是影响毛竹宏观力学性能的关键。现有竹纤维分离方法可分为高温蒸煮和机械冲击摩擦2类,如蒸汽爆破、碾压捶打、机械梳解、化学分离等[1−8]。以上分离方法关注的焦点均在于所得纤维产品的性能优劣,而忽视了维管束与薄壁组织的分离效果评价。在分离过程中,常存在纤维热损伤、比强度降低、生产效率低、纤维尺寸一致性差等问题。
数控加工中心可通过数控程序精确控制刀具路径和切削方向,并通过合理设置刀具路径和铣削条件精确控制纤维形状。杨永福等[9]分析了不同刀具前角、切削速度以及进给量等切削参数对竹片平面直角自由切削过程中切削力的影响;郭莹洁等[10−11]研究了铣削加工参数的改变对竹片表面质量及超前劈裂的影响。OGAWA等[12−13]通过设定合适的加工中心切削参数,切削提取得到了长度均匀、无热损伤的竹纤维。上述研究主要围绕竹制品的切削特性和切削提取原竹纤维的加工条件展开,并未深入探讨天然竹维管束纤维制取过程中切削力及切削特性等变化。
为揭示天然毛竹维管束纤维提取过程中铣削参数对切削力及维管束纤维形态的影响,本研究以切削加工三要素为变量,使用双刃直槽硬质合金木工雕刻刀对竹板开展单向顺铣正交切削试验,运用极差、方差分析方法,验证分析铣削参数对切削力的影响,并建立切削力经验公式;基于瞬态切削几何模型和单因素试验,探究切削速度(Vc)、切削深度(Ap)和每齿进给量(fz)对维管束纤维提取质量的影响,以期为合理选取切削参数,高效获取优质竹纤维提供理论以及技术指导。
1. 试验条件及方法
1.1 试验条件
选取浙江湖州5年生毛竹,并截取直径约110 mm,竹壁厚度约10 mm的竹段作为试材。去除竹节后放入烘箱中,在70~80 ℃下烘烤8 h。然后,用破竹器将每段试材分成8根竹条,并去除0.8 mm厚度的竹青表皮,最后对竹条进行切割,得到高度分别为36、40和44 mm的竹板毛坯。加工机床采用宁波其锐达机械有限公司生产的KMD-80120型三轴高速雕铣机,主轴最高转速达到12 000 r·min−1;试验刀具为直径10 mm的双刃直槽硬质合金木工雕刻刀。在试验过程中,刀刃径向跳动调整在6 μm以下。切削力测量系统为宁波灵元测控工程有限公司生产的压电晶体测力仪。
1.2 试验方法
对于纤维增强复合材料,具有大长径比的纤维是理想的[14−17],因此本研究以纤维长度、纤维直径和纵横比评判维管束纤维质量。设计正交切削试验并获取各参数下的切削力数据,再基于切削力数据分析切削参数对切削力及维管束纤维质量的影响规律。
参考以往研究[18−20],本研究将竹壁沿径向划分为图1所示的内、中、外3层,其中外部维管束纤维呈半开放型,纤维长轴平均长度为0.39 mm,短轴平均长度为0.23 mm。经测量,竹壁外部维管束纤维在水平方向的平均间隙为0.2~0.4 mm。切削过程中,为得到尽可能完整的维管束纤维,切削步进距(Ae)设置为0.4 mm。在以上加工参数的基础上,将切削速度、每齿进给量及切削深度分别定义为因素A、B、C,制定正交试验方案(表1)。试验采用刀刃平行于维管束纤维,沿X轴单向顺铣,干式切削方式进行,对每个试件连续切削3个步距,每组参数重复切削5个试件。通过以上正交试验,可得到135组切削力数据。
表 1 正交试验及切削力Table 1 Forces of orthogonal experimental cutting序号 切削速度(A)/
(m·min−1)每齿进给量(B)/
mm切削深度(C)/
mm切削力/N 序号 切削速度(A)/
(m·min−1)每齿进给量(B)/
mm切削深度(C)/
mm切削力/N Fx Fy Fx Fy 1 62.8 0.2 4 23.70 −8.89 6 125.7 0.4 4 34.78 −10.86 2 62.8 0.3 12 81.04 −25.87 7 188.5 0.2 8 37.22 −24.62 3 62.8 0.4 8 69.56 −23.88 8 188.5 0.3 4 27.01 −15.82 4 125.7 0.2 12 55.84 −19.59 9 188.5 0.4 12 85.16 −42.63 5 125.7 0.3 8 51.97 −16.12 在切削速度为62.8 m·min−1,每齿进给量为0.2 mm,切削深度为4 mm,切削步进距为0.4 mm条件下,对高度为36 mm的竹块毛坯进行切削试验,每个切削刃的部分切削分力(Fx、Fy、Fz)的动态分布曲线如图2所示。切削力呈周期性变化。由于竹壁维管束纤维呈错列排布,铣削过程中维管束纤维的切削厚度不尽相同,因此加工过程中切削力的最大值变化显著。1个切削周期内,Fx先增后减,且为正值,表明在切削过程中,切削刃始终沿进给方向对竹板产生拉力,且随着切削厚度增至最大,切削力也增至最大;Fy向切削刃始终对竹板产生挤压作用,且顺铣时切削刃切出工件侧面过程中,切削厚度逐渐减小为0,故Fy始终为负值。此外,不同于螺旋铣刀,双刃直槽硬质合金木工雕刻刀在切削过程中对材板无Z轴方向作用力,但机床系统振动会导致Z轴方向作用力产生如图2C所示的微小波动[21],因此本研究忽略Z轴方向作用力的影响[22−23]。为保证试验数据的一致性,均在切削力曲线中选取重复频率较高、数值较大的切削力数值进行记录。每组试验参数记录15组切削力数据,并计算其平均值作为该组正交试验参数的切削力,正交试验方案及切削力如表1所示。
图3为维管束纤维切削瞬态几何模型[24]。定义纤维纵横比为α=L/amax,用以标定维管束纤维的长度和窄度,其中L为切割弧长,amax为最大纤维切削厚度。amax与L可根据下式得到:
$$ \mathit{a} _{ \mathrm{\max }} \mathrm= \mathit{f} _{ \mathrm{z}} \mathrm{sin} \mathit{\varphi } _{ \mathrm{0}} \mathrm{\text{;}} $$ (1) $$ \mathit{L} \mathrm{=2{\text{π}} } \mathit{R\varphi } _{ \mathrm{0}} \mathrm{/360。} $$ (2) 式(1)~(2)中:fz为每齿进给量,φ0为最大接触角,R为刀具半径。定义维管束纤维理论直径为De=(L+amax)/2。从每组试验中随机选取的100根维管束纤维,使用游标卡尺分别测量纤维厚度、切割弧长和纤维长度(L0),并分别以各自平均值作为对应参数的最终数据。
2. 结果与讨论
2.1 切削速度对切削力及竹纤维质量的影响
在每齿进给量为0.4 mm,切削深度为12 mm,切削步进距为0.4 mm条件下,切削速度与切削力平均值的关系如图4所示。切削过程中,Fx为正值,为主要切削力。Fy为负值,切削刃对工件产生挤压作用。随着切削速度的增加,刀具单次切削竹维管束的体积减小,单次切削功率也随之减小,因此Fx随切削速度的增加而减小;Fy在−40 N附近轻微波动。由此可见:切削速度的变化对Fy方向的切削力影响不大,其轻微波动主要由切削系统共振造成。
在每齿进给量为0.4 mm,切削深度为12 mm, 切削步进距为0.4 mm条件下,切削速度对维管束纤维形态的影响如图5所示。随着切削速度的增加,维管束纤维直径(D0)先减小后增大,且数值只有维管束纤维理论直径的0.5~0.7倍(图5A)。这是因为理论切割弧长大于维管束纤维直径,即使维管束纤维被完整切割也无法达到理论值。各参数铣削获得的维管束纤维长度比较稳定,且与理论值的误差极小(图5B)。维管束纤维纵横比随着切削速度的增大而增大,且当切削速度大于125.7 m·min−1时,纤维纵横比有较明显的提高(图5C)。由纤维直径、纤维长度及纤维纵横比的变异系数(CV)可知(图5D):随着切削速度的变化,纤维长度并未产生明显的变化,纤维直径和纤维纵横比均在切削速度为160.0~188.5 m·min−1时出现最小值且变化幅度较小。综上,提高切削速度有助于获得尺寸稳定且有较大纵横比和直径的维管束纤维。
2.2 每齿进给量对切削力及竹纤维质量的影响
在切削速度为125.7 m·min−1,切削深度为12 mm,切削步进距为0.4 mm条件下,每齿进给量与切削力平均值的关系如图6所示。随着每齿进给量增加,单位时间内切下切屑的体积增大,切削功率也随之增大,因此随着每齿进给量的增加,Fx呈近似线性增大,Fy呈近似线性减小。
在切削速度为125.7 m·min−1,切削深度为12 mm, 切削步进距为0.4 mm条件下,每齿进给量对维管束纤维形态的影响如图7所示。不同每齿进给量下获得维管束纤维直径先减小后增大,且当每齿进给量为0.2 mm时出现最大值(图7A);各参数铣削获得的维管束纤维长度比较稳定,且与理论值接近(图7B);纤维纵横比随着每齿进给量增加,呈先下降后上升再下降的趋势,且当每齿进给量为0.2 mm时出现最大值(图7C);纤维长度、纤维直径和纤维纵横比随每齿进给量变化而产生明显的变化,但均在每齿进给量为0.2 mm时获得最优维管束纤维(图7D)。综上,减小每齿进给量有利于获得较高质量的维管束纤维。
2.3 切削深度对切削力及竹纤维质量的影响
在切削速度为188.5 m·min−1,每齿进给量为0.3 mm,切削步进距为0.4 mm条件下,切削深度与切削力平均值的关系如图8所示。随着切削深度增加,单位时间内切下切屑的体积增大,切削功率也随之增大,因此Fx随切削深度的增加而增大,而Fy随切削深度的增加而减小。
在切削速度为188.5 m·min−1,每齿进给量为0.3 mm, 切削步进距为0.4 mm条件下,切削深度对维管束纤维形态的影响如图9所示。不同切削深度下获得维管束纤维直径变化不大,且为理论值的一半左右(图9A);维管束纤维长度随切削深度增加而增加,且曲线斜率为1,表明纤维长度与理论值保持一致(图9B);纤维纵横比随着切削深度增加,呈先下降后上升的趋势(图9C);图9D为切削深度对纤维形态变异系数的影响,其中纤维长度和纤维直径的变异系数基本保持恒定,纤维纵横比的变异系数先降低后升高且在切削深度大于10 mm后基本保持恒定。综上,增加切削深度有利于获得较高质量的维管束纤维。
2.4 分析总结
对切削力正交试验结果进行极差分析,结果如表2所示。由表2可知:切削深度(C)对Fx和Fy的影响最大,切削速度(A)和每齿进给量(B)分别对Fx和Fy的影响最小。因此,可以得到对Fx和Fy影响最小的最优加工参数方案为A2B1C1。
表 2 切削力正交试验极差Table 2 Range of cutting force orthogonal experiment切削力 参数 切削参数 切削力 参数 切削参数 切削速度(A)/
(m·min−1)每齿进给量(B)/
mm切削深度(C)/
mm切削速度(A)/
(m·min−1)每齿进给量(B)/
mm切削深度(C)/
mmFx K1 174.301 116.764 85.497 Fy K1 −58.638 −53.102 −35.573 K2 142.582 160.022 158.749 K2 −46.577 −57.819 −64.624 K3 149.399 189.497 222.037 K3 −83.078 −77.373 −88.096 k1 58.100 38.921 28.499 k1 −19.546 −17.701 −11.858 k2 47.527 53.341 52.916 k2 −15.526 −19.273 −21.541 k3 49.800 63.166 74.012 k3 −27.693 −25.791 −29.365 R 10.573 24.244 45.514 R 12.167 8.090 17.507 主次因素 Ap > fz > Vc 主次因素 Ap > Vc > fz 最优方案 A2B1C1 最优方案 A2B1C1 说明:Ki. 满足要求的单元格求和;ki. Ki的算术平均值;R. 极差。 对切削力数据进行方差分析,结果如表3所示。在单向顺铣过程中,切削深度对Fx影响极显著(P<0.01),对Fy影响显著(P<0.05)。每齿进给量对Fx影响显著(P<0.05),对Fy影响不显著。切削速度对Fx和Fy切削力影响均不显著。因此,单向顺铣过程中,切削深度是影响切削力的最主要因素,每齿进给量对切削力的影响大于切削速度。方差分析结果与极差分析结果一致,表明正交试验设计的有效性。
表 3 切削力方差分析Table 3 Variance analysis of cutting force方差来源 离差平方和 均方 F值 显著性 方差来源 离差平方和 均方 F值 显著性 Fx Vc 245.647 122.823 14.032 0.067 Fy Vc 230.558 115.279 18.291 0.052 fz 860.307 430.153 49.144 0.020* fz 110.412 55.206 8.760 0.102 Ap 3 125.755 1 562.877 178.556 0.006** Ap 461.497 230.748 36.613 0.027* 误差 17.506 8.753 误差 12.605 6.302 说明:*. 差异显著(P<0.05),**. 差异极显著(P<0.01)。 对不同切削状态下的切削数据进行多元非线性回归分析[25−26]。Fx非线性回归方程决定系数(R2)为0.956,说明对应模型能解释95.6%的变异,模型拟合效果很好。Fy非线性回归方程R2为0.697,说明对应模型仅能解释69.7%的变异。
$$ {F}_{x}=37.818\;3{{A}_{\mathrm{p}}}^{0.865}{{f}_{\mathrm{z}}}^{0.688}{{V}_{\mathrm{c}}}^{-0.135}{\text{,}}{R}^{2}=0.956{\text{;}} $$ (3) $$ {F}_{y}=1.832\;4{{A}_{\mathrm{p}}}^{0.842}{{f}_{\mathrm{z}}}^{0.65}{{V}_{\mathrm{c}}}^{0.312}{\text{,}}{R}^{2}=0.697\mathrm{。} $$ (4) 式(3)~(4)中:Fx和Fy为切削分力;Ap为切削深度度;fz为每齿进给量;Vc为切削速度;R2为决定系数。正交试验与回归方程预测的对比结果如表4所示。Fx的预测值与试验值的误差为±6%左右,说明回归方程具有较高的可靠性。Fy的预测值与试验值的偏差较大,是因为切削刃对竹板反复产生挤压作用,导致切削系统振动。但对比Fy的试验值与预测值可知,预测值与理论值之间的差值在±5 N以内,且Fy的切削力数值相对较小,因此Fy的回归模型能够一定程度上反映其实际切削状态。
表 4 正交试验参数回归方程预测值检验Table 4 Test of predicted value of regression equation of orthogonal experimental parameters序号 Fx/N Fy/N 序号 Fx/N Fy/N 试验值 预测值 误差/% 试验值 预测值 误差/% 试验值 预测值 误差/% 试验值 预测值 误差/% 1 24.31 23.70 −2.57 −8.89 −7.53 −18.06 6 33.16 34.78 4.66 −10.86 −14.66 25.92 2 77.81 81.04 3.99 −25.87 −24.71 −4.69 7 37.25 37.22 −0.08 −24.62 −19.01 −29.51 3 73.81 69.56 −6.11 −23.88 −21.17 −12.80 8 25.41 27.01 5.92 −15.82 −13.80 −14.64 4 57.63 55.84 −3.21 −19.59 −23.57 16.89 9 84.00 85.16 1.36 −42.63 −41.97 −1.57 5 49.00 51.97 5.71 −16.12 −21.80 26.06 为进一步验证回归模型的可靠性,设计各切削要素条件下的非正交试验,试验结果如表5所示。回归方程对各参数的切削力预测与上述非正交试验结果基本一致,说明回归方程具有较高的可靠性。
表 5 非正交试验参数回归方程预测值检验Table 5 Test of predicted values of regression equations of non-orthogonal experimental parameters序号 切削速度/(m·min−1) 每齿进给量/mm 切削深度/mm Fx/N Fy/N 试验值 预测值 误差/% 试验值 预测值 误差/% 1 62.8 0.3 4 31.33 32.72 4.25 −9.80 −13.73 28.62 2 62.8 0.4 12 98.78 104.34 5.33 −29.79 −35.13 15.20 3 125.7 0.2 4 21.59 22.24 2.92 −9.35 −8.35 −11.98 4 125.7 0.2 8 39.32 39.29 −0.08 −16.75 −14.65 −14.33 5 125.7 0.3 12 73.80 73.09 −0.97 −30.67 −29.17 −5.14 6 125.7 0.4 8 63.34 62.86 −0.76 −26.29 −20.00 −31.45 7 125.7 0.4 12 89.95 90.53 0.64 −36.98 −37.37 1.04 8 188.5 0.2 12 52.86 56.42 6.31 −26.75 −37.78 29.20 9 188.5 0.3 8 49.20 46.38 −6.08 −24.74 −22.04 −12.25 3. 结论
切削深度对维管束纤维切削力的影响最大,平行于刀具进给方向受力主要为切削力,每齿进给量相对于切削速度对切削力的影响更明显,垂直于刀具进给方向主要受挤压力作用,切削速度比每齿进给量对切削力的影响大。对不同切削状态下的切削数据进行多元非线性回归分析,得到切削力非线性回归模型。试验值与模型预测值的对比结果显示:该模型可以较为准确地计算各方向的切削力。
采用铣削方法可提取长度一致性好的维管束纤维,且可通过控制铣刀的切削深度,得到不同长度的维管束纤维。采用较高切削速度、较大切削深度和较小每齿进给量有助于获得较大长径比和直径的维管束纤维。
-
[1] WILLIAMS E G, MAHESWARAN G. Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group [J]. Ann Bot, 1986, 57(4): 443 − 462. [2] HORSTMAN A, BEMER M, BOUTILIER K. A transcriptional view on somatic embryogenesis [J]. Regeneration, 2017, 4: 201 − 216. [3] MENDEZ-HERNANDEZ H A, LEDEZMA-RODRIGUEZ M, AVILEZ-MONTALVO R N, et al. Signaling overview of plant somatic embryogenesis[J/OL]. Front Plant Sci, 2019, 10: 77[2021-01-05]. doi: 10.3389/fpls.2019.00077. [4] JI Lexiang, MATHIONI S M, JOHNSON S, et al. Genome-wide reinforcement of DNA methylation occurs during somatic embryogenesis in soybean [J]. Plant Cell, 2019, 31(10): 2315 − 2331. [5] WÓJCIKOWSKA B, BOTOR M, MOROŃCZYK J, et al. Trichostatin a triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway[J/OL]. Front Plant Sci, 2018, 9: 1353[2021-01-08]. doi: 10.3389/fpls.2018.01353. [6] JIANG Fengying, RYABOVA D, DIEDHIOU J, et al. Trichostatin A increases embryo and green plant regeneration in wheat [J]. Plant Cell Rep, 2017, 36(11): 1701 − 1706. [7] JONES T, LOWE K, HOERSTER G, et al. Maize transformation using the morphogenic genes Baby Boom and Wuschel2 [J]. Methods Mol Biol, 2019, 1864: 81 − 93. [8] JHA P, KUMAR V. BABY BOOM (BBM): a candidate transcription factor gene in plant biotechnology [J]. Biotechnol Lett, 2018, 40(11/12): 1467 − 1475. [9] GUZZO F, BALDAN B, LEVI M, et al. Early cellular events during induction of carrot explants with 2,4-D [J]. Protoplasma, 1995, 185(1/2): 28 − 36. [10] RAGHAVAN V. Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D [J]. Am J Bot, 2004, 91(11): 1743 − 1756. [11] HALPERIN W. Alternative morphogenetic events in cell suspensions [J]. Am J Bot, 1966, 53(5): 443 − 453. [12] MIGUEL C, MARUM L. An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond [J]. J Exp Bot, 2011, 62(11): 3713 − 3725. [13] RAEMAKERS C J J M, JACOBSEN E, VISSER R G F. Secondary somatic embryogenesis and applications in plant breeding [J]. Euphytica, 1995, 81(1): 93 − 107. [14] MERKLE S A, PARROTT W A, FLINN B S. Morphogenic Aspects of Somatic Embryogenesis[M]. Dordrecht: Springer, 1995. [15] GAJ M D. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh [J]. Plant Growth Regul, 2004, 43(1): 27 − 47. [16] SCHMIDT D E, GUZZO F, TOONEN M A, et al. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos [J]. Development, 1997, 124(10): 2049 − 2062. [17] PANDEY D K, CHAUDHARY B. Role of plant somatic embryogenesis receptor kinases (SERKs) in cell-to-embryo transitional activity: key at novel assorted structural subunits [J]. Am J Plant Sci, 2014, 5(21): 3177 − 3193. [18] HECHT V, VIELLE-CALZADA J P, HARTOG M V, et al. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture [J]. Plant Physiol, 2001, 127(3): 803 − 816. [19] ALBRECHT C, RUSSINOVA E, KEMMERLING B, et al. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and -independent signaling pathways [J]. Plant Physiol, 2008, 148(1): 611 − 619. [20] BRAYBROOK S A, HARADA J J. LECs go crazy in embryo development [J]. Trends Plant Sci, 2008, 13(12): 624 − 630. [21] MEINKE D W. A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons [J]. Science, 1992, 258(5088): 1647 − 1650. [22] MEINKE D W, FRANZMANN L H, NICKLE T C, et al. Leafy cotyledon mutants of Arabidopsis [J]. Plant Cell, 1994, 6(8): 1049 − 1064. [23] LEE H, FISCHER R L, GOLDBERG R B, et al. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor [J]. Proc Natl Acad Sci, 2003, 100(4): 2152 − 2156. [24] RASHID S Z, YAMAJI N, KYO M. Shoot formation from root tip region: a developmental alteration by WUS in transgenic tobacco [J]. Plant Cell Rep, 2007, 26(9): 1449 − 1455. [25] ROCHA D I, DORNELAS M C. Molecular overview on plant somatic embryogenesis [J/OL]. CAB Rev, 2013, 8: 022[2021-01-01]. doi: 10.1079/PAVSNNR20138022. [26] LEDWON A, GAJ M D. LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells [J]. Plant Cell Rep, 2009, 28(11): 1677 − 1688. [27] HARADA J J. Role of Arabidopsis LEAFY COTYLEDON genes in seed development [J]. J Plant Physiol, 2001, 158(4): 405 − 409. [28] LEDWON A, GAJ M D. LEAFY COTYLEDON1, FUSCA3 expression and auxin treatment in relation to somatic embryogenesis induction in Arabidopsis [J]. Plant Growth Regul, 2011, 65(1): 157 − 167. [29] STONE S L, KWONG L W, YEE K M, et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development [J]. Proc Natl Acad Sci, 2001, 98(20): 11806 − 11811. [30] GAZZARRINI S, TSUCHIYA Y, LUMBA S, et al. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid [J]. Dev Cell, 2004, 7(3): 373 − 385. [31] BOUTILIER K, OFFRINGA R, SHARMA V K, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth [J]. Plant Cell, 2002, 14(8): 1737 − 1749. [32] DENG Wei, LUO Keming, LI Zhengguo, et al. A novel method for induction of plant regeneration via somatic embryogenesis [J]. Plant Sci, 2009, 177(1): 43 − 48. [33] IRIKOVA T, GROZEVA S, DENEV I. Identification of BABY BOOM and LEAFY COTYLEDON genes in sweet pepper (Capsicum annuum L.) genome by their partial gene sequences [J]. Plant Growth Regul, 2012, 67(2): 191 − 198. [34] FLOREZ S L, ERWIN R L, MAXIMOVA S N, et al. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor[J/OL]. BMC Plant Biol, 2015, 15(1): 121[2020-11-08]. doi: 10.1186/s12870-015-0479-4. [35] HEIDMANN I, de LANGE B, LAMBALK J, et al. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor [J]. Plant Cell Rep, 2011, 30(6): 1107 − 1115. [36] JHA P, OCHATT S J, KUMAR V. WUSCHEL: a master regulator in plant growth signaling [J]. Plant Cell Rep, 2020, 39(4): 431 − 444. [37] YADAV R K, PERALES M, GRUEL J, et al. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex [J]. Genes Dev, 2011, 25(19): 2025 − 2030. [38] SOMSSICH M, JE B I, SIMON R, et al. CLAVATA-WUSCHEL signaling in the shoot meristem [J]. Development, 2016, 143(18): 3238 − 3248. [39] ZHANG Tianqi, LIAN Heng, ZHOU Chuanmiao, et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration [J]. Plant Cell, 2017, 29(5): 1073 − 1087. [40] XIAO Yanqing, CHEN Yanli, DING Yanpeng, et al. Effects of GhWUS from upland cotton (Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration [J]. Plant Sci, 2018, 270: 157 − 165. [41] ZUO Jianru, NIU Qiwen, FRUGIS G, et al. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis [J]. Plant J, 2002, 30(3): 349 − 359. [42] ARROYO-HERRERA A, GONZALEZ A K, MOO R C, et al. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis [J]. Plant Cell Tissue Organ Cult, 2008, 94(2): 171 − 180. [43] CHEN S K, KURDYUKOV S, KERESZT A, et al. The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula [J]. Planta, 2009, 230(4): 827 − 840. [44] SANTA-CATARINA C, OLIVEIRA R R, CUTRI L, et al. WUSCHEL-related genes are expressed during somatic embryogenesis of the basal angiosperm Ocotea catharinensis Mez. (Lauraceae) [J]. Trees, 2012, 26(2): 493 − 501. [45] ZHENG Wu, ZHANG Xueyan, YANG Zuoren, et al. AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum[J/OL]. PLoS One, 2014, 9(1): e87502[2020-12-11]. doi: 10.1371/journal.pone.0087502. [46] CHATFIELD S P, CAPRON R, SEVERINO A, et al. Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems [J]. Plant J, 2013, 73(5): 798 − 813. [47] BRAYBROOK S A, STONE S L, PARK S, et al. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis [J]. Proc Natl Acad Sci, 2006, 103(9): 3468 − 3473. [48] WOJCIKOWSKA B, JASKOLA K, GASIOREK P, et al. LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis [J]. Planta, 2013, 238(3): 425 − 440. [49] HARDING E W, TANG W, NICHOLS K W, et al. Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15 [J]. Plant Physiol, 2003, 133(2): 653 − 663. [50] ZHENG Yumei, REN Na, WANG Huai, et al. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15 [J]. Plant Cell, 2009, 21(9): 2563 − 2577. [51] IKEUCHI M, SUGIMOTO K, IWASE A. Plant callus: mechanisms of induction and repression [J]. Plant Cell, 2013, 25(9): 3159 − 3173. [52] IWASE A, MITSUDA N, KOYAMA T, et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis [J]. Curr Biol, 2011, 21(6): 508 − 514. [53] LEIBFRIED A, TO J P C, BUSCH W, et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators [J]. Nature, 2005, 438(7071): 1172 − 1175. [54] IWASE A, MITA K, NONAKA S, et al. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed [J]. J Plant Res, 2015, 128(3): 389 − 397. [55] WÓJCIKOWSKA B, WÓJCIK A M, GAJ M D. Epigenetic regulation of auxin-induced somatic embryogenesis in plants[J/OL]. Int J Mol Sci, 2020, 21(7): 2307[2020-12-11]. doi: 10.3390/ijms21072307. [56] KUMAR V, van STADEN J. New insights into plant somatic embryogenesis: an epigenetic view [J]. Acta Physiol Plant, 2017, 39(9): 194. [57] 鲁亚萍, 周明兵. 转座子沉默与DNA甲基化[J]. 浙江农林大学学报, 2021, 38(3): 634 − 643. LU Yaping, ZHOU Mingbing. On transposon silencing and DNA methylation [J]. J Zhejiang A&F Univ, 2021, 38(3): 634 − 643. [58] CHAKRABARTY D, YU K W, PAEK K Y. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus) [J]. Plant Sci, 2003, 165(1): 61 − 68. [59] NOCEDA C, SALAJ T, PÉREZ M, et al. DNA demethylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra Arn. cell culture[J/OL]. Trees, 2009, 23(6): 1285[2021-01-01]. doi: 10.1007/s00468-009-0370-8. [60] BRAVO S, BERTÍN A, TURNER A, et al. Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non embryogenic lines of Pinus radiata D. don [J]. Plant Cell Tissue Organ Cult, 2017, 130(3): 521 − 529. [61] CORREDOIRA E, CANO V, BARANY I, et al. Initiation of leaf somatic embryogenesis involves high pectin esterification, auxin accumulation and DNA demethylation in Quercus alba [J]. J Plant Physiol, 2017, 213: 42 − 54. [62] NIC-CAN G I, LOPEZ-TORRES A, BARREDO-POOL F, et al. New insights into somatic embryogenesis: leafy cotyledon1, baby boom1 and WUSCHEL-related homeobox4 are epigenetically regulated in Coffea canephora[J/OL]. PLoS One, 2013, 8(8): e72160[2020-12-18]. doi: 10.1371/journal.pone.0072160. [63] GRZYBKOWSKA D, MOROŃCZYK J, WÓJCIKOWSKA B, et al. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis [J]. Plant Growth Regul, 2018, 85(2): 243 − 256. [64] YAKOVLEV I A, CARNEROS E, LEE Y, et al. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce [J]. Planta, 2016, 243(5): 1237 − 1249. [65] SHIBUKAWA T, YAZAWA K, KIKUCHI A, et al. Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5'-upstream region [J]. Gene, 2009, 437(1/2): 22 − 31. [66] YAMAMOTO N, KOBAYASHI H, TOGASHI T, et al. Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor [J]. J Plant Physiol, 2005, 162(1): 47 − 54. [67] MARGUERON R, REINBERG D. The Polycomb complex PRC2 and its mark in life [J]. Nature, 2011, 469(7330): 343 − 349. [68] CHANVIVATTANA Y, BISHOPP A, SCHUBERT D, et al. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis [J]. Development, 2004, 131(21): 5263 − 5276. [69] LIU Jun, DENG Shulin, WANG Huan, et al. CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis [J]. Plant Physiol, 2016, 171(1): 424 − 436. [70] IKEUCHI M, IWASE A, RYMEN B, et al. PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis[J/OL]. Nat Plants, 2015, 1: 15089[2021-01-02]. doi: 10.1038/nplants.2015.89. [71] TANAKA M, KIKUCHI A, KAMADA H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination [J]. Plant Physiol, 2008, 146(1): 149 − 161. [72] ZHOU Yi, TAN Bin, LUO Ming, et al. HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings [J]. Plant Cell, 2013, 25(1): 134 − 148. [73] CHHUN T, CHONG S Y, PARK B S, et al. HSI2 repressor recruits MED13 and HDA6 to down-regulate seed maturation gene expression directly during Arabidopsis early seedling growth [J]. Plant Cell Physiol, 2016, 57(8): 1689 − 1706. [74] UDDENBERG D, VALLADARES S, ABRAHAMSSON M, et al. Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor [J]. Planta, 2011, 234(3): 527 − 539. [75] BIE Xiaomin, DONG Luhao, LI Xiaohui, et al. Trichostatin A and sodium butyrate promotes plant regeneration in common wheat[J/OL]. Plant Signal Behav, 2020, 15(12): 1820681[2020-12-20]. doi: 10.1080/15592324.2020.1820681. [76] IKEUCHI M, OGAWA Y, IWASE A, et al. Plant regeneration: cellular origins and molecular mechanisms [J]. Development, 2016, 143(9): 1442 − 1451. [77] DE-LA-PENA C, NIC-CAN G I, GALAZ-AVALOS R M, et al. The role of chromatin modifications in somatic embryogenesis in plants[J/OL]. Front Plant Sci, 2015, 6: 635[2021-01-11]. doi: 10.3389/fpls.2015.00635. [78] LEE K, PARK O S, JUNG S J, et al. Histone deacetylation-mediated cellular dedifferentiation in Arabidopsis [J]. J Plant Physiol, 2016, 191: 95 − 100. [79] GORDON-KAMM B, SARDESAI N, ARLING M, et al. Using morphogenic genes to improve recovery and regeneration of transgenic plants[J/OL]. Plants, 2019, 8(2): 38[2021-01-12]. doi: 10.3390/plants8020038. [80] LOWE K, WU E, WANG Ning, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation [J]. Plant Cell, 2016, 28(9): 1998 − 2015. [81] MAHER M F, NASTI R A, VOLLBRECHT M, et al. Plant gene editing through de novo induction of meristems [J]. Nat Biotechnol, 2020, 38(1): 84 − 89. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210141

计量
- 文章访问数: 3200
- HTML全文浏览量: 825
- PDF下载量: 366
- 被引次数: 0