-
城市森林是一种与城市发展密切相关的森林类型[1]。城镇化的快速推进加速了植物群落的更新速度,对城市森林提供的生态服务功能提出了更高的要求。由于城市森林直接服务于当地社区和民众,景观美学方面的考量显得尤为重要[2-3],但如果只考虑眼前的景观美学特征,不重视植物群落长期稳定的更替,城市森林将永远无法满足城市可持续发展的需求。植物群落是城市森林生态系统的基础,为人们提供了诸多生态服务功能[2]。每个物种对于构建城市森林植物群落和完善生态系统的功能都至关重要,各个物种在贡献途径和功能性质方面存在差异。在物种多样性指数中,物种在构建植物群落,维持植物生态系统等方面的作用并没有得到完整的呈现。生态系统功能除了与物种的分布格局有关,还与物种具备的功能特征有更为紧密的联系[4]。与物种的多样性相比,植物的功能性状以及系统发育组成等方面的信息对生态功能系统方面出现变化的解释相对更多[5-6]。2个有相同物种多样性的群落,可能会有相似的系统发育信息,但也可能会大不相同[7]。某些群落在一定范围内还会呈现出较低的功能多样性,但是谱系多样性以及物种多样性却会很高[8-9]。为更加全面地认识植物群落的结构变化、演替过程,并预判其未来的变化趋势,需要深入分析多个层面的植物多样性。本研究通过调查海口城市主建成区范围内的植物样方数据集,分析海口城市森林植物群落的结构特征、基调物种等方面的信息,评价城市森林植物群落的整体质量,并探讨植物物种多样性、功能多样性和谱系多样性3个层面多样性指标的相关性。
-
如表 1所示:海口市建成区植物调查中,记录了72科218属,共283种物种。其中,乔木87种,灌木77种,草本119种。植物来源分析中发现,乡土种114种,外来种169种,栽培种131种,外来种和乡土种的数量比为3:2,栽培种在外来种当中所占的比例最高,达77.51%。
表 1 海口建成区城市森林植物来源数据汇总表
Table 1. Statistics of plant origin in the built-up area of Haikou City
生活型 总种数/种 乡土种 外来种 栽培种占外来种数比例/% 种数/种 占总种数比例/% 种数/种 占总种数比例/% 乔木 87 32 36.78 55 63.21 94.54 灌木 77 24 31.17 53 68.83 90.57 草本 119 56 47.06 63 52.94 49.21 总计 283 114 40.28 169 59.71 77.51 -
如图 1所示:优势乔木包含椰子Cocos nucifera,印度紫檀Pterocarpus indicus,王棕Roystonea regia和垂叶榕Ficus benjamina等;优势灌木包含龙船花Ixora chinensis,黄金榕Ficus microcarpa ‘GoldenLeaves’和扶桑Hibiscus rosa-sinensis等;优势草本包含蟛蜞菊Sphagneticola calendulacea,牛筋草Eleusine indica,细叶结缕草Zoysia tenuifolia,结缕草Zoysia japonica等。在所有乔木物种重要值总数中,乔木层排序前10位的乔木物种,其重要值之和占比为48.74%,灌木层前10位重要值之和占比为54.15%,草本层前10位重要值之和占比为47.37%。
-
以聚类分析的结果为依据,把植物群落划分成20个主要类型,各类型用乔木层优势种命名,如表 2所示。印度紫檀群落、椰子群落和垂叶榕群落是出现频率最高的群落类型,约占样方总数1/3。
表 2 海口市建成区城市森林主要群落类型
Table 2. Urban forest main community types in the built-up area of Haikou City
编号 群落名 C1 印度紫檀群落 C2 椰子群落 C3 垂叶榕群落 C4 小叶榄仁Terminalia boivinii+鸡蛋花Plumeria rubra‘Acutifolia’群落 C5 王棕群落 C6 王棕+小叶榕Ficus microcarpa群落 C7 高山榕Ficus altissima群落 C8 凤凰木Delonix regia群落 C9 苦楝Melia azedarach+番木瓜Carica papaya群落 C10 樟树Cinnamomum camphora群落 C11 秋枫Bischofia javanica群落 C12 非洲楝Khaya senegalensis群落 C13 黄葛榕Ficus virens群落 C14 阳桃Averrhoa carambola群落 C15 木麻黄Casuarina equisetifolia群落 C16 苦楝+糖胶树Alstonia scholaris群落 C17 苦楝群落 C18 黄槐Senna surattensis群落 C19 潺槁木姜子Litsea glutinosa群落 C20 乌桕Triadica sebifera群落 -
如图 2所示:在径级结构中,占比最高的树木胸径等级为10~20 cm,为30.25%,胸径<20 cm的树木胸径占比53.6%;胸径<20 cm的物种数量较多,胸径等级在<10 cm和10~20 cm的物种数量分别是50种和60种。随着胸径等级的增加,株数所占的比例和植株数量都逐步下降,胸径>50 cm的物种仅为16种,占总数比例的2.45%,主要物种包括秋枫,红花天料木Homalium hainanense,樟树,小叶榕,高山榕,非洲楝等。乔木层所有植株的平均胸径为21.7 cm。
图 2 不同胸径等级上的乔木树种数量和种数分布
Figure 2. Distribution of tree individuals and tree species in different DBH classes
如图 3所示:在立木层方面,植株高度在<5 m以及5~10 m的株数占比分别是34.56%和50.47%,树种分别为63种和70种,为主要立木垂直分布层。>15 m的乔木仅有7种物种,株数占总数比例的1.42%,包括糖胶树,榄仁,王棕,大叶桃花心木Swietenia macrophylla,非洲楝,木麻黄,白兰Michelia alba等树种。乔木层所有植株的平均高度只有6.8 m。
图 3 不同立木层次上的乔木树种数量和种数分布
Figure 3. Distribution of tree individuals and tree species in different tree stratums
如表 3所示:FRic指数与J指数在各种生活型中均不存在显著相关。在各生活型中,FEve指数和FDis指数都与物种多样性指数在0.1%统计水平上极显著正相关(P<0.001)。在灌木层和草本层中,FDiv指数与J指数不存在显著相关,但与其他物种多样性指数的相关系数至少在5%的统计水平上显著。
表 3 物种多样性指数与功能多样性指数的Pearson相关系数
Table 3. Pearson correlation coefficients between species diversity indices and functional diversity indices
功能多样性指数 乔木层 灌木层 草本层 R D H J R D H J R D H J FRic 0.77*** 0.62*** 0.72*** 0.11 0.86*** 0.56*** 0.71*** 0.18 0.85*** 0.54*** 0.69*** 0.14 FEve 0.47*** 0.78*** 0.67*** 0.44*** 0.43*** 0.73*** 0.70*** 0.52*** 0.45*** 0.74*** 0.72*** 0.52*** FDiv 0.47*** 0.74*** 0.65*** 0.36*** 0.34* 0.24* 0.31** -0.04 0.34*** 0.24** 0.31*** -0.04 FDis 0.44*** 0.64*** 0.56*** 0.47*** 0.40*** 0.85*** 0.78*** 0.78*** 0.37*** 0.85*** 0.78*** 0.78*** 说明:*P<0.05,**P<0.01,***P<0.001 如表 4所示:PD指数在灌木层中与各个物种多样性指数均不存在显著相关;在草木层中,与J不存在显著相关。PSV指数仅在乔木层中与D显著正相关(P<0.05)。PSE指数在灌木层中与各个谱系多样性指数均不存在显著的相关性。
表 4 物种多样性指数和谱系多样性指数的Pearson相关系数
Table 4. Pearson correlation coefficients between species diversity indices and phylogenetic diversity indices
谱系多样性指数 乔木层 灌木层 草本层 R D H J R D H J R D H J PD 0.93*** 0.77*** 0.89*** 0.19* -0.15 -0.08 -0.09 -0.01 0.90*** 0.53*** 0.70*** 0.13 PSV 0.11 0.18* 0.15 0.11 -0.16 -0.15 -0.17 -0.10 0.11 0.03 0.06 -0.07 PSE 0.27** 0.55*** 0.42*** 0.58*** -0.19 -0.10 -0.13 -0.03 0.20* 0.78*** 0.66*** 0.84*** 说明:*P<0.05,**P<0.01,***P<0.001 如表 5所示:PD指数与灌木层中与各个功能多样性指数均不存在显著相关。PSV指数与各功能多样性指数的相关性在各个生活型中均有差异,在乔木层中与FEve指数和FDiv指数显著正相关(P<0.05),在灌木层中仅与FDiv指数显著负相关(P<0.05),在草本层中与FDiv指数和FDis指数显著正相关(P<0.01,P<0.05)。PSE指数在乔木层中与FRic指数不存在显著相关,灌木层中仅与FRic指数显著正相关(P<0.05),草本层中仅与FDiv指数不存在显著相关。
表 5 功能多样性指数与谱系多样性指数的Pearson相关系数
Table 5. Pearson correlation coefficients between functional diversity indices and phylogenetic diversity indices
谱系多样性指数 乔木层 灌木层 草本层 FRic FEve FDiv FDis FRic FEve FDiv FDis FRic FEve FDiv FDis PD 0.66*** 0.49*** 0.48*** 0.41*** -0.15 -0.12 -0.13 -0.05 0.82*** 0.50*** 0.44*** 0.42*** PSV 0.02 0.18* 0.18* 0.15 -0.08 -0.15 -0.22* -0.11 0.13 0.16 0.25** 0.20* PSE 0.16 0.43*** 0.38*** 0.42*** -0.24* -0.06 -0.11 -0.11 0.24** 0.58*** 0.07 0.84*** 说明:*P<0.05,**P<0.01,***P<0.001
Urban forest community structure and correlation analysis on the plant diversity index in Haikou City, China
-
摘要: 选取海口市主建成区随机建立的235个植物样方进行调查,评价其结构特征,分析其植物多样性指数相关性。结果表明:①主建成区常见植物共283种隶属于72科218属,其中,本地种114种,外来种169种;②优势植物主要有椰子Cocos nucifera、印度紫檀Pterocarpus indicus、王棕Roystonea regia、垂叶榕Ficus benjamina等;③树木径级结构呈现"整体偏小"的分布格局,整体立木层次较低,平均树高仅6.8 m;④物种多样性指数与功能多样性指数之间多数存在显著相关(P < 0.05);⑤谱系多样性指数(PD)与乔木层、草木层中各物种多样性指数多数存在显著相关(P < 0.05);谱系变异性指数(PSV)与多数物种多样性指数、功能多样性指数均不相关,但谱系均匀度指数(PSE)与多数物种多样性指数、功能多样性指数显著相关(P < 0.05)。为避免物种同质化现象,提倡运用乡土物种进行城市森林建设,同时选择多层次且具有针对性的多样性指数和功能性状参数,以保证对城市森林植物多样性评估的全面性和准确性。Abstract: In order to have a more comprehensive understanding of the structural change and succession process of plant community in Haikou City, and predict the composition of its future change trend. A total of 235 randomly selected urban forest plots were studied in a built-up area of Haikou City. Structural characteristics and their corresponding plant diversity indexes were determined with a correlation analysis. Results indicated that (1) The presence of 283 species of common plants in the built-up area belonging to 218 genera of 72 families with 114 native species and 169 exotic species. (2) The dominant plants included Cocos nucifera, Pterocarpus indicus, Roystonea regia, and Ficus benjamina. (3) The diameter presented a distribution pattern of "overall small", and the overall tree height was low with an average height of 6.8 m. (4) There was a significant correlation between species diversity and functional diversity indexes (P < 0.05). (5) Also, the phylogenetic diversity index (PD) was significantly correlated (P < 0.05) with species diversity indexes in the tree layer and herb layer. The phylogenetic species variability index (PSV) was not correlated with most species diversity indexes and functional diversity indexes, but the phylogenetic species variability evenness (PSE) index was significantly correlated with most of them (P < 0.05). Haikou City having a large improvement potential in forest development, should avoid the homogeneity phenomenon where native species have been adopted in urban forest development; to ensure comprehensiveness and accuracy, Haikou should consider multi-level and targeted diversity indexes and functional trait parameters when evaluating urban plant diversity.
-
Key words:
- forest ecology /
- community type /
- dominant species /
- species diversity /
- functional diversity /
- phylogenetic diversity
-
表 1 海口建成区城市森林植物来源数据汇总表
Table 1. Statistics of plant origin in the built-up area of Haikou City
生活型 总种数/种 乡土种 外来种 栽培种占外来种数比例/% 种数/种 占总种数比例/% 种数/种 占总种数比例/% 乔木 87 32 36.78 55 63.21 94.54 灌木 77 24 31.17 53 68.83 90.57 草本 119 56 47.06 63 52.94 49.21 总计 283 114 40.28 169 59.71 77.51 表 2 海口市建成区城市森林主要群落类型
Table 2. Urban forest main community types in the built-up area of Haikou City
编号 群落名 C1 印度紫檀群落 C2 椰子群落 C3 垂叶榕群落 C4 小叶榄仁Terminalia boivinii+鸡蛋花Plumeria rubra‘Acutifolia’群落 C5 王棕群落 C6 王棕+小叶榕Ficus microcarpa群落 C7 高山榕Ficus altissima群落 C8 凤凰木Delonix regia群落 C9 苦楝Melia azedarach+番木瓜Carica papaya群落 C10 樟树Cinnamomum camphora群落 C11 秋枫Bischofia javanica群落 C12 非洲楝Khaya senegalensis群落 C13 黄葛榕Ficus virens群落 C14 阳桃Averrhoa carambola群落 C15 木麻黄Casuarina equisetifolia群落 C16 苦楝+糖胶树Alstonia scholaris群落 C17 苦楝群落 C18 黄槐Senna surattensis群落 C19 潺槁木姜子Litsea glutinosa群落 C20 乌桕Triadica sebifera群落 表 3 物种多样性指数与功能多样性指数的Pearson相关系数
Table 3. Pearson correlation coefficients between species diversity indices and functional diversity indices
功能多样性指数 乔木层 灌木层 草本层 R D H J R D H J R D H J FRic 0.77*** 0.62*** 0.72*** 0.11 0.86*** 0.56*** 0.71*** 0.18 0.85*** 0.54*** 0.69*** 0.14 FEve 0.47*** 0.78*** 0.67*** 0.44*** 0.43*** 0.73*** 0.70*** 0.52*** 0.45*** 0.74*** 0.72*** 0.52*** FDiv 0.47*** 0.74*** 0.65*** 0.36*** 0.34* 0.24* 0.31** -0.04 0.34*** 0.24** 0.31*** -0.04 FDis 0.44*** 0.64*** 0.56*** 0.47*** 0.40*** 0.85*** 0.78*** 0.78*** 0.37*** 0.85*** 0.78*** 0.78*** 说明:*P<0.05,**P<0.01,***P<0.001 表 4 物种多样性指数和谱系多样性指数的Pearson相关系数
Table 4. Pearson correlation coefficients between species diversity indices and phylogenetic diversity indices
谱系多样性指数 乔木层 灌木层 草本层 R D H J R D H J R D H J PD 0.93*** 0.77*** 0.89*** 0.19* -0.15 -0.08 -0.09 -0.01 0.90*** 0.53*** 0.70*** 0.13 PSV 0.11 0.18* 0.15 0.11 -0.16 -0.15 -0.17 -0.10 0.11 0.03 0.06 -0.07 PSE 0.27** 0.55*** 0.42*** 0.58*** -0.19 -0.10 -0.13 -0.03 0.20* 0.78*** 0.66*** 0.84*** 说明:*P<0.05,**P<0.01,***P<0.001 表 5 功能多样性指数与谱系多样性指数的Pearson相关系数
Table 5. Pearson correlation coefficients between functional diversity indices and phylogenetic diversity indices
谱系多样性指数 乔木层 灌木层 草本层 FRic FEve FDiv FDis FRic FEve FDiv FDis FRic FEve FDiv FDis PD 0.66*** 0.49*** 0.48*** 0.41*** -0.15 -0.12 -0.13 -0.05 0.82*** 0.50*** 0.44*** 0.42*** PSV 0.02 0.18* 0.18* 0.15 -0.08 -0.15 -0.22* -0.11 0.13 0.16 0.25** 0.20* PSE 0.16 0.43*** 0.38*** 0.42*** -0.24* -0.06 -0.11 -0.11 0.24** 0.58*** 0.07 0.84*** 说明:*P<0.05,**P<0.01,***P<0.001 -
[1] 王成, 彭镇华, 陶康华.中国城市森林的特点及发展思考[J].生态学杂志, 2004, 23(3):88-92. WANG Cheng, PENG Zhenhua, TAO Kanghua. Characteristics and development of urban forest in China[J]. Chin J Ecol, 2004, 23(3):88-92. [2] 赵煜, 赵千钧, 崔胜辉, 等.城市森林生态服务价值评估研究进展[J].生态学报, 2009, 29(12):6723-6732. ZHAO Yu, ZHAO Qianjun, CUI Shenghui, et al. Progress in ecological services evaluation of urban forest[J]. Acta Ecol Sin, 2009, 29(12):6723-6732. [3] 马冰倩, 徐程扬, 刘江, 等.城镇森林视觉景观异质性对美学质量的影响[J].浙江农林大学学报, 2019, 36(2):366-374. MA Bingqian, XU Chengyang, LIU Jiang, et al. Visual heterogeneity and visual landscape quality of urban forests as an architectural backdrop[J]. J Zhejiang A&F Univ, 2019, 36(2):366-374. [4] 陈文静.厦门城市森林的结构特征与效益评价研究[D].福州: 福建农林大学, 2007. CHEN Wenjing. The Study of Structure Characteristics and Effectiveness Evaluation of Urban Forest in Xiamen City[D]. Fuzhou: Fujian Agriculture and Forestry University, 2007. [5] DÍAZ S, CABIDO M. Vive la difference:plant functional diversity matters to ecosystem processes[J]. Trends Ecol Evol, 2001, 16(11):646-655. [6] CADOTTE M W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity[J]. Proc Natl Acad Sci, 2013, 110(22):8996-9000. [7] LAVOREL S, GARNIER E. Predicting changes in community composition and ecosystem functioning from plant traits:revisiting the Holy Grail[J]. Funct Ecol, 2002, 16(5):545-556. [8] FOREST F, GRENYER R, ROUGET M, et al. Preserving the evolutionary potential of floras in biodiversity hotspots[J]. Nature, 2007, 445(7129):757-760. [9] CUMMING G S, CHILD M F. Contrasting spatial patterns of taxonomic and functional richness offer insights into potential loss of ecosystem services[J]. Philos Trans Royal Soc London B Biol Sci, 2009, 364(1524):1683-1692. [10] 海口市统计局, 国家统计局海口调查队.海口市统计年鉴2018[M].北京:中国统计出版社, 2018. [11] NOWAK D J, WALTON J T, STEVEN J C, et al. Effect of plot and sample size on timing and precision of urban forest assessments[J]. Arboric Urban For, 2008, 34(6):386-390. [12] 杨小波.海南植物名录[M].北京:科学出版社, 2013. [13] 雷金睿, 宋希强, 陈宗铸.海口城市公园植物群落多样性研究[J].西南林业大学学报, 2017, 37(1):88-93. LEI Jinrui, SONG Xiqiang, CHEN Zongzhu. Analysis on plant community diversity in Haikou City parks[J]. J Southwest For Univ, 2017, 37(1):88-93. [14] 张艳丽, 李智勇, 杨军, 等.杭州城市绿地群落结构及植物多样性[J].东北林业大学学报, 2013, 41(11):25-30. ZHANG Yanli, LI Zhiyong, YANG Jun, et al. Community structure and species diversity of urban green space in Hangzhou, China[J]. J Northeast For Univ, 2013, 41(11):25-30. [15] WILLIAMS N S G, HAHS A K, VESK P A. Urbanisation, plant traits and the composition of urban floras[J]. Perspect Plant Ecol Evol Syst, 2015, 17(1):78-86. [16] KNAPP S, KCOHN I, BAKKER J P. How species traits and affinity to urban land use control large-scale species frequency[J]. Diversity Distrib, 2009, 15(3):533-546. [17] WEBB C O, DONOGHUE M J. Phylomatic:tree assembly for applied phylogenetics[J]. Mol Ecol Note, 2005, 5(1):181-183. [18] FAITH D P. Conservation evaluation and phylogenetic diversity[J]. Biol Conserv, 1992, 61(1):1-10. [19] HELMUS M R, BLAND T J, WILLIAMS C K, et al. Phylogenetic measures of biodiversity[J]. Am Nat, 2007, 169(3):E68-E83. doi:10. 1086/511334. [20] 杨小波.城市植物多样性[M].北京:中国农业出版社, 2009. [21] PYŠEK P. Factors affecting the diversity of flora and vegetation in central European settlements[J]. Vegetatio, 1993, 106(1):89-100. [22] HE Rongxiao, YANG Jun, SONG Xiqiang. Quantifying the impact of different ways to delimit study areas on the assessment of species diversity of an urban forest[J]. Forests, 2016, 7(2):42. doi:10.3390/f7020042. [23] MCKINNEY M L. Measuring floristic homogenization by non-native plants in North America[J]. Global Ecol Biogeogr, 2004, 13(1):47-53. [24] KÜHN I, BRANDL R, KLOTZ S. The flora of German cities is naturally species rich[J]. Evol Ecol Res, 2004, 6(5):749-764. [25] MCKINNEY M L. Urbanization as a major cause of biotic homogenization[J]. Biol Conserv, 2006, 127(3):247-260. [26] DEARBORN D C, KARK S. Motivations for conserving urban biodiversity[J]. Conserv Biol, 2010, 24(2):432-440. [27] ZDEŇKA L, CHYTRY M, LUBOMÍR Tichy, et al. Biotic homogenization of central European urban floras depends on residence time of alien species and habitat types[J]. Biol Conserv, 2012, 145(1):179-184. [28] 吴刘萍.湛江市城市森林树种结构分析[J].亚热带植物科学, 2007, 36(2):31-35. WU Liuping. The analysis of species composition of urban forest in Zhanjiang City[J]. Subtrop Plant Sci, 2007, 36(2):31-35. [29] 宋艳暾, 史志华, 余世孝, 等.城市化对绿地植物组成特征的影响:以深圳为例[J].生态环境学报, 2010, 19(3):615-620. SONG Yantun, SHI Zhihua, YU Shixiao, et al. Influence of urbanization on the characters of plants composition in urban greenspace in Shenzhen, China[J]. Ecol Environ Sci, 2010, 19(3):615-620. [30] KENDAL D, WILLIAMS K J H, WILLIAMS N S G. Plant traits link people's plant preferences to the composition of their gardens[J]. Landscape Urban Plann, 2012, 105(1):34-42. [31] 彭羽, 刘雪华.城市化对植物多样性影响的研究进展[J].生物多样性, 2007, 15(5):558-562. PENG Yu, LIU Xuehua. Research progress in effects of urbanization on plant biodiversity[J]. Biodiversity Sci, 2007, 15(5):558-562. [32] 陈晓双, 梁红, 宋坤, 等.哈尔滨城区杂草群落多样性及其分类体系[J].应用生态学报, 2014, 25(8):2221-2228. CHEN Xiaoshuang, LIANG Hong, SONG Kun, et al. Diversity and classification system of weed community in Harbin City, China[J]. Chin J Appl Ecol, 2014, 25(8):2221-2228. [33] 罗冠勇, 宋希强, 杨冬华, 等.海南10种园林乔木生物学特性与抗风性关联性分析[J].热带作物学报, 2013, 34(2):263-267. LUO Guanyong, SONG Xiqiang, YANG Donghua, et al. Correlation analysis on the relationship between the biological characteristic of ten ornamental tree species and the wind-resistance ability in Hainan Island[J]. Chin J Trop Crops, 2013, 34(2):263-267. [34] NOCK C A, PAQUETTE A, FOLLETT M, et al. Effects of urbanization on tree species functional diversity in Eastern North America[J]. Ecosystems, 2013, 16(8):1487-1497. [35] ŇEPLOVÁN, LOSOSOVÁZ, ZELENŇ D, et al. Phylogenetic diversity of central-European urban plant communities:effects of alien species and habitat types[J]. Preslia, 2015, 87(1):1-16. [36] 么旭阳, 胡耀升, 刘艳红.长白山阔叶红松林不同群落类型的植物功能性状与功能多样性[J].西北农林科技大学学报(自然科学版), 2014, 42(3):77-84. YAO Xuyang, HU Yaosheng, LIU Yanhong. Plant functional traits and functional diversities of different communities in broad-leaved Korean pine forests in the Changbai Mountain[J]. J Northwest A&F Univ Nat Sci Ed, 2014, 42(3):77-84. [37] 薛倩妮, 闫明, 毕润成.山西五鹿山森林群落木本植物功能多样性[J].生态学报, 2015, 35(21):7023-7032. XUE Qianni, YAN Ming, BI Runcheng. Functional diversity research of tree and shrub layers in forest communities of the Wulu Mountains Nature Reserve in Shanxi, China[J]. Acta Ecol Sin, 2015, 35(21):7023-7032. [38] 丁洪波, 吴兆录, 吕东蓬, 等.云南东部山区不同类型次生林群落谱系结构特征[J].生态学杂志, 2015, 34(10):2720-2726. DING Hongbo, WU Zhaolu, LÜ Dongpeng, et al. Community phylogenetic structural characteristics of various secondary forests in mountainous eastern Yunnan[J]. Chin J Ecol, 2015, 34(10):2720-2726. [39] WEBB C O, ACKERLY D D, MCPEEK M A, et al. Phylogenies and community ecology[J]. Annual Rev Ecol Syst, 2002, 8(33):475-505. [40] SILVERTOWN J, DODD M E, GOWING D J G. Phylogeny and the niche structure of meadow plant communities[J]. J Ecol, 2001, 89(3):428-435. [41] 贾鹏, 杜国祯.生态学的多样性指数:功能与系统发育[J].生命科学, 2014, 26(2):153-157. JIA Peng, DU Guozhen. Measuring functional and phylogenetic diversity in community ecology[J]. Chin Bull Life Sci, 2014, 26(2):153-157. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.06.011