-
氮和磷是限制生态系统中植物生长的关键养分因子,对植物的生长有重要的作用,影响着生态系统的生产力和生态过程[1-2]。在自然生态系统中,植物的生长一般表现为氮限制、磷限制或者氮磷共同限制[3]。荣戗戗等[4]研究表明:植物体内氮磷及其比例能充分反映土壤养分供应与植物养分需求的动态平衡,可表征土壤氮素或磷素对植物生长的限制。氮磷添加可调节土壤养分转化[5],提高植物的净初级生产力[6-7],但长期、连续、过量的氮磷输入会降低植物的净光合速率和净初级生产力[8-9]。植物通常会对自身资源进行配置、补偿和平衡,以最大限度减小环境变化对自身的不利影响。因此,探索植物与环境之间的关系,研究土壤-植物相互作用及碳、氮、磷循环,一直都是生态学的研究重点[10]。作为植物对环境变化最敏感的器官,叶片的功能性状能快速、准确地反映植物对环境变化的响应与适应机制[11-12],是当前研究生态系统响应环境变化的重要方法和依据[13]。考来木Correa carmen为芸香科Rutaceae考来木属Correa的常绿灌木,其株型密集,花朵繁多,花型奇特、芳香且多彩、花期长,具有较高的园林观赏价值,被誉为“冬之精灵”[14]。因此,考来木作为珍稀的冬花类园林植物,在冬季少花的华中、华北地区被迅速推广,市场占有量与日俱增。科学的养分管理是提高幼苗生产力和城市园林生态系统功能的主要措施,但目前,有关考来木对肥料添加的生理响应研究尚无报道,现有的研究成果主要集中在快速繁殖[15]和耐高温干旱[16]等逆境生理方面。鉴于此,研究了12种土壤氮磷添加比例对考来木叶片营养含量、光合生理指标和叶绿素荧光参数的影响,分析了叶片功能性状与土壤氮磷化学计量特征的关系,以期为考来木的栽培管理和养分调控等提供科学依据。
-
由表 1可知:磷肥施用量相同,考来木叶片的氮磷质量分数均随氮肥施用量的增加而提高。处理间叶片的氮质量分数差异极显著(P<0.01),磷质量分数差异显著(P<0.05);氮肥施用量相同,考来木叶片的氮质量分数随磷肥施用量的增加而呈先增后减的趋势,处理间差异不显著。叶片的磷质量分数随磷肥水平的提高而增加,处理间差异极显著(P<0.01)。可见,增施氮肥,不仅可显著提高叶中氮的质量分数,还能提高磷的质量分数;增施磷肥,不仅可显著提高叶中磷的质量分数,还能提高氮的质量分数。氮肥和磷肥具有相互增效的生态效应。随着氮肥、磷肥施用量的增大,叶片的氮磷质量分数相应增加,过量施肥会引起氮素或磷素在植物体内的累积。
表 1 不同施肥处理下考来木叶片氮磷的变化
Table 1. Changes of nitrogen and phosphorus in Correa carmen leaves under different fertilization treatments
处理 w氮/(mg·g-1) w磷/(mg·g-1) m(氮):m(磷) 3月20日 6月20日 9月20日 3月20日 6月20日 9月20日 3月20日 6月20日 9月20日 P0N0 15.09±0.04 g 16.38±0.04 h 15.67±0.06 g 0.49±0.01 e 0.53±0.02 d 0.47±0.01 e 30.80±0.11 a 30.91±0.11 a 33.34±0.12 c P0N1 16.22±0.05 f 18.22±0.05 g 17.08±0.08 f 0.56±0.02 e 0.62±0.02 d 0.49±0.01 e 28.96±0.09 b 29.39±0.10 b 34.86±0.12 b P0N2 17.62±0.05 c 20.09±0.07 e 18.56±0.07 d 0.64±0.02 e 0.77±0.03 c 0.52±0.01 e 27.53±0.08 c 26.09±0.09 d 35.69±0.13 a P0N3 18.47±0.06 b 21.84±0..07 c 19.24±0.08 b 0.69±0.02 e 0.78±0.03 c 0.54±0.02 e 26.77±0.08 d 28.00±0.09 c 35.63±0.12 a P1N0 15.04±0.04 g 16.26±0.04 h 15.63±0.05 g 0.58±0.01 e 0.79±0.03 c 0.59±0.02 e 25.93±0.07 e 20.58±0.08 f 26.49±0.10 d P1N1 16.84±0.05 e 18.85±0.07 f 17.74±0.06 e 0.75±0.03 e 0.87±0.04 c 0.82±0.03 d 22.45±0.07 f 21.67±0.08 e 21.63±0.09 e P1N2 18.96±0.06 a 21.32±0.07 d 18.93±0.07 c 0.93±0.04 d 1.09±0.05 b 0.95±0.04 c 20.39±0.06 h 19.56±0.08 h 19.93±0.08 g P1N3 18.89±0.05 a 22.43±0.05 b 19.77±0.08 a 0.98±0.04 d 1.11±0.05 b 0.97±0.04 c 19.28±0.06 i 20.21±0.08 g 20.38±0.09 f P2N0 15.01±0.04 g 16.21±0.06 h 15.58±0.05 g 0.72±0.03 e 1.05±0.05 b 0.81±0.03 d 20.85±0.06 g 15.44±0.05 l 19.23±0.08 h P2N1 17.09±0.05 d 18.93±0.06 f 17.83±0.06 e 1.09±0.05 c 1.14±0.05 b 1.13±0.06 b 15.68±0.05 j 16.61±0.06 k 15.78±0.07 i P2N2 19.13±0.06 a 22.74±0.09 a 19.24±0.08 b 1.24±0.06 b 1.31±0.06 a 1.26±0.06 a 15.43±0.05 k 17.36±0.07 i 15.27±0.06 j P2N3 19.08±0.06 a 21.95±0.08 c 19.18±0.08 b 1.38±0.06 a 1.32±0.06 a 1.28±0.06 a 13.83±0.04 l 16.63±0.06 j 14.98±0.06 k 说明:数值为平均值±标准差;同列不同字母表示处理间差异显著(P<0.05) 考来木叶片氮的季节变化明显,而磷相对稳定。叶片氮质量分数呈现由春至夏增加、由夏至秋减少的趋势。叶片磷质量分数的季节变化趋势与氮相同,但季节差异不显著。相较于中国常见植物叶片的平均水平(氮为20.24 mg·g-1,磷为1.12 mg·g-1)[20-23],考来木叶片的氮磷质量分数明显偏低,与平均水平差异极显著。
-
由表 2可知:在春、夏、秋各季节中,氮磷肥施用水平对考来木叶片叶绿素质量分数的影响是相同的。在磷肥添加量相同的4个施氮肥水平中,叶绿素质量分数由高到低依次为N2,N3,N1和N0。在氮肥添加量相同的3个施磷肥水平中,叶绿素质量分数在N0水平下的3个磷肥梯度中,叶绿素质量分数由高到低依次为P0,P1和P2,即叶绿素质量分数随磷肥添加水平的提高而降低;在N1,N2,N3任一水平下,叶绿素质量分数均以P1处理最高,P2处理最低,P0处理居中。各季节中考来木的叶绿素质量分数均以P1N2处理最高。
表 2 不同施肥处理下考来木叶片叶绿素的变化
Table 2. Changes of chlorophyll content of Correa carmen leaves under different fertilization levels
处理 w叶绿素/(mg·g-1) 3月20日 6月20日 9月20日 P0N0 2.63 ± 0.01 h 3.94 ± 0.03 h 3.04 ± 0.02 h P0N1 2.93 ± 0.02 f 4.45 ± 0.04 d 3.18 ± 0.03 g P0N2 3.12 ± 0.02 d 4.88 ± 0.04 b 3.54 ± 0.03 c P0N3 3.15 ± 0.02 c 4.35 ± 0.04 e 3.39 ± 0.03 d P1N0 2.57 ± 0.01 i 3.77 ± 0.03 i 2.97 ± 0.02 i P1N1 3.08 ± 0.02 e 4.24 ± 0.04 f 3.29 ± 0.03 e P1N2 3.37 ± 0.03 a 4.99 ± 0.05 a 3.70 ± 0.04 a P1N3 3.20 ± 0.03 b 4.43 ± 0.04 d 3.59 ± 0.04 b P2N0 2.48 ± 0.01 j 3.52 ± 0.03 j 2.87 ± 0.02 j P2N1 2.85 ± 0.02 g 4.06 ± 0.04 g 3.20 ± 0.03 g P2N2 2.88 ± 0.02 g 4.71 ± 0.05 c 3.40 ± 0.03 d P2N3 2.96 ± 0.02 f 4.33 ± 0.04 e 3.25 ± 0.03 f 说明:数值为平均值±标准差;同列不同字母表示处理间差异显著(P<0.05) 各处理的考来木叶片叶绿素质量分数,均呈由春季至夏季增加,由夏季至秋季减少的趋势。叶绿素质量分数的季节变化趋势与叶片的氮磷的相同。Pearson相关分析表明:考来木叶片的叶绿素质量分数与土壤添加氮肥和磷肥用量及考来木叶片的氮磷质量分数呈显著正相关(P<0.05)。
总之,增施氮肥可显著提高考来木叶片的叶绿素质量分数。在低氮的土壤条件下,增施磷肥,考来木叶片的叶绿素质量分数下降;在高氮的土壤条件下,增施磷肥可提高考来木叶绿素质量分数,但进一步提高施磷量,则叶绿素质量分数下降。说明考来木对磷的需求量较小,提高土壤或叶片中氮素水平可加速考来木对磷吸收与代谢。
-
由图 1可知:考来木叶片的净光合速率(Pn),气孔导度(Gs)和蒸腾速率(Tr)对土壤施氮肥水平的响应趋势一致,即随土壤施氮肥水平的提高而呈先增加后减小的趋势,在N2水平下达最高值。叶片细胞间二氧化碳摩尔分数(Ci)值则随土壤施氮肥水平的提高呈持续增加的趋势,在N3水平下达最高值。如在土壤施磷肥水平为P1的4个氮肥梯度中,N1,N2和N3处理的Pn分别比N0处理高7.46%,13.43%和11.19%,Gs分别增加了13.01%,31.51%和25.68%,Tr分别增加了10.96%,23.32%和21.14%;Ci分别增加了6.21%,12.41%和15.17%,均达到显著甚至极显著水平。可见,考来木叶片的光合生理各项指标均与氮肥添加水平呈显著的正相关关系(P<0.05)。
图 1 不同施肥处理下考来木叶片光合生理指标的变化
Figure 1. Changes of photosynthetic physiological index of Correa carmen leaves under different fertilization levels
施磷肥对考来木叶片的光合生理指标的影响与施氮肥不同。在N0水平下的3个磷肥添加梯度中,Pn,Gs,Tr和Ci均随着施磷肥水平的提高而下降;在N1,N2,N3任一水平下,3个磷肥梯度中的各项光合生理指标均随着施磷肥水平的提高而呈先增加后降低的趋势,P1处理下达最大值,P2处理下为最小值。表明在低氮土壤条件下增施磷肥,对考来木叶片的光合生理产生抑制效应;提高土壤氮水平,磷抑制现象缓解或消除。在高氮土壤中施磷肥,对光合生理产生促进效应;随着磷肥用量的进一步提高,光合生理受抑制。总的看来,磷对光合生理指标的影响受氮水平的制约。方差分析表明:磷肥施用量对考来木叶片净光合速率影响显著(P<0.05),对其他光合生理指标的影响差异不显著。
-
由图 2可知:在磷肥添加量相同的4个氮肥处理中,初始荧光(Fo)随氮肥添加量的增加而呈先降低后增加的变化趋势,最大荧光(Fm)和最大光化学效率(Fv/Fm)呈先增加后降低的变化趋势。其中在P1水平下,N1,N2,N3处理的Fo分别比N0处理降低,Fm和Fv/Fm分别比N0处理增加。表明向土壤中添加氮肥,可提高考来木的光化学效率潜能;若氮肥添加过量(N3处理),Fo升高,表明光系统Ⅱ(PSⅡ)活性受抑制或受损伤。总体上,在适量施肥的基础上,氮与考来木的光化学潜能呈正相关关系。
图 2 不同施肥处理下考来木叶片叶绿素荧光的变化
Figure 2. Changes of chlorophyll fluorescence of Correa carmen leaves under different fertilization levels
在N0处理中,考来木叶片的Fo和Fm均随磷肥添加量的增加而呈现持续增加趋势,而Fv/Fm则呈持续降低的趋势。P1和P2处理的Fo分别比P0处理增加了8.33%和25.00%;Fm分别增加了6.90%和10.34%,均达极显著水平;Fv/Fm分别下降了0.35%和3.47%,达显著水平。在N1,N2,N3处理中,Fo随磷肥添加量的增加而呈先降低后增加的趋势,差异不显著;Fm和Fv/Fm均呈先升高后降低的趋势,其中Fv/Fm差异显著(P<0.05)。
由图 2还可看出:在N0处理下,考来木叶片的光化学猝灭系数(qP)和实际光化学量子产量(Yield)均随磷肥添加量的增加而降低,非光化学猝灭系数(qNP)随磷肥添加量的增加而增加。其中P1和P2处理的qP和Yield比P0处理有所下降,而qNP依次增加。很显然,磷肥添加水平的提高对考来木叶片PSⅡ的光化学活性具有抑制作用。在N1,N2,N3处理中,随着磷肥添加水平的提高,qP和Yield均先增大后降低,最大值均出现在P1水平;qNP先降低后增高,最小值亦在P1水平。由此可见,氮肥添加水平的提高,可逐渐减弱施磷对考来木叶片光化学活性的抑制作用。
在不同处理下,考来木叶片的qP,qNP和Yield随着施用氮磷肥比例的不同变化趋势不同。在P0和P1水平下,qP和Yield均随氮磷比例的增加而先增加后减少,且均在氮肥施用量为247.9 mg·kg-1的N2处理达最大值;而qNP随氮磷比例的增加呈先降低后升高的趋势,最小值出现在N2处理;在P2水平下,qP和Yield均随氮磷比例的增加而持续增加,而qNP则随氮磷比例的增加而持续降低。
方差分析和LSD显著性检验表明:考来木施用氮磷肥对叶片的叶绿素荧光特征影响显著。其中,考来木叶片的荧光产量Yield及最大光化学效率Fv/Fm均在氮肥添加量为247.9 mg·kg-1,磷肥添加量为36.3 mg·kg-1,氮磷比为6.83的P1N2处理中达最高值,说明P1N2是考来木施用氮磷肥的最佳组合,可作为考来木栽培的施肥依据。
Photosynthetic traits and chlorophyll fluorescence of Correa carmen leaves with N and P additions
-
摘要: 氮磷是植物生长的关键养分因子,对植物的生长发育非常重要。通过梯度施肥试验,研究了土壤添加氮磷对考来木Correa carmen光合生理参数和叶绿素荧光参数的影响。结果表明:①单施磷肥,考来木叶片叶绿素质量分数、净光合速率(Pn)及荧光最大光化学效率(Fv/Fm)等光合效率指标随着磷肥施用量的增加而下降,初始荧光(Fo)和非光化学猝灭系数(qNP)等光能耗散指标则随着磷肥施用量的增加而增加。②单施氮肥,考来木叶片光合效率指标随着氮肥施用量的增加而增加;当氮肥施用量达247.9 mg·kg-1后,考来木的光合效率随着氮肥施用量的增加而下降。光能耗散指标则呈相反趋势。③磷肥的施用效果随着施氮量的增大而提高,氮肥的施用效果随着施磷量的增大而先升后降,其中低氮高磷和低磷高氮的施肥处理均降低考来木的光合效率。在氮肥施用量为247.9 mg·kg-1,磷肥施用量为36.3 mg·kg-1的施肥组合下,考来木的光合效率最高。表明氮磷均具有提高考来木光合效率的作用,但考来木对磷反应敏感、需求量低,在低氮土壤中增施磷肥可降低考来木的光合效率;若氮磷同时增施,可显著提高考来木的光合效率,两者最佳配比为m(氮):m(磷)=6.83:1.00。Abstract: To ascertain the effects of nitrogen (N) and phosphorus (P), key nutrients during plant growth, on Correa carmen, twelve gradient fertilization experiments were designed, and the photosynthetic physiological parameters and chlorophyll fluorescence parameters of C. carmen leaves were determined. The seedlings of C. carmen were planted in pots with different amount of N fertilizer (NH4NO3) and P fertilizer (NaH2PO4·2H2O). P fertilizer doses (calculated by PO43-) were 0, 36.3, 56.3 mg·kg-1, respectively. N fertilizer doses (calculated by N) were 0, 197.9, 247.9 and 297.9 mg·kg-1, respectively. After 1 month, 4 months and 7 months respectively, the photosynthetic physiological parameters of seedling leaves were measured by the CIRAS-3 portable photosynthesis system, such as net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), etc. At the same time, chlorophyll fluorescence parameters were measured by imaging modulation PAM-2500 chlorophyll fluorescence spectrometer, too, such as initial fluorescence (Fo), maximum fluorescence (Fm), maximum photochemical efficiency (Fv/Fm), photochemical quenching coefficient (qP), non-photochemical quenching coefficient (qNP), etc. Then N and P contents of leaves were determined by Kjeldahl method and Molybdenum antimony anti-absorption spectrophotometry method, chlorophyll contents were determined by acetone and ethanol mixture extraction method. The variation of experimental data was analyzed by ANOVA and multiple comparison, and the multiple comparison was analyzed by the least significant difference method (LSD). Results showed that (1) with added P fertilizer alone, the photosynthetic efficiency indexes of C. carmen leaves including chlorophyll content, Pn, and Fv/Fm decreased (P < 0.05), but light dissipation indexes including F0 and non-photochemical quenching (qNP) extinction coefficient increased (P < 0.05). (2) With added N fertilizer alone, as dose increased to 247.9 mg·kg-1, photosynthetic efficiency indexes increased (P < 0.05) but decreased (P < 0.05) as the dose exceed it. The light dissipation index showed the opposite trend. (3) The application effect of P fertilizer increased with an increase dose of N fertilizer, and the application effect of N fertilizer increased (P < 0.05) first and then decreased (P < 0.05) with an increased dose of P fertilizer. With less N fertilizer but more P fertilizer or with less P fertilizer but more N fertilizer, the photosynthetic efficiency of C. carmen leaves decreased significantly (P < 0.01). Photosynthetic efficiency indexes were highest when N fertilizer dose was 247.9 mg·kg-1 and P fertilizer dose was 36.3 mg·kg-1. Thus, C. carmen was sensitive to P with a low demand, and when adding P fertilizer to low-N soils, the photosynthesis efficiency indexes of C. carmen decreased, but when both N fertilizer and P fertilizers were added, they increased greatly.
-
表 1 不同施肥处理下考来木叶片氮磷的变化
Table 1. Changes of nitrogen and phosphorus in Correa carmen leaves under different fertilization treatments
处理 w氮/(mg·g-1) w磷/(mg·g-1) m(氮):m(磷) 3月20日 6月20日 9月20日 3月20日 6月20日 9月20日 3月20日 6月20日 9月20日 P0N0 15.09±0.04 g 16.38±0.04 h 15.67±0.06 g 0.49±0.01 e 0.53±0.02 d 0.47±0.01 e 30.80±0.11 a 30.91±0.11 a 33.34±0.12 c P0N1 16.22±0.05 f 18.22±0.05 g 17.08±0.08 f 0.56±0.02 e 0.62±0.02 d 0.49±0.01 e 28.96±0.09 b 29.39±0.10 b 34.86±0.12 b P0N2 17.62±0.05 c 20.09±0.07 e 18.56±0.07 d 0.64±0.02 e 0.77±0.03 c 0.52±0.01 e 27.53±0.08 c 26.09±0.09 d 35.69±0.13 a P0N3 18.47±0.06 b 21.84±0..07 c 19.24±0.08 b 0.69±0.02 e 0.78±0.03 c 0.54±0.02 e 26.77±0.08 d 28.00±0.09 c 35.63±0.12 a P1N0 15.04±0.04 g 16.26±0.04 h 15.63±0.05 g 0.58±0.01 e 0.79±0.03 c 0.59±0.02 e 25.93±0.07 e 20.58±0.08 f 26.49±0.10 d P1N1 16.84±0.05 e 18.85±0.07 f 17.74±0.06 e 0.75±0.03 e 0.87±0.04 c 0.82±0.03 d 22.45±0.07 f 21.67±0.08 e 21.63±0.09 e P1N2 18.96±0.06 a 21.32±0.07 d 18.93±0.07 c 0.93±0.04 d 1.09±0.05 b 0.95±0.04 c 20.39±0.06 h 19.56±0.08 h 19.93±0.08 g P1N3 18.89±0.05 a 22.43±0.05 b 19.77±0.08 a 0.98±0.04 d 1.11±0.05 b 0.97±0.04 c 19.28±0.06 i 20.21±0.08 g 20.38±0.09 f P2N0 15.01±0.04 g 16.21±0.06 h 15.58±0.05 g 0.72±0.03 e 1.05±0.05 b 0.81±0.03 d 20.85±0.06 g 15.44±0.05 l 19.23±0.08 h P2N1 17.09±0.05 d 18.93±0.06 f 17.83±0.06 e 1.09±0.05 c 1.14±0.05 b 1.13±0.06 b 15.68±0.05 j 16.61±0.06 k 15.78±0.07 i P2N2 19.13±0.06 a 22.74±0.09 a 19.24±0.08 b 1.24±0.06 b 1.31±0.06 a 1.26±0.06 a 15.43±0.05 k 17.36±0.07 i 15.27±0.06 j P2N3 19.08±0.06 a 21.95±0.08 c 19.18±0.08 b 1.38±0.06 a 1.32±0.06 a 1.28±0.06 a 13.83±0.04 l 16.63±0.06 j 14.98±0.06 k 说明:数值为平均值±标准差;同列不同字母表示处理间差异显著(P<0.05) 表 2 不同施肥处理下考来木叶片叶绿素的变化
Table 2. Changes of chlorophyll content of Correa carmen leaves under different fertilization levels
处理 w叶绿素/(mg·g-1) 3月20日 6月20日 9月20日 P0N0 2.63 ± 0.01 h 3.94 ± 0.03 h 3.04 ± 0.02 h P0N1 2.93 ± 0.02 f 4.45 ± 0.04 d 3.18 ± 0.03 g P0N2 3.12 ± 0.02 d 4.88 ± 0.04 b 3.54 ± 0.03 c P0N3 3.15 ± 0.02 c 4.35 ± 0.04 e 3.39 ± 0.03 d P1N0 2.57 ± 0.01 i 3.77 ± 0.03 i 2.97 ± 0.02 i P1N1 3.08 ± 0.02 e 4.24 ± 0.04 f 3.29 ± 0.03 e P1N2 3.37 ± 0.03 a 4.99 ± 0.05 a 3.70 ± 0.04 a P1N3 3.20 ± 0.03 b 4.43 ± 0.04 d 3.59 ± 0.04 b P2N0 2.48 ± 0.01 j 3.52 ± 0.03 j 2.87 ± 0.02 j P2N1 2.85 ± 0.02 g 4.06 ± 0.04 g 3.20 ± 0.03 g P2N2 2.88 ± 0.02 g 4.71 ± 0.05 c 3.40 ± 0.03 d P2N3 2.96 ± 0.02 f 4.33 ± 0.04 e 3.25 ± 0.03 f 说明:数值为平均值±标准差;同列不同字母表示处理间差异显著(P<0.05) -
[1] ELSER J J, BRACKEN M E, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecol Lett, 2007, 10(12):1135-1142. [2] VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation:mechanisms, implications, and nitrogenphosphorus interactions[J]. Ecol Appl, 2010, 20(1):5-15. [3] 张仁懿, 徐当会, 杨智永, 等.植物N:P化学计量特征对亚高寒草甸限制类型的指示作用研究[J].中国草地学报, 2014, 36(3):79-83. ZHANG Renyi, XU Danghui, YANG Zhiyong, et al. The indicative function of N:P stoichiometry characteristics on the nutrient limitation on the subalpine grassland[J]. Chin J Grassl, 2014, 36(3):79-83. [4] 荣戗戗, 刘京涛, 夏江宝, 等.莱州湾湿地柽柳叶片N, P生态化学计量学特征[J].生态学杂志, 2012, 31(12):3032-3037. RONG Qiangqiang, LIU Jingtao, XIA Jiangbao, et al. Leaf N and P stoichiometry of Tamarix chinensis L. in Laizhou Bay wetland, Shandong Province of East China[J]. Chin J Ecol, 2012, 31(12):3032-3037. [5] 罗亲普, 龚吉蕊, 徐沙, 等.氮磷添加对内蒙古温带典型草原净氮矿化的影响[J].植物生态学报, 2016, 40(5):480-492. LUO Qinpu, GONG Jirui, XU Sha, et al. Effects of N and P additions on net nitrogen mineralization in temperate typical grasslands in Nei Mongol, China[J]. Chin J Plant Ecol, 2016, 40(5):480-492. [6] 杨晓霞, 任飞, 周华坤, 等.青藏高原高寒草甸植物群落生物量对氮、磷添加的响应[J].植物生态学报, 2014, 38(2):159-166. YANG Xiaoxia, REN Fei, ZHOU Huakun, et al. Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2014, 38(2):159-166. [7] 陈慧敏, 石福习, 杨桂生, 等.养分添加对三江平原沼泽化草甸植物群落组成和地上生物量的影响[J].生态学杂志, 2016, 35(6):1440-1446. CHEN Huimin, SHI Fuxi, YANG Guisheng, et al. Effects of nutrient addition on plant community composition and aboveground biomass in a marshy meadow in the Sanjiang Plain[J]. Chin J Ecol, 2016, 35(6):1440-1446. [8] HIDAKA A, KITAYAMA K. Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients[J]. J Ecol, 2009, 97(5):984-991. [9] 白雪, 程军回, 郑淑霞, 等.典型草原建群种羊草对氮磷添加的生理生态响应[J].植物生态学报, 2014, 38(2):103-115. BAI Xue, CHENG Junhui, ZHENG Shuxia, et al. Ecophysiological responses of Leymus chinensis to nitrogen and phosphorus additions in a typical steppe[J]. Chin J Plant Ecol, 2014, 38(2):103-115. [10] 韦莉莉, 卢昌熠, 丁晶, 等.丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J].生态学报, 2016, 36(14):4233-4243. WEI Lili, LU Changyi, DING Jing, et al. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system[J]. Acta Ecol Sin, 2016, 36(14):4233-4243. [11] LI Su, LIU Wenyao, LI Dawen. Bole epiphytic lichens as potential indicators of environmental change in subtropical forest ecosystems in southwest China[J]. Ecol Indic, 2013, 29:93-104. [12] ELUMEEVA T G, ONIPCHENKO V G, WU Y. Leaf functional traits of plants of alpine pastures at the Eastern Qinghai-Tibetan Plateau[J]. Moscow Univ Biol Sci Bull, 2015, 70(1):46-52. [13] 盘远方, 陈兴彬, 姜勇, 等.桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J].生态学报, 2018, 38(5):1581-1589. PAN Yuanfang, CHEN Xingbin, JIANG Yong, et al. Changes in leaf functional traits and soil environmental factors in response to slope gradient in Karst hills of Guilin[J]. Acta Ecol Sin, 2018, 38(5):1581-1589. [14] 吕秀立.冬之精灵:考来木[J].园林, 2011(6):76. LÜ Xiuli. Winter elf:Correa carmen[J]. Garden, 2011(6):76. [15] 吕秀立.考来木离体培养及产业化研究[J].园林科技, 2013(2):11-13. LÜ Xiuli. Study on culturing and industrialization of Correa carmen in vitro[J]. Sci Technol Landscape Archi, 2013(2):11-13. [16] 张志录, 刘中华, 陈明辉, 等.高温干旱胁迫下考来木幼苗的生理响应[J].北方园艺, 2017(19):81-88. ZHANG Zhilu, LIU Zhonghua, CHEN Minghui, et al. Physiology response of Correa carmen seedlings to combined elevated temperature and drought stress[J]. North Hortic, 2017(19):81-88. [17] 张薇, 付昀, 李季芳, 等.基于凯氏定氮法与杜马斯燃烧法测定土壤全氮的比较研究[J].中国农学通报, 2015, 31(35):172-175. ZHANG Wei, FU Yun, LI Jifang, et al. Comparative study on Kjeldahl method and Dumas Combustion method for total nitrogen measurement in soil[J]. Chin Agric Sci Bull, 2015, 31(35):172-175. [18] 孙俊宝, 王建新.樱桃叶绿素含量测定方法研究[J].山西农业科学, 2010, 38(3):18-19, 33. SUN Junbao, WANG Jianxin. Study on method for determination of chlorophyll in cherry leaves[J]. J Shanxi Agric Sci, 2010, 38(3):18-19, 33. [19] 付为国, 王凡坤, 赵云, 等.土壤氮磷化学计量特征对小麦光合气体交换参数和叶绿素荧光参数的影响[J].西北植物学报, 2016, 36(7):1435-1442. FU Weiguo, WANG Fankun, ZHAO Yun, et al. Effects of soil nitrogen and phosphorus stoichiometric characteristics on photosynthetic gas exchange and chlorophyll fluorescence of wheat[J]. Acta Bot Boreal-Occident Sin, 2016, 36(7):1435-1442. [20] 李曼, 靳冰洁, 钟全林, 等.氮磷添加对刨花楠幼苗叶片N, P化学计量特征的影响[J].应用与环境生物学报, 2016, 22(2):285-291. LI Man, JIN Bingjie, ZHONG Quanlin, et al. Effect of nitrogen and phosphorus fertilization on leaf N and P stoichiometric characteristics of Machilus pauhoi seedlings[J]. Chin J Appl Environ Biol, 2016, 22(2):285-291. [21] WANG Changting, LONG Ruijun, WANG Qilan, et al. Fertilization and litter effects on the functional group biomass, species diversity of plants, microbial biomass, and enzyme activity of two alpine meadow communities[J]. Plant Soil, 2010, 331(1/2):337-389. [22] LIEB A M, DARROUZET, NARDI A, et al. Nitrogen deposition decreases acid buffering capacity of alpine soils in the southern Rocky Montains[J]. Geoderma, 2011, 164(3/4):220-224. [23] BRADSHAW C, KAUTSKY U, KUMBLAD L. Ecological stoichiometry and multi-element transfer in a coastal ecosystem[J]. Ecosystems, 2012, 15(4):591-603. [24] 洪江涛, 吴建波, 王小丹.藏北高寒草原紫花针茅根系碳氮磷生态化学计量学特征[J].山地学报, 2014, 32(4):467-474. HONG Jiangtao, WU Jianbo, WANG Xiaodan. Root C:N:P stoichiometry of Stipa purpurea in apine steppeon the Northern Tibet[J]. Mt Res, 2014, 32(4):467-474. [25] 李天平.湘北丘陵区混交阔叶林不同树种土壤C, N, P生态化学计量学特征研究[D].长沙: 中南林业科技大学, 2015. LI Tianping. Soil Carbon, Nitrogen, Phosphorus Ecological Stoichiometry of Different Trees in Mixed Broad-Leaved Forest in The Hill Region of Northern Hunan[D]. Changsha: Central South University of Forestry and Technology, 2015. [26] LÜ Xiaotao, REED S C, YU Qiang, et al. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions[J]. Plant Soil, 2016, 39(8):111-120. [27] 吴一群.高磷对蔬菜生长的影响及其环境效应[D].福州: 福建农林大学, 2008. WU Yiqun. Effects of High Phosphorus on Vegetable Growth and Its Potential Environmental Impact[D]. Fuzhou: Fujian Agriculture and Forest University, 2008. [28] YADAV S, IRFAN M, AHMAD A, et al. Causes of salinity and plant manifestations to salt stress:a review[J]. J Environ Biol, 2011, 32(5):667-685. [29] 张玉斌, 曹庆军, 张铭, 等.施磷水平对春玉米叶绿素荧光特性及品质的影响[J].玉米科学, 2009, 17(4):79-81. ZHANG Yubin, CAO Qingjun, ZHANG Ming, et al. Effects of phosphorus application on chlorophyll fluorescence characteristic and quality of spring maize[J]. J Maize Sci, 2009, 17(4):79-81. [30] 杨程, 李鹏民, 张子山, 等.叶绿素延迟荧光的发生及其在光合作用研究中的应用[J].植物生理学报, 2013, 49(12):1277-1285. YANG Cheng, LI Pengmin, ZHANG Zishan, et al. Arising of chlorophyll delayed fluorescence and its application in photosynthesis research[J]. Plant Physiol J, 2013, 49(12):1277-1285. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.03.005