-
雷竹Phyllostachys violascens是一种优良的笋用竹种,在浙江、安徽等省都有广泛的分布。近年来,以冬季地表覆盖和大量施肥为核心的雷竹集约栽培技术已在生产上大面积推广,为当地带来了显著的经济效益。但是,大量施肥对当地的生态环境也带来了较大风险,如氮磷养分流失、水体富营养化以及土壤污染等[1-2]。此外,雷竹林长期集约栽培也导致土壤养分大量积累、pH值大幅下降以及土壤生物学性质恶化等后果,使雷竹林提前退化,影响经济效益[3-4]。长期集约经营的雷竹林土壤微生物量碳、氮含量均显著下降[5]。对土壤微生物群落结构的分析结果表明,土壤细菌群落结构在长期集约经营后发生了较大程度的改变,且多样性指数大幅下降,其中pH值是主要的影响因子[6]。由于长期的单一经营,加上酸化严重,土壤真菌大量繁殖,土传病害也较严重。因此,施用土壤杀菌剂对于杀灭有害微生物、保护雷竹林健康可持续发展具有重要的意义。氰氨化钙又名石灰氮,是一种碱性肥料,可为土壤提供氮、钙等营养元素。因其具有较强的碱性,过去常作为酸性土壤改良剂。研究表明[7-9]:氰氨化钙可有效抑制、杀灭根结线虫,防治枯萎病、根肿病、菌核病等土传病害,解决连作障碍;补充作物生长过程中所需的钙素营养,提高作物抗逆性,改善品质[10]。作为一种具有无残留的农药和肥料双重功效的药肥,近年来氰氨化钙在设施菜地土壤的改良上已被推广使用[10]。目前,雷竹林地施用氰氨化钙改良土壤所采用的用量大多凭经验,尚没有较为合理的推荐用量。此外,施用氰氨化钙对雷竹林土壤微生物学性质,如土壤微生物生物量、土壤酶活性等的影响也没有相关报道。因此,针对退化雷竹林,研究不同施用量氰氨化钙对土壤理化性质及微生物学特性的影响,并提出建议施用量,对于评估氰氨化钙的功效和生态风险具有重要意义,同时也能为退化雷竹林改良提供重要的参考依据。
Effects of calcium cyanamide on soil microbial properties of intensively managed Phyllostachys violascens stands
-
摘要: 为确定氰氨化钙对土壤微生物学性质的影响和合理用量,采用随机区组试验方法进行田间原位试验,研究不同氰氨化钙施用量对退化雷竹Phyllostachys violascens林土壤微生物量碳、真菌/细菌比值以及土壤酶活性的影响。试验设置氰氨化钙施用量0,30,60,90,180 g·m-2,分别在施用后的第1,3,7,14,28 天采集0~20 cm土样,测定土壤微生物量以及土壤脱氢酶、转化酶、脲酶、磷酸酶活性。结果表明:①土壤中添加氰氨化钙在短期内对微生物产生强烈抑制,第7 天时所有处理均显著低于对照,其后又逐渐恢复,但90 g·m-2及180 g·m-2施用量处理土壤微生物量碳含量在第28天时仍显著低于对照及其他处理(P<0.05);②氰氨化钙对土壤真菌的影响大于土壤细菌,土壤真菌/细菌比值随着施用量的增加而显著降低,28 d后60 g·m-2及180 g·m-2施用量处理土壤真细比仍然显著低于对照(P<0.05);③施用氰氨化钙在前期显著抑制土壤酶活性,但施用28 d后,土壤脱氢酶、转化酶以及脲酶活性均显著高于对照(P<0.05),而磷酸酶活性与对照相比没有显著变化。低施用量氰氨化钙对土壤生物学性质的影响主要为短期效应,180 g·m-2施用量对土壤生物学性质的影响较大。在生产上建议采用60~90 g·m-2的施用量。Abstract: To study the effect of CaCN2 on soil microbial biomass carbon, the ratio of fungal to bacterial biomass,and soil enzyme activities,and to determine the optimum rate of calcium cyanamide(CaCN2)use in Phyllostachys violascens stands with intensive management,an experiment with a randomized complete block design was established. Soil CaCN2 treatments were 0(control),30,60,90,and 180 g·m-2,each with three replicates. Soil samples were taken 1,3,7,14,and 28 d after CaCN2 application. One-way ANOVA with Duncan's multiple range test was used to compare the difference between samples, and statistical significance was determined at the 5% level(P<0.05). Results indicated that the 90 and 180 g·m-2 CaCN2 treatments had significantly lower(P<0.05) soil microbial biomass. Other treatments were inhibited in the short term, but recovered gradually. Compared with bacteria, fungi were more sensitive to CaCN2 with the ratio of fungal to bacterial biomass decreasing significantly(P<0.05)as the CaCN2 rates increased. As with soil microbial biomass,CaCN2 also inhibited soil enzyme activities. Compared to the control, 28 d after application of CaCN2,soil dehydrogenase,urease,and invertase activities in each treatment were significantly higher(P<0.05);however, phosphatase activity showed no significant differences. Since low dose of CaCN2(30 g·m-2)had only a short-term effect on soil microbial properties and a high dose(180 g·m-2)had a strong influence,application of 60-90 g·m-2(CaCN2) should be recommended in bamboo stands.
-
[1] 吴家森,陈闻,姜培坤,等. 不同施肥对雷竹林土壤氮、磷渗漏流失的影响[J]. 水土保持学报,2012,26(2):33-44. WU Jiasen,CHEN Wen,JIANG Peikun,et al. Effects of different fertilization on seepage loses of nitrogen and phosphorus in the soil under Phyllostachys praecox stand[J]. J Soil Water Conserv,2012,26(2):33-44. [2] 姜培坤,叶正钱,徐秋芳. 高效栽培雷竹林土壤重金属含量的分析研究[J]. 水土保持学报,2003,17(4):61-74. JIANG Peikun,YE Zhengqian,XU Qiufang. Changes in heavy metal elements of soil in ecosystem of Phyllostachys praecox under intensive management[J]. J Soil Water Conserv,2003,17(4):61-74. [3] XU Qiufang,JIANG Peikun,XU Zhihong. Soil microbial functional diversity under intensively managed bamboo plantations in southern China[J]. J Soil Sediment,2008,8(3):177-183. [4] 孙达,黄芳,蔡荣荣,等. 集约经营雷竹林土壤磷素的时空变化[J]. 浙江林学院学报,2007,24(6):670-674. SUN Da,HUANG Fang,CAI Rongrong,et al. Temporal and spatial variation of soil phosphorus in Phyllostachys praecox stands under intensive cultivation management[J]. J Zhejiang For Coll,2007,24(6):670-674. [5] 秦华,徐秋芳,曹志洪. 长期集约经营条件下雷竹林土壤微生物量的变化[J]. 浙江林学院学报,2010,27(1):1-7. QIN Hua,XU Qiufang,CAO Zhihong. Soil microbial biomass in long-term and intensively managed Phyllostachys praecox stands[J]. J Zhejiang For Coll,2010,27(1):1-7. [6] 秦华,李国栋,叶正钱,等. 集约种植雷竹林土壤细菌群落结构的演变及其影响因素[J]. 应用生态学报, 2010,21(10):2645-2651. QIN Hua,LI Guodong,YE Zhengqian,et al. Evolvement of soil bacterial community in intensively managed Phyllostachys praecox stand and related affecting factors[J]. Chin J Appl Ecol,2010,21(10):2645-2651. [7] BLETSOS F A. Grafting and calcium cyanamide as alternatives to methyl bromide for greenhouse eggplant production[J]. Sci Hortic,2006,107:325-331. [8] CHOI H W,CHUNG I M,SIN M H,et al. The effect of spent mushroom sawdust compost mixes,calcium cyanamide and solarization on basal stem rot of the cactus Hylocereus trigonus caused by Fusarium oxysporum[J]. Crop Prot, 2007,26:162-168. [9] TREMBLAY N,BELEC C,COULOMBE J,et al. Evaluation of calcium cyanamide and liming for control of clubroot disease in cauliflower[J]. Crop Prot,2005,24:798-803. [10] 徐祖祥. 荣宝土壤消毒剂对西兰花、宝塔花菜等蔬菜产量及种植效益的影响[J]. 科技通报,2009,25(4):456-459. XU Zuxiang. The effect of soil decontaminant Ronbao on the yield and economic returns of Broccoli,Tower Cauliflower and Chinese cabbage[J]. Bull Sci Technol,2009,25(4):456-459. [11] VANCE E D,BROOKES P C,JENKINSON D C. An extraction method for measuring soil microbial biomass C[J]. Soil Biol Biochem,1987,19:703-707. [12] BAATH E,ANDERSON T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques[J]. Soil Biol Biochem,2003,35(7):955-963. [13] ANDERSON J P E,DOMSCH K H. A physiological method for the quantitative measurement of microbial biomass in soil[J]. Soil Biol Biochem,1978,10:215-221. [14] 关松荫. 土壤酶及其研究法[M]. 北京:农业出版社,1986. [15] BOURBOS V A,SKOUDRIDAKIS M T, DARAKIS G A,et al. Calcium cyanamide and soil solarization for the control of Fusarium solani f. sp. cucurbitae in greenhouse cucumber[J]. Crop Prot,1997,16:383-386. [16] SHI Kai,WANG Li,ZHOU Yanhong,et al. Effects of calcium cyanamide on soil microbial communities and Fusarium oxysporum f. sp. cucumberinum[J]. Chemosphere,2009,75:872-877. [17] IBEKWE A M,PAPIERNIK S K,GAN J,et al. Impact of fumigants on soil microbial communities[J]. Appl Environ Microbiol,2001,67:3245-3257. [18] BLETESOS F A. Grafting and calcium cyanamide as alternatives to methyl bromide for greenhouse eggplant production[J]. Sci Hortic,2006,107:325-331. [19] 张华勇,尹睿,黄锦法,等. 稻麦轮作田改为菜地后生化指标的变化[J]. 土壤,2005,37(2):182-186. ZHANG Huayong,YIN Rui,HUANG Jingfa,et al. Changes in soil biochemical properties caused by cropping system alteration from rice-wheat rotation to vegetable cultivation[J]. Soils,2005,37(2):182-186. [20] 王俊华,尹睿,张华勇,等. 长期定位施肥对农田土壤酶活性及其相关因素的影响[J]. 生态环境,2007,16(1):191-196. WANG Junhua,YIN Rui,ZHANG Huayong,et al. Changes in soil enzyme activities,microbial biomass and soil nutrition status in response to fertilization regimes in a long-term field experiment[J]. Ecol Environ,2007,16(1):191-196. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.03.004