-
全球气候变化是人类目前面临的最为严峻的挑战,威胁着人类的生存和发展。自工业化时期以来,由于人口大幅增加和经济快速增长,造成了大量人为温室气体排放,成为全球气候变暖的主要诱因。世界气象组织(WMO)最新数据显示,2020年大气二氧化碳(CO2)质量分数高达410 mg·kg−1,比工业革命前增长60%。联合国政府间气候变化专门委员会(IPCC)第6次评估报告指出:从未来20 a的平均气温变化来看,全球升温预计将达1.5 ℃。目前,应对气候变化已成为全球共识,减少温室气体排放是缓解全球气候变暖的有效途径[1]。在此背景下,中国政府在2020年第75届联合国大会上向世界承诺,力争于2030年前实现CO2排放达到峰值,努力争取2060年前实现碳中和。碳达峰碳中和(“双碳”)是一场广泛而深刻的经济社会系统性变革,碳达峰碳中和目标纳入中国生态文明建设整体布局,上升为国家战略。种植业是实现碳达峰碳中和目标的重要领域之一。与其他行业不同,种植业既是重要的温室气体排放源,又有着巨大的固碳增汇潜力,推进种植业领域减排增汇将在实现碳达峰碳中和目标进程中发挥举足轻重的作用[2−3]。本研究针对种植业碳达峰碳中和目标的实现途径进行梳理总结,并提出进一步的见解,从而为种植业助力国家实现碳达峰碳中和目标提供理论支撑和科学建议。
Approaches and policy recommendations for reducing emissions and increasing carbon sinks in crop industry under the background of carbon peak and carbon neutrality
-
摘要: 碳达峰碳中和(“双碳”)是一场广泛而深刻的系统性变革,需要各个行业领域的参与。与其他行业不同,种植业既是重要的温室气体排放源,又有巨大的固碳增汇潜力,推进种植业领域减排增汇是实现国家碳达峰碳中和不可或缺的一部分。梳理了种植业领域非二氧化碳温室气体[氧化亚氮(N2O)和甲烷(CH4)]主要排放源,包括过量施用氮肥、节水灌溉稻田以及畜禽养殖废弃物导致的N2O排放;淹水稻田以及反刍动物造成的CH4排放;除了上述直接排放,种植生产过程中还会有大量的间接碳排放。着重分析了种植业温室气体减排与固碳增汇潜力,汇总了主要的减排增汇途径,包括旱地N2O减排和稻田CH4减排;通过有机肥施用、秸秆还田、保护性耕作以及种植业废弃物热解炭化还田来增加种植业固碳增汇潜力。讨论了碳标签和碳交易对于推动中国种植业绿色低碳发展的可行性与重要性,明确了种植业领域的减排增汇必须以保障粮食安全为前提,避免盲目减排、过度减排,必须与种植业绿色发展协同进行,建立完善的保障和创新体系,为中国碳达峰碳中和提供助力。参49Abstract: Carbon peak and carbon neutrality (dual carbon) is a broad and profound systemic change that requires the participation of various industry sectors. Unlike other industries, crop industry is not only an important source of greenhouse gas emissions, but also has enormous potential for carbon sequestration. Promoting emission reduction and carbon sequestration in crop industry is an indispensable part of achieving national dual carbon. In this paper, the main emission sources of nitrous oxide (N2O) and methane (CH4) in the field of planting were sorted out, including N2O emissions caused by excessive nitrogen application, water-saving irrigation of rice fields, and livestock and poultry waste, as well as CH4 emissions from flooded rice fields and ruminant animals. In addition to the direct emissions mentioned above, there existed a significant amount of indirect carbon emissions during agricultural production processes. The greenhouse gas emission reduction and carbon sequestration potential of crop industry were analyzed and the main emission reduction and sequestration pathways were summarized, including N2O emission reduction in dryland, CH4 emission reduction in rice fields. The potential of carbon sequestration and sink enhancement in crop industry could be increased through the application of organic fertilizer, straw return to the field, conservation tillage and return of farming waste to the field through pyrolysis and charring. This paper also discusses the feasibility and importance of carbon labeling and carbon trading in promoting green and low carbon development in China’s crop industry. It is clarified that emission reduction and soil carbon sink increase in crop industry must be based on the premise of safeguarding food security, avoiding blind emission reduction and excessive emission reduction, and must be coordinated with green development of crop industry. A sound guarantee and innovation system should be established to provide assistance for China’s carbon peak and carbon neutrality. [Ch, 49 ref.]
-
[1] Working Group I of IPCC. Climate Change: the Physical Science Basis 2021 [M]. Cambridge: Cambridge University Press, 2021: 2391. [2] STEVANOVIC M, POPP A, BODIRSKY B L, et al. Mitigation strategies for greenhouse gas emissions from agriculture and land-use change: consequences for food prices [J]. Environmental Science &Technology, 2017, 51(1): 365 − 374. [3] TUBIELLO F N, SALVATORE M, FERRARA A F, et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990−2012 [J]. Global Change Biology, 2015, 21(7): 2655 − 2660. [4] QUÉRÉLC, ANDREW R M, FRIEDLINGSTEIN P, et al. Global carbon budget 2017 [J]. Earth System Science Data, 2018, 10(1): 405 − 448. [5] FEDERICI S, TUBIELLO F N, SALVATORE M, et al. New estimates of CO2 forest emissions and removals: 1990−2015 [J]. Forest Ecology and Management, 2015, 352: 89 − 98. [6] ROE S, STRECK C, OBERSTEINER M, et al. Contribution of the land sector to a 1.5 ℃ world [J]. Nature Climate Change, 2019, 9(11): 817 − 828. [7] GRASSI G, HOUSE J, DENTENER F, et al. The key role of forests in meeting climate targets requires science for credible mitigation [J]. Nature Climate Change, 2017, 7(3): 220 − 226. [8] Working Group I of IPCC. Climate Change: the Physical Science Basis 2013 [M]. Cambridge: Cambridge University Press, 2013: 1535. [9] 严圣吉, 尚子吟, 邓艾兴, 等. 我国农田氧化亚氮排放的时空特征及减排途径[J]. 作物杂志, 2022(3): 1 − 8. YAN Shengji, SHANG Ziyin, DENG Aixing, et al. Spatiotemporal characteristics and reduction approaches of farmland N2O emission in China [J]. Crops, 2022(3): 1 − 8. [10] United Nations Environment Programme. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions [EB/OL]. 2021-05-06[2022-11-02]. https://www.unep.org/resources/report/global-methane-assessment-benefits-and-costs-mitigating-methane-emissions. [11] ZHOU Sheng, SUN Huifeng, BI Junguo, et al. Effect of water-saving irrigation on the N2O dynamics and the contribution of exogenous and endogenous nitrogen to N2O production in paddy soil using 15N tracing [J/OL]. Soil and Tillage Research, 2020, 200: 104610[2022-11-12]. doi: 10.1016/j.still.2020.104610. [12] MEIJIDE A, GRUENING C, GODED I, et al. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field [J]. Agriculture,Ecosystems &Environment, 2017, 238: 168 − 178. [13] KONG Delei, LI Shuqing, JIN Yaguo, et al. Linking methane emissions to methanogenic and methanotrophic communities under different fertilization strategies in rice paddies [J]. Geoderma, 2019, 347: 233 − 243. [14] 方晓瑜, 李家宝, 芮俊鹏, 等. 产甲烷生化代谢途径研究进展[J]. 应用与环境生物学报, 2015, 21(1): 1 − 9. FANG Xiaoyu, LI Jiabao, RUI Junpeng, et al. Research progress in biochemical pathways of methanogenesis [J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(1): 1 − 9. [15] 黄祖辉, 米松华. 农业碳足迹研究——以浙江省为例[J]. 农业经济问题, 2011, 32(11): 40 − 47. HUANG Zuhui, MI Songhua. Agricultural sector carbon footprint accounting: a case of Zhejiang, China [J]. Issues in Agricultural Economy, 2011, 32(11): 40 − 47. [16] 甄伟, 庄鸿源, 米松华. 中国农业中间投入温室气体排放与减排潜力[J]. 浙江农业学报, 2021, 33(11): 2185 − 2194. ZHEN Wei, ZHUANG Hongyuan, MI Songhua. Analysis of agricultural intermediate input greenhouse gas emissions and emission reduction potential in China [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2185 − 2194. [17] 谭秋成. 中国农业温室气体排放: 现状及挑战[J]. 中国人口·资源与环境, 2011, 21(10): 69 − 75. TAN Qiucheng. Greenhouse gas emission in China’s agriculture: situation and challenge [J]. China Population,Resources and Environment, 2011, 21(10): 69 − 75. [18] ZHEN Wei, QIN Quande, QIAN Xiaoying, et al. Inequality across China’s staple crops in energy consumption and related GHG emissions [J]. Ecological Economics, 2018, 153: 17 − 30. [19] 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑: 地球科学), 2007, 37(6): 804 − 812. FANG Jingyun, GUO Zhaodi, PIAO Shilong, et al. Estimation of carbon sinks in terrestrial vegetation in China from 1981 to 2000 [J]. Science of China (Terrae), 2007, 37(6): 804 − 812. [20] GUO Yinyan, GONG Peng, AMUNDSON R, et al. Analysis of factors controlling soil carbon in the conterminous United States [J]. Soil Science Society of America Journal, 2006, 70(2): 601 − 612. [21] LAL R. Global potential of soil carbon sequestration to mitigate the greenhouse effect [J]. Critical Reviews in Plant Sciences, 2003, 22(2): 151 − 184. [22] 李玥, 巨晓棠. 农田氧化亚氮减排的关键是合理施氮[J]. 农业环境科学学报, 2020, 39(4): 842 − 851. LI Yue, JU Xiaotang. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission [J]. Journal of Agro-Environment Science, 2020, 39(4): 842 − 851. [23] DAVIDSON E A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860 [J]. Nature Geoscience, 2009, 2(9): 659 − 662. [24] ZHANG Xiaoying, FANG Qunchao, ZHANG Tao, et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: ameta-analysis [J]. Global Change Biology, 2020, 26(2): 888 − 900. [25] KONG Delei, JIN Yaguo, CHEN Jie, et al. Nitrogen use efficiency exhibits a trade-off relationship with soil N2O and NO emissions from wheat-rice rotations receiving manure substitution [J/OL]. Geoderma, 2021, 403: 115374[2022-11-12]. doi: 10.1016/j.geoderma.2021.115374. [26] 屈田华, 李永夫, 张少博, 等. 生物质炭输入影响土壤氮素转化与氧化亚氮排放的研究进展[J]. 浙江农林大学学报, 2021, 38(5): 926 − 936. QU Tianhua, LI Yongfu, ZHANG Shaobo, et al. Effects of biochar application on soil nitrogen transformation and N2O emissions: a review [J]. Journal of Zhejiang A&F University, 2021, 38(5): 926 − 936. [27] 李松, 李海丽, 方晓波, 等. 生物质炭输入减少稻田痕量温室气体排放[J]. 农业工程学报, 2014, 30(21): 234 − 240. LI Song, LI Haili, FANG Xiaobo, et al. Biochar input to reduce trace greenhouse gas emission in paddy field [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 234 − 240. [28] DONG Da, LI Jiong, YING Shanshan, et al. Mitigation of methane emission in a rice paddy field amended with biochar-based slow-release fertilizer [J/OL]. Science of The Total Environment, 2021, 792: 148460[2022-11-12]. doi: 10.1016/j.scitotenv.2021.148460. [29] AKIYAMA H, YAN Xiaoyuan, YAGI K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta‐analysis [J]. Global Change Biology, 2010, 16(6): 1837 − 1846. [30] XIA Longlong, LAM S K, CHEN Deli, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis [J]. Global Change Biology, 2017, 23(5): 1917 − 1925. [31] LI Tingyu, ZHANG Weifeng, YIN Jiao, et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem [J/OL]. Global Change Biology, 2018, 24(2): e511[2022-11-12]. doi: 10.1111/gcb.13918. [32] 李金秋, 邵晓辉, 缑广林, 等. 水肥管理对热带地区双季稻田CH4和N2O排放的影响[J]. 环境科学, 2021, 42(7): 3458 − 3471. LI Jinqiu, SHAO Xiaohui, GOU Guanglin, et al. Effects of water and fertilization management on CH4 and N2O emissions in double-rice paddy fields in tropical regions [J]. Environmental Science, 2021, 42(7): 3458 − 3471. [33] 邹建文. 稻麦轮作生态系统温室气体(CO2, CH4和 N2O)排放研究[D]. 南京: 南京农业大学, 2005. ZOU Jianwen. Study on Greenhouse Gas (CO2, CH4 and N2O) Emissions from Rice-wheat Crop Rotation Ecosystem [D]. Nanjing: Nanjing Agricultural University, 2005. [34] XU Ying, GE Junzhu, TIAN Shaoyang, et al. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China [J]. Science of the Total Environment, 2015, 505: 1043 − 1052. [35] CHEN Jie, LI Shuqing, LI Chen, et al. Post-seasonal effects of water-saving rice production regimes on N2O emissions in an annual rice-barley rotation system [J/OL]. Catena, 2019, 182: 104112[2022-11-12]. doi: 10.1016/j.catena.2019.104112. [36] 霍丽丽, 姚宗路, 赵立欣, 等. 秸秆综合利用减排固碳贡献与潜力研究[J]. 农业机械学报, 2022, 53(1): 349 − 359. HUO Lili, YAO Zonglu, ZHAO Lixin, et al. Contribution and potential of comprehensive utilization of straw for GHG emission reduction and carbon sequestration [J]. Transactions of the Chinese Society for Agricultural Machiner, 2022, 53(1): 349 − 359. [37] 潘根兴, 李恋卿, 刘晓雨, 等. 热裂解生物质炭产业化: 秸秆禁烧与绿色农业新途径[J]. 科技导报, 2015, 33(13): 92 − 101. PAN Genxing, LI Lianqing, LIU Xiaoyu, et al. Industrialization of biochar from biomass pyrolysis: a new option for straw burning ban and green agriculture of China [J]. Science &Technology Review, 2015, 33(13): 92 − 101. [38] SMITH P. Soil carbon sequestration and biochar as negative emission technologies [J]. Global Change Biology, 2016, 22(3): 1315 − 1324. [39] 马立军, 钟妮娜, 邹卓然, 等. 国内农机节能减排现状及应对措施[J]. 农业工程, 2016, 6(5): 12 − 13. MA Lijun, ZHONG Ni’na, ZOU Zhuoran, et al. Present situation and countermeasures of agricultural machineyenergy conservation and emissions reduction in China [J]. Agricultural Engineering, 2016, 6(5): 12 − 13. [40] 柯福艳. 浙江低碳农业发展的现状、路径选择与政策建议[J]. 浙江农业科学, 2013(2): 117 − 120. KE Fuyan. The current situation, path choices and policy suggestions of low-carbon agriculture development in Zhejiang [J]. Journal of Zhejiang Agricultural Sciences, 2013(2): 117 − 120. [41] TIEFENBACHER A, SANDÉN T, HASLMAYR HP, et al. Optimizing carbon sequestration in croplands: a synthesis [J/OL]. Agronomy, 2021, 11(5): 882[2022-11-12]. doi: 10.3390/agronomy11050882. [42] HUANG Tiantian, YANG Ning, LU Chen, et al. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods [J/OL]. Soil and Tillage Research, 2021, 214: 105171[2022-11-12]. doi: 10.1016/j.still.2021.105171. [43] CRYSTAL-ORNELAS R, THAPA R, TULLY K L. Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: ameta-analysis [J/OL]. Agriculture, Ecosystems & Environment, 2021, 312: 107356[2022-11-12]. doi: 10.1016/j.agee.2021.107356. [44] RAHMATI M, ESKANDARI I, KOUSELOU M, et al. Changes in soil organic carbon fractions and residence time five years after implementing conventional and conservation tillage practices [J/OL]. Soil and Tillage Research, 2020, 200: 104632[2022-11-12]. doi: 10.1016/j.still.2020.104632. [45] 胡宁, 娄翼来, 梁雷. 保护性耕作对土壤有机碳、氮储量的影响[J]. 生态环境学报, 2010, 18(6): 223 − 226. HU Ning, LOU Yilai, LIANG Lei. Soil organic C and N stocks as affected by the conservation tillage [J]. Ecology and Environmental Sciences, 2010, 18(6): 223 − 226. [46] LIN Hui, SUN Wanchun, YU Yijun, et al. Simultaneous reductions in antibiotics and heavy metal pollution during manure composting [J/OL]. Science of the Total Environment, 2021, 788: 147830[2022-11-12]. doi: 10.1016/j.scitotenv.2021.147830. [47] ZHU Xiefei, LABIANCA C, HE Mingjing, et al. Life-cycle assessment of pyrolysis processes for sustainable production of biochar from agro-residues [J/OL]. Bioresource Technology, 2022, 360: 127601[2022-11-12]. doi: 10.1016/j.biortech.2022.127601. [48] International Organization for Standardization. Greenhouse Gases: Carbon Footprint of Products-Requirements and Guidelines for Quantification and Communication: ISO/TS 14067−2013 [S]. Geneva: International Organization for Standardization, 2013. [49] 邱岳进, 李东明, 曹孝文, 等. 产品碳足迹评价标准比较分析[J]. 合作经济与科技, 2016(20): 138 − 140. QIU Yuejin, LI Dongming, CAO Xiaowen, et al. Comparative analysis of product carbon footprint evaluation standards [J]. Cooperative Economy and Science, 2016(20): 138 − 140. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220742
计量
- 文章访问数: 590
- HTML全文浏览量: 626
- PDF下载量: 85
- 被引次数: 0