-
植物硅酸体,简称植硅体,是植物内的含水非晶态二氧化硅(SiO2)颗粒,存在于植物不同部位的细胞内[1-2]。植硅体碳因具有很强的抗腐蚀、抗分解、抗氧化等特性[2-3],可在土壤中保存数千年乃至万年之久[4],是陆地生态系统长期固碳的主要机制之一[5-6],对调节全球碳平衡和应对气候变化意义重大。当前对植硅体的研究主要集中于古环境与古气候重现、农业与环境考古、古生态以及植物分类学等方面,基于宏观估测和默认植硅体恒久稳定的前提进行,因此学界对土壤中植硅体的稳定性存在很大争议。PARR等[7-8]发现:经过2 000 a的分解,土壤中植硅体碳质量分数从仅占表层土壤有机碳不到10%的比例,上升到82%,表明土壤中植硅体碳的封存是一个长期积累的过程[9]。WILDING等[4]发现:植硅体中碳的放射性年龄约为1.33万a。因此,植硅体具有长期稳定性。也有研究认为植硅体是不稳定的。如FRAYSSE等[10]发现竹林土壤中的植硅体的溶解度等同于玻璃质硅石,是石英的17倍;BARTOLI等[11]认为植硅体的溶解速率比硅酸盐矿物高一个数量级[11];CONLEY等[12]发现:保存死亡植物的地方,水溶性硅的输出明显增加。竹类作为禾本科Poaceae中典型的硅富集植物,植硅体碳含量高,提取、纯化相对方便[13-14]。其次,竹类植物分布广泛,种类丰富[15],不同生境竹种差异大[16],为比较不同竹种植硅体碳稳定性差异和微观形态特征提供了理想的材料。选择竹类植物为研究对象,对揭示植硅体碳稳定性机理和准确估测竹类植硅体碳封存潜力具有双重意义。扫描电子显微镜(scanning electron microscope,SEM)是由电子光学技术、真空技术、精细机械结构以及现代计算机控制技术等共同组成的电子光学仪器[17],在植物研究工作中主要被应用于植物来源和种类鉴定、植物微形态学研究以及植物生长的优劣与环境污染等质量控制[18-19]。近年来,随着植物和土壤植硅体碳研究的深入,扫描电子显微镜等先进仪器也被应用到植硅体碳测定上[20-21]。本研究以毛竹Phyllostachys edulis叶片为材料,利用扫描电子显微镜的高清成像功能检测植硅体微观形态特征,从微观形态上研究毛竹植硅体的稳定性,建立植硅体稳定性微观表征方法,为深入开展植硅体碳研究提供依据。
Stability of Phyllostachys edulis phytolith by scanning electron microscopy
-
摘要: 为了揭示竹子植硅体表面形态和结构,探究植硅体在缓冲液浸泡后形态是否稳定,以毛竹Phyllostachys edulis叶片为研究材料,采用微波消解法、湿灰化法和干灰化法,提取毛竹叶片中的植硅体。对提取的植硅体经镀金膜处理,用扫描电子显微镜(SU-8000 Hitachi)观测。结果表明:毛竹植硅体具有多种形态。微波消解法提取的毛竹植体长为12~14 μm,宽为7~10 μm,植硅体呈现长鞍形(竹节形),图像细节清晰,植硅体形态完整;湿灰化法和干灰化法提取的毛竹植硅体呈哑铃形,长约为12 μm,连接处宽度约为4 μm,两端的宽度约8 μm,并且用湿灰化法提取的毛竹植硅体还可见微小突起。微波消解法是提取毛竹植硅体比较理想的方法。微波消解法提取的植硅体在pH 10的硼酸缓冲液中浸泡15 d后的微观形态可见:植硅体外表已出现溶蚀坑,表面变粗糙,可见硅质颗粒,呈现为聚集分布。说明植硅体表面已被破坏,呈现不稳定状态。Abstract: In order to reveal the surface morphology and structure of bamboo plant phytolith and explore the stability of phytolith after strong alkali soaking, the leaves of Phyllostachys edulis were used as the research material to extract the phytolith by using microwave digestion method, wet ashing method and dry ashing method. The extracted phytolith was treated with gold plated film and observed by scanning electron microscope (SU-8000 Hitachi). The results showed that the phytoliths of Ph. edulis had various forms. The length of phytolith extracted by the microwave digestion method was 12-14 μm; the width of phytolith was 7-10 μm; the phytolith presented a long saddle shape (slub shaped); the image details were clear and the morphology of the Ph. edulis was complete. The phytolith extracted by wet ashing method and dry ashing method were dumbbell shaped with a length of about 12 μm. The width of the joint was about 4 μm and the width of the ends was about 8 μm. The phytolith extracted by wet ashing could also showed tiny protuberances. Microwave digestion was an ideal method to extract Phytolith from Ph. edulis. The micromorphology of the phytolith extracted by microwave digestion method could be seen after soaking in the boric acid buffer solution with a pH value of 10. The surface of the phytolith appeared corrosion pit and became rough; and the silica particles presented aggregation distribution. It indicated that the surface of the phytolith was damaged and unstable.
-
Key words:
- botany /
- Phyllostachys edulis /
- phytolith /
- scanning electron microscope /
- stability /
- micromorphology
-
[1] PARR J F, SULLIVAN L A. Soil carbon sequestration in phytoliths[J]. Soil Biol Biochem, 2005, 37(1):117-124. [2] 王永吉, 吕厚远.植物硅酸体研究及应用[M].北京:海洋出版社, 1993. [3] STRÖMBERG C A E. Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of north America during the late Eocene to early Miocene[J]. Palaeogeogr Palaeocl, 2004, 207(3/4):239-275. [4] WILDING L P, BROWN R E, HOLOWAYCHUK N. Accessibility and properties of occluded carbon in biogenetic opal[J]. Soil Sci, 1967, 103(1):56-61. [5] 左昕昕, 吕厚远.我国旱作农业黍、粟植硅体碳封存潜力估算[J].科学通报, 2011, 56(34):2881-2887. ZUO Xinxin, LÜ Houyuan. Carbon sequestration within millet phytoliths from dry-farming of crops in China[J]. Chin Sci Bull, 2011, 56(34):2881-2887. [6] PARR J F, SULLIVAN L A, QUIRK R. Sugarcane phytoliths:encapsulation and sequestration of a long-lived carbon fraction[J]. Sugar Tech, 2009, 11(1):17-21. [7] PARR J F, DOLIC V, LANCASTER G, et al. A microwave digestion method for the extraction of phytoliths from herbarium specimens[J]. Rev Palaeobot Palynol, 2001, 116(3/4):203-212. [8] PARR J, SULLIVAN L, CHEN Bihua, et al. Carbon bio-sequestration within the phytoliths of economic bamboo species[J]. Global Change Biol, 2010, 16(10):2661-2667. [9] POST W M, KWON K C. Soil carbon sequestration and land-use change:processes and potential[J]. Global Change Biol, 2000, 6(3):317-328. [10] FRAYSSE F, POKROVSKY O S, SCHOTT J, et al. Surface chemistry and reactivity of plant phytoliths in aqueous solutions[J]. Chem Geol, 2009, 258(3/4):197-206. [11] BARTOLI F, WILDING L P. Dissolution of biogenic opal as a function of its physical and chemical properties[J]. Soil Sci Soc Am J, 1980, 44(4):873-878. [12] CONLEY D J, LIKENS G E, BUSO D C, et al. Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest[J]. Global Change Biol, 2008, 14(11):2548-2554. [13] 应雨骐, 项婷婷, 李永夫, 等.中国亚热带重要树种植硅体碳封存潜力估测[J].自然资源学报, 2015, 30(1):133-140. YING Yuqi, XIANG Tingting, LI Yongfu, et al. Estimation of sequestration potential via phytolith carbon by important forest species in subtropical China[J]. J Nat Resour, 2015, 30(1):133-140. [14] YANG Jie, WU Jiasen, JIANG Peikun, et al. A study of phytolith-occluded carbon stock in monopodial bamboo in China[J]. Sci Rep, 2015, 5:13292. doi:10.1038/srep13292. [15] 周国模, 姜培坤, 徐秋芳.竹林生态系统中碳的固定与转化[M].北京:科学出版社, 2010. [16] 郭起荣, 杨光耀, 杜天真, 等.中国竹林的碳素特征[J].世界竹藤通讯, 2005, 3(3):25-28. GUO Qirong, YANG Guangyao, DU Tianzhen, et al. Carbon character of Chinese bamboo forest[J]. World Bamboo Rattan, 2005, 3(3):25-28. [17] 曹君迈, 贝盏临, 江涌, 等.枸杞花蕾扫描电镜制样方法的探讨[J].北方园艺, 2010(3):30-32. CAO Junmai, BEI Zhanlin, JIANG Yong, et al. Flower bud of Lycium barbarum L. scanning microscopy preparation methods discussed[J]. Northern Hortic, 2010(3):30-32. [18] 肖媛, 刘伟, 汪艳, 等.生物样品的扫描电镜制样干燥方法[J].实验室研究与探索, 2013, 32(5):45-53. XIAO Yuan, LIU Wei, WANG Yan, et al. Drying methods of biological sample preparation for scanning electron microscope[J]. Res Explor Lab, 2013, 32(5):45-53. [19] 张喆, 胡晶红, 李佳, 等.扫描电镜在生药研究领域中的应用概况[J].中国医药导报, 2013, 10(30):24-27. ZHANG Zhe, HU Jinghong, LI Jia, et al. Applications of scanning electron microscope in pharmacognosy research[J]. China Med Herald, 2013, 10(30):24-27. [20] 杨杰, 李永夫, 黄张婷, 等.碱溶分光光度法测定植硅体碳含量[J].分析化学, 2014, 42(9):1389-1390. YANG Jie, LI Yongfu, HUANG Zhangting, et al. Determination of phytolith-occluded carbon content using alkali dissolution-spectrophotometry[J]. Chin J Anal Chem, 2014, 42(9):1389-1390. [21] HUANG Zhangting, LI Yongfu, CHANG S X, et al. Phytolith-occluded organic carbon in intensively managed Lei bamboo (Phyllostachys praecox) stands and implications for carbon sequestration[J]. Can J For Res, 2015, 45(8):1019-1025. [22] WALKLEY A, BLACK I A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method[J]. Soil Sci, 1934, 37(1):29-38. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.06.023