-
植物体细胞胚胎(体胚)发生是指已分化的体细胞不经过性细胞融合,经历类似合子胚发育的途径直接形成植株的过程[1],是除合子胚发育途径之外另一种获得完整植株的重要手段,也是植物细胞全能性的一种体现。自首次在胡萝卜Daucus carota中发现体胚发生现象以来,人们在大量不同植物的组织培养、单细胞悬浮培养、原生质体培养和花粉培养的过程中都观察到或实现了体胚发生[2-3]。因具有相对的遗传稳定性、可重复性和高效性等优点,体胚发生已经成为了重要的生物技术工具,在种质资源保存、优质种苗生产、人工种子、分子及细胞工程育种和基础研究等方面都有着广泛的应用。
植物体胚发生是一个涉及生长素、细胞分裂素等激素信号和复杂基因调控网络的过程。近年来的研究表明:一些关键的转录因子是体胚发生的主要介导者,其在生长素和细胞分裂素等激素信号刺激下启动和调控下游基因的表达,从而启动体胎发生,调控体胚发育[2]。此外,基因组的表观修饰也被认为是影响植物体胚发生的重要因素,DNA甲基化、组蛋白去乙酰化等表观修饰都是植物体胚发生调控途径的重要组成部分[4-6]。随着研究的深入,一些体胚发生的关键基因(如Baby Boom、Wuschel等)也被用于提高体胚发生的频率和转基因效率,已在玉米Zea mays等较难转化的植物中获得了成功[7-8]。本研究将对体胚发生的途径、体胚发生关键基因及其调控机制、表观遗传修饰对体胚发生的调控及体胚发生关键基因的利用等进行综述,以期为后续的研究和技术开发提供科学依据。
Research progress in plant somatic embryogenesis and its molecular regulation mechanism
-
摘要: 植物的每个细胞都包含着该物种的全部遗传信息,具备发育成完整植株的遗传能力,这被称为植物细胞的全能性。体细胞胚胎(体胚)发生是指在没有受精的情况下,由体细胞或营养细胞发育成胚胎,是诱导植物细胞全能性的一种形式。体胚发生在种质资源保存、种苗生产、分子育种和植物基础研究等方面都有着广泛的应用,已成为重要的植物生物技术工具和研究平台。多年来的分子遗传学研究表明:体胚发生受到由众多转录因子、激素信号途径及表观遗传修饰等构成的复杂网络的调控。本研究概述了植物体胚发生的途径,并重点综述了体胚发生关键基因的功能与调控机制、体胚发生的表观遗传修饰以及体胚发生关键基因在基因工程中的应用。随着研究的深入和新技术的出现,体胚发生过程中涉及的代谢组分动态变化、转录调控、激素信号转导与表观遗传调控等复杂生物学过程有望得到更深入地阐释,将更进一步地解析植物体胚发生的分子调控机制。此外,利用体胚发生关键基因的功能与调控机制,开发更高效的体胚诱导和遗传转化方法,有望为更多植物的基因功能研究和遗传改良提供新的思路和技术。参81Abstract: Each plant cell harboring all the genetic information of the species has the genetic potential to develop into a whole plant, which is termed plant cell totipotency. Somatic embryogenesis is a form of induced plant cell totipotency, by means of which embryos develop from somatic or vegetative cells in the absence of fertilization. Somatic embryogenesis, an increasingly important tool of plant biotechnology, has been widely applied in germplasm reservation, seedling propagation, molecular breeding and basic research of many plants and it has been implied in previous studies on molecular genetics that somatic embryogenesis is subject to the regulation by a complex network composed of transcription factors, hormone signaling pathways and epigenetic modifications. Therefore, this review, with a summary of the development routes of plant somatic embryogenesis, is aimed to give a comprehensice overview of the research progress achieved in the functions of key genes and epigenetic modification in the process of somatic embryogenesis along with an introduction to the applications of several key genes in genetic engineering. The development of new technologies is conducive to better and more profound insigts into the dynamic changes of of metabolic components, transcriptional regulation, phytohormone signal transduction and epigenetic modification during plant somatic embryogenesis, which will promote the understanding of the underlying molecular mechanism of somatic embryogenesis. Besides, by using those key genes of plant somatic embryogenesis, it is possible to development new methods and technologies to improve the efficiency of somatic embryogenesis induction and genetic transformation. [Ch, 81 ref.]
-
[1] WILLIAMS E G, MAHESWARAN G. Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group [J]. Ann Bot, 1986, 57(4): 443 − 462. [2] HORSTMAN A, BEMER M, BOUTILIER K. A transcriptional view on somatic embryogenesis [J]. Regeneration, 2017, 4: 201 − 216. [3] MENDEZ-HERNANDEZ H A, LEDEZMA-RODRIGUEZ M, AVILEZ-MONTALVO R N, et al. Signaling overview of plant somatic embryogenesis[J/OL]. Front Plant Sci, 2019, 10: 77[2021-01-05]. doi: 10.3389/fpls.2019.00077. [4] JI Lexiang, MATHIONI S M, JOHNSON S, et al. Genome-wide reinforcement of DNA methylation occurs during somatic embryogenesis in soybean [J]. Plant Cell, 2019, 31(10): 2315 − 2331. [5] WÓJCIKOWSKA B, BOTOR M, MOROŃCZYK J, et al. Trichostatin a triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway[J/OL]. Front Plant Sci, 2018, 9: 1353[2021-01-08]. doi: 10.3389/fpls.2018.01353. [6] JIANG Fengying, RYABOVA D, DIEDHIOU J, et al. Trichostatin A increases embryo and green plant regeneration in wheat [J]. Plant Cell Rep, 2017, 36(11): 1701 − 1706. [7] JONES T, LOWE K, HOERSTER G, et al. Maize transformation using the morphogenic genes Baby Boom and Wuschel2 [J]. Methods Mol Biol, 2019, 1864: 81 − 93. [8] JHA P, KUMAR V. BABY BOOM (BBM): a candidate transcription factor gene in plant biotechnology [J]. Biotechnol Lett, 2018, 40(11/12): 1467 − 1475. [9] GUZZO F, BALDAN B, LEVI M, et al. Early cellular events during induction of carrot explants with 2,4-D [J]. Protoplasma, 1995, 185(1/2): 28 − 36. [10] RAGHAVAN V. Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D [J]. Am J Bot, 2004, 91(11): 1743 − 1756. [11] HALPERIN W. Alternative morphogenetic events in cell suspensions [J]. Am J Bot, 1966, 53(5): 443 − 453. [12] MIGUEL C, MARUM L. An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond [J]. J Exp Bot, 2011, 62(11): 3713 − 3725. [13] RAEMAKERS C J J M, JACOBSEN E, VISSER R G F. Secondary somatic embryogenesis and applications in plant breeding [J]. Euphytica, 1995, 81(1): 93 − 107. [14] MERKLE S A, PARROTT W A, FLINN B S. Morphogenic Aspects of Somatic Embryogenesis[M]. Dordrecht: Springer, 1995. [15] GAJ M D. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh [J]. Plant Growth Regul, 2004, 43(1): 27 − 47. [16] SCHMIDT D E, GUZZO F, TOONEN M A, et al. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos [J]. Development, 1997, 124(10): 2049 − 2062. [17] PANDEY D K, CHAUDHARY B. Role of plant somatic embryogenesis receptor kinases (SERKs) in cell-to-embryo transitional activity: key at novel assorted structural subunits [J]. Am J Plant Sci, 2014, 5(21): 3177 − 3193. [18] HECHT V, VIELLE-CALZADA J P, HARTOG M V, et al. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture [J]. Plant Physiol, 2001, 127(3): 803 − 816. [19] ALBRECHT C, RUSSINOVA E, KEMMERLING B, et al. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and -independent signaling pathways [J]. Plant Physiol, 2008, 148(1): 611 − 619. [20] BRAYBROOK S A, HARADA J J. LECs go crazy in embryo development [J]. Trends Plant Sci, 2008, 13(12): 624 − 630. [21] MEINKE D W. A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons [J]. Science, 1992, 258(5088): 1647 − 1650. [22] MEINKE D W, FRANZMANN L H, NICKLE T C, et al. Leafy cotyledon mutants of Arabidopsis [J]. Plant Cell, 1994, 6(8): 1049 − 1064. [23] LEE H, FISCHER R L, GOLDBERG R B, et al. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor [J]. Proc Natl Acad Sci, 2003, 100(4): 2152 − 2156. [24] RASHID S Z, YAMAJI N, KYO M. Shoot formation from root tip region: a developmental alteration by WUS in transgenic tobacco [J]. Plant Cell Rep, 2007, 26(9): 1449 − 1455. [25] ROCHA D I, DORNELAS M C. Molecular overview on plant somatic embryogenesis [J/OL]. CAB Rev, 2013, 8: 022[2021-01-01]. doi: 10.1079/PAVSNNR20138022. [26] LEDWON A, GAJ M D. LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells [J]. Plant Cell Rep, 2009, 28(11): 1677 − 1688. [27] HARADA J J. Role of Arabidopsis LEAFY COTYLEDON genes in seed development [J]. J Plant Physiol, 2001, 158(4): 405 − 409. [28] LEDWON A, GAJ M D. LEAFY COTYLEDON1, FUSCA3 expression and auxin treatment in relation to somatic embryogenesis induction in Arabidopsis [J]. Plant Growth Regul, 2011, 65(1): 157 − 167. [29] STONE S L, KWONG L W, YEE K M, et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development [J]. Proc Natl Acad Sci, 2001, 98(20): 11806 − 11811. [30] GAZZARRINI S, TSUCHIYA Y, LUMBA S, et al. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid [J]. Dev Cell, 2004, 7(3): 373 − 385. [31] BOUTILIER K, OFFRINGA R, SHARMA V K, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth [J]. Plant Cell, 2002, 14(8): 1737 − 1749. [32] DENG Wei, LUO Keming, LI Zhengguo, et al. A novel method for induction of plant regeneration via somatic embryogenesis [J]. Plant Sci, 2009, 177(1): 43 − 48. [33] IRIKOVA T, GROZEVA S, DENEV I. Identification of BABY BOOM and LEAFY COTYLEDON genes in sweet pepper (Capsicum annuum L.) genome by their partial gene sequences [J]. Plant Growth Regul, 2012, 67(2): 191 − 198. [34] FLOREZ S L, ERWIN R L, MAXIMOVA S N, et al. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor[J/OL]. BMC Plant Biol, 2015, 15(1): 121[2020-11-08]. doi: 10.1186/s12870-015-0479-4. [35] HEIDMANN I, de LANGE B, LAMBALK J, et al. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor [J]. Plant Cell Rep, 2011, 30(6): 1107 − 1115. [36] JHA P, OCHATT S J, KUMAR V. WUSCHEL: a master regulator in plant growth signaling [J]. Plant Cell Rep, 2020, 39(4): 431 − 444. [37] YADAV R K, PERALES M, GRUEL J, et al. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex [J]. Genes Dev, 2011, 25(19): 2025 − 2030. [38] SOMSSICH M, JE B I, SIMON R, et al. CLAVATA-WUSCHEL signaling in the shoot meristem [J]. Development, 2016, 143(18): 3238 − 3248. [39] ZHANG Tianqi, LIAN Heng, ZHOU Chuanmiao, et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration [J]. Plant Cell, 2017, 29(5): 1073 − 1087. [40] XIAO Yanqing, CHEN Yanli, DING Yanpeng, et al. Effects of GhWUS from upland cotton (Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration [J]. Plant Sci, 2018, 270: 157 − 165. [41] ZUO Jianru, NIU Qiwen, FRUGIS G, et al. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis [J]. Plant J, 2002, 30(3): 349 − 359. [42] ARROYO-HERRERA A, GONZALEZ A K, MOO R C, et al. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis [J]. Plant Cell Tissue Organ Cult, 2008, 94(2): 171 − 180. [43] CHEN S K, KURDYUKOV S, KERESZT A, et al. The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula [J]. Planta, 2009, 230(4): 827 − 840. [44] SANTA-CATARINA C, OLIVEIRA R R, CUTRI L, et al. WUSCHEL-related genes are expressed during somatic embryogenesis of the basal angiosperm Ocotea catharinensis Mez. (Lauraceae) [J]. Trees, 2012, 26(2): 493 − 501. [45] ZHENG Wu, ZHANG Xueyan, YANG Zuoren, et al. AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum[J/OL]. PLoS One, 2014, 9(1): e87502[2020-12-11]. doi: 10.1371/journal.pone.0087502. [46] CHATFIELD S P, CAPRON R, SEVERINO A, et al. Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems [J]. Plant J, 2013, 73(5): 798 − 813. [47] BRAYBROOK S A, STONE S L, PARK S, et al. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis [J]. Proc Natl Acad Sci, 2006, 103(9): 3468 − 3473. [48] WOJCIKOWSKA B, JASKOLA K, GASIOREK P, et al. LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis [J]. Planta, 2013, 238(3): 425 − 440. [49] HARDING E W, TANG W, NICHOLS K W, et al. Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15 [J]. Plant Physiol, 2003, 133(2): 653 − 663. [50] ZHENG Yumei, REN Na, WANG Huai, et al. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15 [J]. Plant Cell, 2009, 21(9): 2563 − 2577. [51] IKEUCHI M, SUGIMOTO K, IWASE A. Plant callus: mechanisms of induction and repression [J]. Plant Cell, 2013, 25(9): 3159 − 3173. [52] IWASE A, MITSUDA N, KOYAMA T, et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis [J]. Curr Biol, 2011, 21(6): 508 − 514. [53] LEIBFRIED A, TO J P C, BUSCH W, et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators [J]. Nature, 2005, 438(7071): 1172 − 1175. [54] IWASE A, MITA K, NONAKA S, et al. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed [J]. J Plant Res, 2015, 128(3): 389 − 397. [55] WÓJCIKOWSKA B, WÓJCIK A M, GAJ M D. Epigenetic regulation of auxin-induced somatic embryogenesis in plants[J/OL]. Int J Mol Sci, 2020, 21(7): 2307[2020-12-11]. doi: 10.3390/ijms21072307. [56] KUMAR V, van STADEN J. New insights into plant somatic embryogenesis: an epigenetic view [J]. Acta Physiol Plant, 2017, 39(9): 194. [57] 鲁亚萍, 周明兵. 转座子沉默与DNA甲基化[J]. 浙江农林大学学报, 2021, 38(3): 634 − 643. LU Yaping, ZHOU Mingbing. On transposon silencing and DNA methylation [J]. J Zhejiang A&F Univ, 2021, 38(3): 634 − 643. [58] CHAKRABARTY D, YU K W, PAEK K Y. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus) [J]. Plant Sci, 2003, 165(1): 61 − 68. [59] NOCEDA C, SALAJ T, PÉREZ M, et al. DNA demethylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra Arn. cell culture[J/OL]. Trees, 2009, 23(6): 1285[2021-01-01]. doi: 10.1007/s00468-009-0370-8. [60] BRAVO S, BERTÍN A, TURNER A, et al. Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non embryogenic lines of Pinus radiata D. don [J]. Plant Cell Tissue Organ Cult, 2017, 130(3): 521 − 529. [61] CORREDOIRA E, CANO V, BARANY I, et al. Initiation of leaf somatic embryogenesis involves high pectin esterification, auxin accumulation and DNA demethylation in Quercus alba [J]. J Plant Physiol, 2017, 213: 42 − 54. [62] NIC-CAN G I, LOPEZ-TORRES A, BARREDO-POOL F, et al. New insights into somatic embryogenesis: leafy cotyledon1, baby boom1 and WUSCHEL-related homeobox4 are epigenetically regulated in Coffea canephora[J/OL]. PLoS One, 2013, 8(8): e72160[2020-12-18]. doi: 10.1371/journal.pone.0072160. [63] GRZYBKOWSKA D, MOROŃCZYK J, WÓJCIKOWSKA B, et al. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis [J]. Plant Growth Regul, 2018, 85(2): 243 − 256. [64] YAKOVLEV I A, CARNEROS E, LEE Y, et al. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce [J]. Planta, 2016, 243(5): 1237 − 1249. [65] SHIBUKAWA T, YAZAWA K, KIKUCHI A, et al. Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5'-upstream region [J]. Gene, 2009, 437(1/2): 22 − 31. [66] YAMAMOTO N, KOBAYASHI H, TOGASHI T, et al. Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor [J]. J Plant Physiol, 2005, 162(1): 47 − 54. [67] MARGUERON R, REINBERG D. The Polycomb complex PRC2 and its mark in life [J]. Nature, 2011, 469(7330): 343 − 349. [68] CHANVIVATTANA Y, BISHOPP A, SCHUBERT D, et al. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis [J]. Development, 2004, 131(21): 5263 − 5276. [69] LIU Jun, DENG Shulin, WANG Huan, et al. CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis [J]. Plant Physiol, 2016, 171(1): 424 − 436. [70] IKEUCHI M, IWASE A, RYMEN B, et al. PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis[J/OL]. Nat Plants, 2015, 1: 15089[2021-01-02]. doi: 10.1038/nplants.2015.89. [71] TANAKA M, KIKUCHI A, KAMADA H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination [J]. Plant Physiol, 2008, 146(1): 149 − 161. [72] ZHOU Yi, TAN Bin, LUO Ming, et al. HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings [J]. Plant Cell, 2013, 25(1): 134 − 148. [73] CHHUN T, CHONG S Y, PARK B S, et al. HSI2 repressor recruits MED13 and HDA6 to down-regulate seed maturation gene expression directly during Arabidopsis early seedling growth [J]. Plant Cell Physiol, 2016, 57(8): 1689 − 1706. [74] UDDENBERG D, VALLADARES S, ABRAHAMSSON M, et al. Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor [J]. Planta, 2011, 234(3): 527 − 539. [75] BIE Xiaomin, DONG Luhao, LI Xiaohui, et al. Trichostatin A and sodium butyrate promotes plant regeneration in common wheat[J/OL]. Plant Signal Behav, 2020, 15(12): 1820681[2020-12-20]. doi: 10.1080/15592324.2020.1820681. [76] IKEUCHI M, OGAWA Y, IWASE A, et al. Plant regeneration: cellular origins and molecular mechanisms [J]. Development, 2016, 143(9): 1442 − 1451. [77] DE-LA-PENA C, NIC-CAN G I, GALAZ-AVALOS R M, et al. The role of chromatin modifications in somatic embryogenesis in plants[J/OL]. Front Plant Sci, 2015, 6: 635[2021-01-11]. doi: 10.3389/fpls.2015.00635. [78] LEE K, PARK O S, JUNG S J, et al. Histone deacetylation-mediated cellular dedifferentiation in Arabidopsis [J]. J Plant Physiol, 2016, 191: 95 − 100. [79] GORDON-KAMM B, SARDESAI N, ARLING M, et al. Using morphogenic genes to improve recovery and regeneration of transgenic plants[J/OL]. Plants, 2019, 8(2): 38[2021-01-12]. doi: 10.3390/plants8020038. [80] LOWE K, WU E, WANG Ning, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation [J]. Plant Cell, 2016, 28(9): 1998 − 2015. [81] MAHER M F, NASTI R A, VOLLBRECHT M, et al. Plant gene editing through de novo induction of meristems [J]. Nat Biotechnol, 2020, 38(1): 84 − 89. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210141
计量
- 文章访问数: 2649
- HTML全文浏览量: 639
- PDF下载量: 346
- 被引次数: 0