留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性海藻酸钠复合凝胶球的制备及对铅离子的吸附性能

王珏 郭明 孙立苹

张毓格, 侯俊峰, 岑俊杰, 等. 汽蒸预处理白栎木材弯曲蠕变的时温等效特性[J]. 浙江农林大学学报, 2023, 40(5): 1121-1129. DOI: 10.11833/j.issn.2095-0756.20220688
引用本文: 王珏, 郭明, 孙立苹. 磁性海藻酸钠复合凝胶球的制备及对铅离子的吸附性能[J]. 浙江农林大学学报, 2020, 37(6): 1112-1119. DOI: 10.11833/j.issn.2095-0756.20190751
ZHANG Yuge, HOU Junfeng, CEN Junjie, et al. Time-temperature equivalence in bending creep of white oak wood in steam pretreatment[J]. Journal of Zhejiang A&F University, 2023, 40(5): 1121-1129. DOI: 10.11833/j.issn.2095-0756.20220688
Citation: WANG Jue, GUO Ming, SUN Liping. Preparation of magnetic sodium alginate composite gel balls and their adsorption properties for Pb2+[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1112-1119. DOI: 10.11833/j.issn.2095-0756.20190751

磁性海藻酸钠复合凝胶球的制备及对铅离子的吸附性能

DOI: 10.11833/j.issn.2095-0756.20190751
基金项目: 浙江省自然科学基金资助项目(LY18B070003, LGN20B070001)
详细信息
    作者简介: 王珏,从事生物质材料合成与应用研究。E-mail: 1043215433@qq.com
    通信作者: 郭明,教授,从事环境功能材料合成研究。E-mail: guoming@zafu.edu.cn
  • 中图分类号: X52

Preparation of magnetic sodium alginate composite gel balls and their adsorption properties for Pb2+

  • 摘要:   目的  磁性凝胶微球是新型吸附剂,其高效去除污染物的功能和重复利用性能受到热切关注,因此制备1种新型的磁性凝胶球极有必要。  方法  将离子共沉淀法制备的磁性粒子(MNP)用作载体进行硅烷化反应以合成具有氨基末端的磁性纳米颗粒(AM)。静电作用将海藻酸钠(SA)包覆在磁性颗粒表面,制备了1种富含氨基、羟基和羧基多官能团的新型磁性复合凝胶球(SA@AM)。利用傅立叶变换红外光谱(FTIR)、元素分析仪、X射线衍射仪(XRD)、扫描/透射电子显微镜(SEM/TEM)、振动样品磁力计(VSM)表征产物,并开展产物对重金属离子吸附性能研究。  结果  成功制备的目标功能复合凝胶球(SA@AM)呈顺磁性磁铁矿晶型,SA@AM凝胶球的尺寸为1.5~2.0 mm;MNP、AM、SA@AM的磁化值分别为13.8、13.4和6.85 A·m2·kg−1。吸附实验显示:SA@AM对重金属铅离子(Pb2+)表现出高效吸附能力,对Pb2+的最大吸附量为105.82 mg·g−1,吸附机理更符合Langmuir等温吸附模型。重复吸附-解吸实验表明:SA@AM对Pb2+的去除率≥76%。  结论  新型海藻酸钠磁性复合凝胶球对重金属Pb2+有着优异的吸附能力,同时磁性凝胶球有着良好的再生性能。图10表1参25
  • 木材是一种由纤维素、半纤维素和木质素组成的复杂聚合物。木材的化学成分和多孔结构决定着其弯曲加工性能[12],已有研究发现阔叶材弯曲性能普遍优于针叶材[34]。近年来,国内外学者从软化处理和顺纹压缩处理对弯曲木材微观结构、化学成分和应力-应变本构关系的影响角度开展了研究,发现压缩处理过程中导管变形对木材弯曲成型的质量影响显著[5]。其中,张燕等[3]研究发现:在允许的应力范围内,顺纹压缩后环孔材拉伸面和压缩面的导管壁均出现了褶皱,有利于实现木材的顺纹压缩。此外,不同早材导管带位置对白栎Quercus alba木材弯曲蠕变性能的影响研究表明:瞬时应变和45 min应变均随早材导管带与受力面之间距离的增加而大幅度减小[67]。由此可见,弯曲压缩过程中早材导管带不仅影响细胞变形和力学特性,而且对木材的弯曲性能影响显著。

    木材时温等效原理是指木材在较高温度、较短时间内的力学性质和力学行为与其在较低温度、较长时间内的力学性质和力学行为等效,可以快速预测木材在低温状态下长时间内的力学响应[89]。PLACET等[10]在0~95 ℃测试温度下探究饱水山毛榉Fagus sylvatica与橡木Quercus sessiliflora的黏弹性以及对时温等效原理的适用性,发现此原理只适用于小于玻璃化转变区域的温度范围。WANG等[11]采用时间-应力叠加原理(time-stress superposition principle, TSSP)和时间-温度-应力叠加原理(time-temperature-stress superposition principle, TTSSP)模拟了高温处理后杉木Cunninghamia lanceolata的弯曲蠕变响应特性,表明其弯曲蠕变行为的温度阈值为180 ℃。含水率、温度和纹理取向对木材静态黏弹性的影响显著[1214],然而,关于汽蒸预处理对环孔材弯曲蠕变行为的时温等效特性研究未见相关报道。为此,本研究以白栎木材为研究对象,考察不同汽蒸预处理温度、测试温度及早材导管带条件下木材的弯曲蠕变特性并开展时温等效特性研究,以期为木材弯曲加工提供理论和技术支撑。

    试材为美国产白栎木材,环孔材早材,试样取自白栎木材第3个年轮内侧区域,树龄为20 a,胸径25 cm以上,年轮宽度为3~5 mm,产于美国东部,购自中国浙江省湖州市南浔建材市场,其气干密度为(0.76±0.05) g·cm−3。试验前通过恒温恒湿箱(EL-10KA)将其含水率调整至(12.0±1.0)%,然后从同一生长轮内取样并制备40.0 mm×12.0 mm×2.0 mm的试样。根据有无早材导管带制备2种试样(图1):试样A为早材导管带位于试样中间,密度为(0.73±0.07) g·cm−3,试样B为对照组(无早材导管带),密度为(0.78±0.08) g·cm−3。弯曲蠕变试验前,用水热合成反应釜(MQ-200)对试样采用100 ℃饱和蒸汽以及110、120 ℃过热蒸汽预处理,分别用A1(B1)、A2(B2)、A3(B3)表示,未处理用A0(B0)表示,处理时间为60 min,处理结束后通过恒温恒湿箱将汽蒸预处理试样的含水率调节至(12.0±1.0)%。

    图 1  样品制备
    Figure 1  Specimens preparation

    采用扫描电子显微镜(SEM,TM-3030)研究试样A和B的横切面内早材导管带特性。阔叶树材导管直径以弦向计,在15~260 µm内,导管长度为80~1 700 µm[15]。栎木早材导管弦向直径达250 µm,晚材弦向直径达34 µm,环孔材早材导管分子长度为230~390 µm,小于晚材导管分子长度(270~590 µm)[15]。以弦向直径为35~500 µm,长度为230~390 µm作为筛选早材导管分子的参数阈值。试样A和B的横切面内早材导管带特征如图2所示。运用 MATLAB 2019a 软件实现对试样横切面扫描电镜(SEM)图像的类型转换、增强处理、分割处理以及形态学处理等操作,获取试样横切面早材导管数量、直径和面积等参数,并通过正态分布拟合表征试样横切面早材导管的分布均匀性。如图3所示,经过二值图像处理、结合筛选阈值进行早材导管分子优选、开运算、二次过滤以及早材导管分子标记统计等步骤统计试样和早材导管带厚度,试样的横切面面积和早材导管总面积,以及计算试样的早材导管面积比(RC)和早材导管带中心到受力面距离(RD),进而对试样横切面内早材导管带特征进行数值化表征。

    图 2  试样A和B横切面内早材导管带特征
    Figure 2  Early wood vessel belt in the cross section of specimen A and B
    图 3  早材导管带数值化表征流程图
    Figure 3  Flow diagram for numerical characterization of early wood vessel belt in specimens

    通过动态热机械分析仪(DMA-Q800)在双悬臂夹具(跨距为35 mm)弯曲模式下径向加载5 MPa恒定载荷测试试样的弯曲蠕变特性[1617],保持时间为45 min,随后撤除恒定载荷,并保持其环境条件45 min。测试过程中通过自带湿度附件控制试样的含水率为(12.0±1.0)%。动态热机械分析仪程序中预设的测试温度分别为20、30、40、50、60、70和80 ℃,对应的相对湿度(RH)依次控制为66%、69%、72%、74%、77%、79%和81%,收集并记录试样弯曲蠕变数据。最后,根据早材导管带、汽蒸预处理温度和测试温度下的弯曲蠕变曲线,选取测试温度20 ℃来绘制试样蠕变与时间对数的关系曲线,经由时温等效合成白栎木材弯曲蠕变特性的主曲线,获得相应的水平移动因子,进而对其长期蠕变行为进行预测表征。

    选取测试温度20 ℃来绘制试样蠕变与对数时间的关系曲线,把其余测试温度条件下的蠕变曲线水平移动,使各曲线彼此叠合形成一定时间范围的蠕变主曲线。叠合主曲线时,水平移动因子 aT 与测试温度的关系用 Williams-Landel-Ferry (WLF)方程进行数学模型表征[18]。WLF 方程的表达式为:

    $$ \lg a_{T}=\frac{-D_{1} \times\left(T-T_{0}\right)}{D_{2}+\left(T-T_{0}\right)} 。 $$ (1)

    式(1)中:$ \mathrm{lg}{a}_{T} $为时温等效位移因子,T 为测试温度(K);T0 为参考温度(K);D1D2 为拟合所得常数。

    分别选取40幅典型的SEM图像通过MATLAB 2019a软件计算试样的RCRD并进行正态分布统计,结果如图4 所示:试样A的RCRD分别为(18.12±0.50)%和(1.12±0.04) mm,而试样B的RCRD分别为(0.03±0.04)%和0。

    图 4  试样早材导管面积比及早材导管带中心到受力面距离
    Figure 4  Earlywood vessel area ratio and the distance between vessel belt and load-bearing surface in specimens and analysis of normal distribution

    表1可知:试样A的RCRD服从正态分布,试样B的RCRD服从均匀分布,差异显著(P<0.05),其导管分子数量及分布状态一致。综上所述,含早材导管带的试样中导管分子的分布状态是相对均匀的,对照组基本上无早材导管存在。

    表 1  试样RCRD的正态分布检验结果
    Table 1  Normality test result of RC and RD of tested specimens
    试样RC/%自由度统计量PRD/mm自由度统计量P
    A18.12±0.50200.920.121.12±0.04200.970.86
    B0.03±0.04200±020
      说明:−表示无统计意义。
    下载: 导出CSV 
    | 显示表格

    图5可得:在前45 min内,试样的蠕变均随测试温度的升高而增大。同时,试样蠕变的增长速率随测试温度的升高而增大。当测试温度上升到80 ℃时,所有试样的蠕变行为最明显。分析原因:木材中运动单元获得的活化能随测试温度的升高而增大,相应的分子间相互作用力减小,导致分子间距离增大,进而增大了运动单元的活动空间,试样的蠕变显著增大‎[13, 19]。此外,一般湿木材木质素的玻璃化转变温度为72~128 ℃[16]。随着测试温度不断升高,白栎木材木质素分子链段的状态从冷冻状态转变为移动状态,并且在80 ℃下发生玻璃化转变。在分子占据体积增大的基础上,随着测试温度的升高,木质素发生自由体积膨胀[20]。因此,运动单元的运动空间增加,试样的蠕变也随之增加。

    图 5  不同测试温度下试样蠕变应变曲线
    Figure 5  Creep strain curves of specimens at different test temperatures

    图6所示:汽蒸预处理试样的瞬时应变和45 min应变整体低于未处理试样。当测试温度相同时,试样的弯曲蠕变随着汽蒸预处理温度的升高而减小。在测试温度20、30、40、50和60 ℃下,相对于A0,试样A1的瞬时应变分别减少了2.14%、2.35%、10.92%、11.97%和1.49%。随着测试温度继续从60 ℃升高到80 ℃,试样A1的瞬时应变分别增加了18.06%和2.60%;在测试温度20、30、40、50、60、70和80 ℃下,试样A2的瞬时应变分别减少了44.82%、46.21%、45.44%、33.13%、25.99%、9.15%和2.70%;在测试温度20、30、40、50、60、70和80 ℃下,试样A3的瞬时应变分别减少了41.11%、44.78%、53.44%、43.08%、42.99%、45.80%和43.24%。然而,相对于B0,相同条件下试样B1的瞬时应变分别减少了13.87%、17.94%、19.40%、13.60%、8.96%、5.14%和21.19%,试样B2和B3表现出相同规律。在测试温度70~80 ℃下,A1的瞬时应变减少幅度随测试温度升高呈负值,说明测试温度升高,应变呈增加的趋势,而B1瞬时应变的减小幅度均呈减小趋势。A2瞬时应变的减少幅度在测试温度50~80 ℃呈逐渐减小的规律,其瞬时应变的减少幅度在测试温度升高到80 ℃时最小。A3和B3的减少幅度基本保持一致,相对于其他温度汽蒸预处理的样品更加趋于稳定。

    图 6  不同汽蒸预处理和测试温度下试样的瞬时应变和45 min应变
    Figure 6  Instantaneous strain and 45 min strain of specimens at different steam pretreatment and test temperatures

    在测试温度20、30、40、50、60、70和80 ℃下,与A0相比,试样A1的45 min应变分别减少了1.84%、13.01%、0.55%、6.18%、16.69%、2.59%和7.71%,试样A2和A3的45 min应变均存在相同的变化规律。在测试温度20、30、40、50、60、70和80 ℃下,相对于B0,试样B1的45 min应变分别减少了4.01%、15.38%、2.30%、3.01%、18.69%、2.80%和12.71%,试样B2~B3的45 min应变均存在相同的变化规律。试样A1和B1的45 min应变降低幅度远小于A2、A3、B2 和B3,并且A3和B3的45 min应变降低幅度大于A2和B2,特别是在测试温度(50~80 ℃)较高时,宏观表现为蠕变程度小。这是因为无定形物质的半纤维素是组成木材主要成分之一,含有较多亲水性基团,具有较强的吸水性,是木材产生应变的因素之一[20]。在压力蒸汽处理过程中,乙酰基在受热水解过程中会从半纤维素中脱去并生成乙酸,使处理环境的酸性增强[21-22]。此外,半纤维素的聚合度在此水解过程中逐渐降低,产成低聚糖以及单糖,单糖中的戊糖反应产生糠醛,而己糖则反应产生羟甲基糠醛[2122],这一水解过程会导致形成的乙酸进一步加剧水解反应,促使半纤维素进一步分解。另一方面,在汽蒸预处理条件下,水蒸气密度明显增加,水合氢离子的电离反应促进了乙酰基的断裂和乙酸的形成,使得半纤维素的水解效率大大提高,进而明显降低木材中游离羟基的含量。汽蒸预处理使木材的平衡含水率(EMC)降低,含水率低于15%的木材在热处理温度过程中发生物理变化,导致水分与半纤维素中游离羟基的结合能力降低[23]。在热作用下,半纤维素内部的一部分多糖会裂解为糖醛、糖类,这种物质通过聚合反应生成了不溶于水的聚合物,促使木材的吸水性降低,木材的尺寸稳定性显著提高[24]

    图7可知:测试温度一定时,试样B的蠕变均小于试样 A。此外,当测试温度从20 ℃升高到80 ℃时,试样A的瞬时应变和45 min应变均明显增加。同时,蠕变的增长幅度随测试温度的升高而增加。随着测试温度(20~50 ℃)的升高,试样 A0与 B0、A1与B1、A2与B2以及A3与B3的应变差值逐渐增大,应变差值在温度40~50 ℃时达到最大;在60~80 ℃内应变差值却逐渐减小。与对照组相比,20、30、40、50、60、70和80 ℃测试温度范围内试样A0的瞬时应变分别增长了2.19%、7.19%、19.48%、20.82%、3.03%、2.35%和1.75%。试样A1~A3的瞬时应变均存在相同的变化规律。试样B0~B3的45 min应变均随测试温度的升高而增大。

    图 7  早材导管带对试样蠕变曲线的影响
    Figure 7  Influence of early vessel belt on creep strain curves of specimens

    试样的瞬时应变和45 min应变的应变差值在测试温度40~50 ℃达到最大值,而在60~80 ℃内应变差值逐渐减小,这是因为在测试温度40~50 ℃内出现了“转折点”[67]。当测试温度低于转折点时,早材导管带对白栎木材蠕变的影响相对于测试温度更加显著;而测试温度高于转折点时其对试样蠕变的影响比早材导管带更显著。当测试温度进一步升高到80 ℃时,试样A和B的瞬时弹性应变和45 min应变的应变差值相差无几;由此可知,当测试温度升高到80 ℃时,试样的蠕变主要受测试温度的影响。在弹性力学中的孔或圆形孔的应力集中问题中所述,在外加载荷作用下,弹性材料孔结构边缘产生应力集中效果,且孔边缘处的应力将远大于没有孔时的应力[25],此外,含早材导管带的试样密度小于对照组密度,导致试样力学强度变弱,从而引起应变增大,因此早材导管带的存在增大了试样的蠕变。

    图8可知:不同汽蒸预处理温度和早材导管带条件下的试样主曲线经过水平移动后均可获得一条较光滑的主曲线,说明在20~80 ℃测试温度和100 ℃~120 ℃汽蒸预处理温度范围内,时温等效适用于白栎木材的弯曲蠕变,主曲线和位移因子函数均受测试温度、早材导管带和汽蒸预处理温度的影响。利用时温等效原理,试件A0和B0的主曲线时间跨度分别由45 min延长至106.87和106.95 s;试件A1和B1的主曲线时间跨度分别由45 min延长至106.96和107.09 s;试件A2和B2的主曲线时间跨度分别由45 min延长至107.63和108.14 s;试件A3和B3的主曲线时间跨度分别由45 min延长至108.09和108.25 s。说明不同温度汽蒸预处理和早材导管带的存在一定程度上影响了主曲线的时间跨度。此外,含早材导管带的试样主曲线时间跨度小于对照组试样。原因是试样A的蠕变均大于试样B,结合孔边应力集中效应,证实了早材导管带的存在导致试样更易发生蠕变。随着时间的推移,前者的弯曲蠕变比后者更明显。此外,试样主曲线时间跨区随着汽蒸预处理温度升高而增大。分析其原因是汽蒸预处理后的样品对木材弯曲蠕变程度减小,汽蒸预处理增强了木材的尺寸稳定性;随着时间的推移,试样蠕变变化变慢。由图9表2可得:各组试样水平移动因子与测试温度的关系曲线在20~80 ℃的测试温度范围内均能满足WLF方程,所得的拟合曲线较为光滑,相应的回归系数(R2)均大于0.93 (表2),用WLF方程可以对白栎木材弯曲蠕变特性的时间与测试温度关系进行有效表达。

    图 8  不同汽蒸预处理温度和早材导管带条件下试样的主曲线
    Figure 8  Master curves of creep behavior at different steam pretreatment temperatures and vessel belt at a referenced test temperature of 20 ℃
    图 9  不同温度和早材导管带条件下试样的WLF方程拟合曲线
    Figure 9  Fitting curve of WLF equation for specimens under different temperature and vessel belt conditions
    表 2  不同汽蒸预处理温度和早材导管带条件下试样的WLF方程拟合参数与回归系数
    Table 2  Fitting parameters and regression coefficients of WLF equations for specimens under different steam pretreatment temperature and vessel belt conditions
    样品编号D1D2R2
    A0−6.979 2441.669 770.994 59
    B0−12.655 52168.871 850.988 92
    A1−6.420 7146.817 520.985 34
    B1−6.21E+131.35E+150.979 71
    A2−6.770 9927.946 090.960 80
    B2−19.201 34170.616 940.976 85
    A3−16.148 19153.087 920.946 21
    B3−7.66E+141.15E+160.932 01
    下载: 导出CSV 
    | 显示表格

    本研究结果表明:①试样的瞬时应变和45 min应变随测试温度的升高而增大;而在相同的测试温度下,试样的蠕变随着汽蒸预处理温度的升高而逐渐减小;②在20~80 ℃测试温度和100 ~120 ℃汽蒸预处理温度范围内,时温等效适用于白栎木材弯曲蠕变;③试样的时温等效水平移动因子与测试温度的关系曲线满足类WLF方程,R2均大于0.93,可见,WLF方程能较好地预测木材长期弯曲蠕变行为。

    通过本研究可以得出:在一定范围内,测试温度、汽蒸预处理和早材导管带对白栎木材弯曲蠕变行为的影响较为明显,通过时温等效原理可以有效模拟预测白栎木材的长期蠕变特性,但是本研究仅对白栎木材弯曲蠕变特性进行了模拟预测,后续应在长期实际研究中表征白栎木材长期(1~3 a)的弯曲蠕变特性。

  • 图  1  MNP、AM、SA和SA@AM的红外光谱

    Figure  1  FTIR spectra of MNP, AM, SA andSA@AM

    图  2  MNP、AM、SA@AM的扫描电镜、透射电镜和凝胶球外观图

    Figure  2  SEM, TEM and gel ball appearance of MNP, AM and SA@AM

    图  3  SA、MNP、AM和SA@AM的XRD曲线图

    Figure  3  XRD graph of SA, MNP, AM and SA@AM

    图  4  MNP,AM和SA@AM的磁化曲线图

    Figure  4  Magnetization curves of MNP, AM and SA@AM

    图  5  SA@AM凝胶球对Pb2+的吸附曲线

    Figure  5  Isothermal adsorption curve of SA@AM

    图  6  SA@AM的Langmuir(A)和Freundlich(B)吸附模型拟合图

    Figure  6  Fitting diagram of the adsorption model of Langmuir (A) and Freundlich (B) of SA@AM

    图  7  SA@AM的吸附动力学曲线

    Figure  7  Adsorption kinetic curve of SA@AM

    图  8  凝胶吸附动力学模型拟合图

    Figure  8  Fitting diagram of gel adsorption kinetic model

    图  9  磁性分离效果图

    Figure  9  Magnetic separation effect diagram

    图  10  凝胶球对Pb2+的吸附-解吸测试图

    Figure  10  Repeat adsorption performance test renderings

    表  1  产物样品中各元素质量分数

    Table  1.   The mass fraction of each element in the product sample

    磁性材料元素质量分数/%
    MNP13.270.0116.120.3753.25
    AM14.744.9815.974.7247.34
    SA@AM32.961.9220.212.3426.46
    下载: 导出CSV
  • [1] AO Ziqiang, BU Meihong, PENG Guiqun, et al. Control of copper pollution in pig waste and recycling of copper [J]. Meteorol Environ Res, 2018, 9(2): 77 − 80.
    [2] TIAN Ting, CHEN Yaping. The decision-making model of the electrical appliancesenterprise reverse logistics with government monitoring [J]. Appl Mech Mater, 2013, 448(453): 4465 − 4470.
    [3] ISKANDAR Liyana, ZAINUDIN A I M, TAN S G, et al. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem [J]. Acta Sci Circum, 2011, 23(5): 824 − 830.
    [4] AZIMI A, AZARI A, REZAKAZEMI M, et al. Removal of heavy metals from industrial wastewaters: a review [J]. Chem Bio Eng Rev, 2017, 4(1): 37 − 59.
    [5] BANERJEE A, SARKAR P, BANERJEE S, et al. Application of statistical design of experiments for optimization of As(Ⅴ) biosorption by immobilized bacterial biomass [J]. Ecol Eng A, 2016, 86: 13 − 23.
    [6] EL-NAGGARN E A, HAMOUDA R, MOUSA I, et al. Biosorption optimization, characterization, immobilization and application of Gelidiumamansii biomass for complete Pb2+ removal from aqueous solutions [J]. Sci Rep, 2018, 8(1): 13456 − 13462.
    [7] 陶虎春, 李硕, 张丽娟, 等. 1种新型磁性壳聚糖/海藻酸钠复合凝胶球的制备与性能研究[J]. 北京大学学报(自然科学版), 2018, 54(4): 899 − 906.

    TAO Huchun, LI Shuo, ZHANG Lijuan, et al. Preparation and properties of a novel magnetic chitosan/alginate composite gel sphere [J]. Acta Sci Nat Univ Pekin, 2018, 54(4): 899 − 906.
    [8] 陈宏, 刘旭, 李亚男, 等. 应用海藻酸钠脱除重金属研究进展[J]. 化学通报, 2017, 80(3): 241 − 245.

    CHEN Hong, LIU Xu, LI Yanan, et al. Research progress in the removal of heavy metals by sodium alginate [J]. Chem Bull, 2017, 80(3): 241 − 245.
    [9] 于长江, 颜杨婕, 凌玉, 等. 海藻酸钠复合吸附材料研究进展[J]. 海南师范大学学报(自然科学版), 2017, 30(2): 154 − 160.

    YU Changjiang, YAN Yangjie, LING Yu, et al. Research progress of preparation of sodium alginate composite adsorption materials [J]. J Hainan Norm Univ Nat Sci, 2017, 30(2): 154 − 160.
    [10] TANG Bing, YUAN Liangjun, SHI Taihong, et al. Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation [J]. J Hazard Mater, 2009, 163(2/3): 1173 − 1178.
    [11] 张连科, 王洋, 王维大, 等. 生物炭负载纳米羟基磷灰石复合材料的制备及对铅离子的吸附特性[J]. 化工进展, 2018, 37(9): 215 − 224.

    ZHANG Lianke, WANG Yang, WANG Weida, et al. Preparation of biochar-supported nano-hydroxyapatite composites and their adsorption characteristics for lead ions [J]. Chem Ind Eng Prog, 2018, 37(9): 215 − 224.
    [12] 唐洁, 康玉茹, 郑茂松, 等. 季铵盐有机化改性伊蒙混层黏土的悬浮性能[J]. 硅酸盐通报, 2014, 33(12): 3118 − 3123.

    TANG Jie, KANG Yuru, ZHENG Maosong, et al. Suspension properties of quaternary ammonium salt organically modified Yimeng mixed layer clay [J]. Bull Chin Ceram Soc, 2014, 33(12): 3118 − 3123.
    [13] 库建刚, 陈辉煌, 何逵, 等. 强磁性矿粒在磁选过程中的受力分析及动力学模拟[J]. 中南大学学报(自然科学版), 2015, 46(5): 1577 − 1582.

    KU Jiangang, CHEN Huihuang, HE Kui, et al. Force analysis and dynamic simulation of ferromagnetic mineral particles in magnetic separation process [J]. J Cent South Univ Sci Technol, 2015, 46(5): 1577 − 1582.
    [14] 崔龙哲, 吴桂萍, 张婉婷. 磁性壳聚糖的制备及吸附靛蓝胭脂红的性能评价[J]. 环境科学与技术, 2017, 40(4): 19 − 23.

    CUI Longzhe, WU Guiping, ZHANG Wanting. Synthesis of mercapto functional Fe3O4-chitosan and its absorption of anionic dye [J]. Environ Sci Technol, 2017, 40(4): 19 − 23.
    [15] SAFARI J, ZARNEGAR Z. Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as recyclable; catalyst for synthesis of imidazoles under microwave irradiation [J]. J Chem Sci, 2013, 125(4): 835 − 841.
    [16] LIEBE C C, JOERGENSEN J L. Algorithms onboard the oersted microsatellite stellar compass [J]. Proc SPIE-Int Soc Opt Eng, 1996, 28(10): 239 − 251.
    [17] WU Di, ZHANG Zhe, LI Le, et al. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films [J]. Sci Rep, 2015, 5:12352. doi: 10.1038/srep12352.
    [18] 卢闻君, 郭明, 杨世昌, 等. 新型磁性超分子基功能吸附材料的制备及性能研究[J]. 高校化学工程学报, 2019, 33(1): 213 − 224.

    LU Wenjun, GUO Ming, YANG Shichang, et al. Preparation and properties of new magnetic supramolecular functional adsorption materials [J]. J Chem Eng Chin Univ, 2019, 33(1): 213 − 224.
    [19] JIANG Zhengyi, LIU Xianghua, HAN Jingtao. To measure the absorbance at 328 nm by ultraviolet-visible spectrophotometer-an alternative pathway to measure the activity of acetylcholinesterase [J]. Adv Mater Res, 2014, 887/888: 657 − 660.
    [20] 孙琳琳, 周叶红, 王斐, 等. 羧甲基-β-环糊精功能化的四氧化三铁磁性纳米复合物对罗丹明B的吸附性能[J]. 应用化学, 2015, 32(1): 110 − 117.

    SUN Linlin, ZHOU Yehong, WANG Fei, et al. Adsorption properties of carboxymethyl-β-cyclodextrin functionalized ferroferric oxide magnetic nanocomposites on rhodamine B [J]. Chin J Appl Chem, 2015, 32(1): 110 − 117.
    [21] 陈帅, 刘峙嵘, 吴振宇. 活性污泥胞外聚合物对铀酰离子的吸附性能[J]. 核化学与放射化学, 2014, 36(1): 47 − 52.

    CHEN Shuai, LIU Zhirong, WU Zhenyu. Adsorption of uranyl on extracellular polymeric substances from activated sludge [J]. J Nucl Radiochem, 2014, 36(1): 47 − 52.
    [22] LI Chaodao, LU Jianjiang, LI Shanman. Synthesis of magnetic microspheres with sodium alginate and activated carbon for removal of methylene blue [J]. Materials, 2017, 10(1): 84. doi: 10.3390/ma10010084.
    [23] CHEN Jianhua, NI Jiancong, LIU Qinglin, et al. Adsorption behavior of Cd(Ⅱ) ions on humic acid-immobilized sodium alginate and hydroxyl ethyl cellulose blending porous composite membrane adsorbent [J]. Desalination, 2012, 285(3): 54 − 61.
    [24] SI Huaizong, WANG Bing, SUN Z, et al. Preparation of hollow structure of dual template molecularly imprinted nanoparticles and its application in desulfurization of fuel oils [J]. Polym Mater Sci Eng, 2016, 10(6): 154 − 159.
    [25] CHOI Seungbok, KIM Yunhae. Fe3O4 and TiO2embedded sodium alginate beads of composite adsorbent for Pb(Ⅱ) removal [J]. Adv Mater Res, 2014, 900: 160 − 164.
  • [1] 李钧洋, 霍丽竹, 龚著祥, 许浩, 王宇轩, 郭超飞, 杨雪娟, 罗锡平.  木质素磺酸钠吸附材料的制备及对刚果红的吸附性能 . 浙江农林大学学报, 2024, 41(4): 870-878. doi: 10.11833/j.issn.2095-0756.20230585
    [2] 田华宇, 刘焕, 王国睿, 郝海彦, 王天赐, 张文标.  刺竹活性炭的制备及吸附性能研究 . 浙江农林大学学报, 2024, 41(2): 429-436. doi: 10.11833/j.issn.2095-0756.20230307
    [3] 史航, 李兵, 郭建忠.  功能化枝状复合吸附材料的制备及吸附Cr(Ⅵ)的性能 . 浙江农林大学学报, 2022, 39(2): 396-404. doi: 10.11833/j.issn.2095-0756.20200119
    [4] 胡蝶, 李文奇, 张利萍, 关莹, 高慧.  废报纸生物质炭的制备及对铜离子的吸附性能 . 浙江农林大学学报, 2020, 37(2): 325-334. doi: 10.11833/j.issn.2095-0756.2020.02.018
    [5] 陈爽, 王良恺, 文涛, 毛欣宇, 许明, 邵孝侯.  新型粉煤灰陶粒固定化有效微生物群落对模拟水产养殖废水净化效果 . 浙江农林大学学报, 2020, 37(4): 761-768. doi: 10.11833/j.issn.2095-0756.20190443
    [6] 武新梅, 周素茵, 徐爱俊.  生态治理模式下生猪养殖业污水智慧监管 . 浙江农林大学学报, 2018, 35(3): 543-551. doi: 10.11833/j.issn.2095-0756.2018.03.021
    [7] 周建, 江泽平, 魏远.  重金属铅胁迫对刺槐幼苗生长及铅离子转运特性的影响 . 浙江农林大学学报, 2016, 33(5): 742-748. doi: 10.11833/j.issn.2095-0756.2016.05.003
    [8] 沈泉, 沈颖, 徐秋芳, 王炀波.  外源竹炭对土壤硝酸根离子的吸附效应 . 浙江农林大学学报, 2014, 31(4): 541-546. doi: 10.11833/j.issn.2095-0756.2014.04.008
    [9] 沈振明, 夏俊, 戴勇, 沈秋兰, 李永春, 徐秋芳.  阴离子淀粉对土壤养分离子的吸附作用 . 浙江农林大学学报, 2014, 31(3): 366-372. doi: 10.11833/j.issn.2095-0756.2014.03.006
    [10] 肖继波, 赵委托, 褚淑祎, 陆国权.  薯类淀粉废水处理技术及资源化利用研究进展 . 浙江农林大学学报, 2013, 30(2): 292-298. doi: 10.11833/j.issn.2095-0756.2013.02.022
    [11] 吴光前, 孙新元, 张齐生.  活性炭表面氧化改性技术及其对吸附性能的影响 . 浙江农林大学学报, 2011, 28(6): 955-961. doi: 10.11833/j.issn.2095-0756.2011.06.020
    [12] 刘占孟, 唐朝春, 李静, 鲍东杰.  活性炭催化臭氧化降解亚甲基蓝实验 . 浙江农林大学学报, 2009, 26(3): 406-410.
    [13] 陈蓉, 单胜道, 吴亚琪.  浙江省农村生活垃圾区域特征及循环利用对策 . 浙江农林大学学报, 2008, 25(5): 644-649.
    [14] 章志攀, 俞益武, 孟明浩, 孔邦杰.  旅游环境中空气负离子的研究进展 . 浙江农林大学学报, 2006, 23(1): 103-108.
    [15] 夏少敏, 张云杰, 赵赤.  《环境保护法》的目的及修改意见 . 浙江农林大学学报, 2005, 22(5): 577-581.
    [16] 周伯煌, 陈永富, 张文龙, 唐志.  浙江省小城镇发展进程中环境保护问题探讨 . 浙江农林大学学报, 2003, 20(1): 75-79.
    [17] 陈立琴, 张敏生, 胡云江.  论公众参与环境保护制度的建设与完善 . 浙江农林大学学报, 2002, 19(2): 173-177.
    [18] 胡云江.  论环境伦理对资源环境保护的支撑 . 浙江农林大学学报, 2002, 19(1): 72-75.
    [19] 胡云江.  论浙江山区乡镇的资源环境保护 . 浙江农林大学学报, 2001, 18(2): 180-183.
    [20] 胡云江, 张敏生.  环境保护的伦理思考 . 浙江农林大学学报, 2000, 17(1): 71-74.
  • 期刊类型引用(1)

    1. 黄鹤,李珠,蒋佳荔,李媛. 水热处理温度对马尾松早材与晚材拉伸蠕变行为的影响. 木材科学与技术. 2025(01): 22-29+36 . 百度学术

    其他类型引用(2)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190751

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2020/6/1112

图(10) / 表(1)
计量
  • 文章访问数:  2608
  • HTML全文浏览量:  1027
  • PDF下载量:  74
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-12-21
  • 修回日期:  2020-07-06
  • 网络出版日期:  2020-12-01
  • 刊出日期:  2020-12-01

磁性海藻酸钠复合凝胶球的制备及对铅离子的吸附性能

doi: 10.11833/j.issn.2095-0756.20190751
    基金项目:  浙江省自然科学基金资助项目(LY18B070003, LGN20B070001)
    作者简介:

    王珏,从事生物质材料合成与应用研究。E-mail: 1043215433@qq.com

    通信作者: 郭明,教授,从事环境功能材料合成研究。E-mail: guoming@zafu.edu.cn
  • 中图分类号: X52

摘要:   目的  磁性凝胶微球是新型吸附剂,其高效去除污染物的功能和重复利用性能受到热切关注,因此制备1种新型的磁性凝胶球极有必要。  方法  将离子共沉淀法制备的磁性粒子(MNP)用作载体进行硅烷化反应以合成具有氨基末端的磁性纳米颗粒(AM)。静电作用将海藻酸钠(SA)包覆在磁性颗粒表面,制备了1种富含氨基、羟基和羧基多官能团的新型磁性复合凝胶球(SA@AM)。利用傅立叶变换红外光谱(FTIR)、元素分析仪、X射线衍射仪(XRD)、扫描/透射电子显微镜(SEM/TEM)、振动样品磁力计(VSM)表征产物,并开展产物对重金属离子吸附性能研究。  结果  成功制备的目标功能复合凝胶球(SA@AM)呈顺磁性磁铁矿晶型,SA@AM凝胶球的尺寸为1.5~2.0 mm;MNP、AM、SA@AM的磁化值分别为13.8、13.4和6.85 A·m2·kg−1。吸附实验显示:SA@AM对重金属铅离子(Pb2+)表现出高效吸附能力,对Pb2+的最大吸附量为105.82 mg·g−1,吸附机理更符合Langmuir等温吸附模型。重复吸附-解吸实验表明:SA@AM对Pb2+的去除率≥76%。  结论  新型海藻酸钠磁性复合凝胶球对重金属Pb2+有着优异的吸附能力,同时磁性凝胶球有着良好的再生性能。图10表1参25

English Abstract

张毓格, 侯俊峰, 岑俊杰, 等. 汽蒸预处理白栎木材弯曲蠕变的时温等效特性[J]. 浙江农林大学学报, 2023, 40(5): 1121-1129. DOI: 10.11833/j.issn.2095-0756.20220688
引用本文: 王珏, 郭明, 孙立苹. 磁性海藻酸钠复合凝胶球的制备及对铅离子的吸附性能[J]. 浙江农林大学学报, 2020, 37(6): 1112-1119. DOI: 10.11833/j.issn.2095-0756.20190751
ZHANG Yuge, HOU Junfeng, CEN Junjie, et al. Time-temperature equivalence in bending creep of white oak wood in steam pretreatment[J]. Journal of Zhejiang A&F University, 2023, 40(5): 1121-1129. DOI: 10.11833/j.issn.2095-0756.20220688
Citation: WANG Jue, GUO Ming, SUN Liping. Preparation of magnetic sodium alginate composite gel balls and their adsorption properties for Pb2+[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1112-1119. DOI: 10.11833/j.issn.2095-0756.20190751
  • 目前,环境污染得到广泛重视,水体污染为受关注的热点领域[1]。在水污染物的重金属成分中,铅(Pb)是一种典型的重金属污染物,严重威胁着生态系统和人体健康[2-3],是水污染控制的重点。在众多的水体污染处理技术中[4-5],水凝胶作为一种高含水量,具有良好生物相容性和环保吸附性能的软材料,已被广泛应用于水污染物去除领域[6]。水凝胶基材的选择决定着凝胶吸附性能的强弱。生物质有着廉价易得、生产成本、不易造成二次污染等优点,可作为理想的改性基材。选择生物质作为基材构筑新型高效、绿色吸附材料是发展趋势。在众多生物质基材原料中,海藻酸钠(SA)作为天然的生物质高分子有机物质,由于其亲水性很强,与钙离子(Ca2+)在水溶液中通过离子交换反应聚合形成凝胶球[7-8],能够有效地去除水中重金属[9]。该特性使其成为制备复合吸附剂的理想框架。在传统的化学吸附材料中添加磁性四氧化三铁(Fe3O4)纳米颗粒可以使传统的化学吸附剂具有物理磁性。吸附剂可以在外部磁场下快速从水体中分离,同时不会在环境中产生二次污染,解决了传统吸附剂不容易与水体分离,难以回收的缺点。因此,制备磁性可回收生物质基水凝胶是一项极有新意的工作。结合海藻酸钠和Fe3O4的优良特性,海藻酸钠和烷基化磁性 Fe3O4纳米粒子制备出新型的复合吸附剂,可以达到增强吸附性能的效果,具有低成本、绿色安全和其他优势。具体工作内容是通过硅烷化反应制备含有端氨基的磁性纳米颗粒,进而利用生物质海藻酸钠包覆磁性颗粒,获得生物基磁性凝胶微球吸附材料。纳米级粒度更有利于凝胶球的包覆行为,并使结构更紧密。本研究制备了1种富含氨基、羟基和羧基多官能团的新型磁性复合凝胶球,同时,研究了复合凝胶球的吸附性能。新型磁性复合凝胶球对铅离子(Pb2+)的吸附效果显著,并具有良好的重复利用性能,为绿色零污染吸附剂的制备提供了基础。

    • 海藻酸钠[(C6H7O6Na)n,980 g·kg−1],七水合硫酸亚铁(Ⅱ)(FeSO 4·7H2O,980~1020 g·kg−1),氢氧化钠(NaOH,960 g·kg−1),氯化钙(CaCl2,990 g·kg−1)购自杭州安耐尔技术有限公司;3-氨丙基-三甲氧基硅烷(APTS,纯度970 g·kg−1)购自阿拉丁制药有限公司;氯化铁(Ⅲ)六水合物(FeCl3·6H2O,980 g·kg−1)、无水乙醇(999 g·kg−1)、氢氧化钠(NaOH,250~280 g·kg−1)、氯乙酸(980 g·kg−1)、氯化铅(分析级)、甲醇(995 g·kg−1)、异丙醇丙二醇(995 g·kg−1)购自国药股份化学试剂有限公司;实验水为蒸馏水。

    • 磁性粒子Fe3O4(MNP)的制备方法为离子共沉淀法[10]。将5.9 g FeCl3·6H2O和3.0 g FeSO4·7H2O溶解分散于100 mL蒸馏水中,1 mol·L−1NaOH调节溶液pH至11.0,获得磁性粒子(MNP),75 ℃ 超声搅拌40 min,蒸馏水和甲醇交替洗涤数次。采用强磁分离产物,在甲醇溶液储存合成的MNP,备用。

      在200 mL甲醇中加入上述制备得到的MNP,搅拌分散。加入10 mL APTS,氮气(N2)保护下(60 ℃)回流搅拌12 h。甲醇洗涤数次,得到端氨基修饰磁性颗粒(AM),磁力法分离产物,储存在甲醇溶液中备用。参考文献[7],取20 mL 10 g·kg−1海藻酸钠溶液在烧杯中,加入氨基修饰AM,搅拌混合后超声波处理30 min;配置20 g·kg−1氯化钙溶液,将混合悬浮液缓慢匀速滴入其中。悬浮液在水中发生交联形成颜色偏黑、粒度均匀的复合磁性凝胶球。凝胶球在CaCl2溶液中充分浸泡48 h后,用超纯水洗涤数次,即得新型磁性海藻酸钠复合凝胶球(SA@AM)。冻干备用。

    • 反应物、中间产物及终产物的红外光谱(IR)谱采用傅立叶变换红外光谱仪(FTIR)测定,扫描波数为4 000~400 cm−1,溴化钾(KBr)压片法制做样品。产物的X射线衍射分析采用粉末衍射仪测试,扫描范围为2θ=20.0°~80.0°,扫描速度为2°·min−1。采用扫描电子显微仪和透射电子显微镜进行样品表观形貌分析。透射电镜采用铜网为载体制样,观察比较MNP、AM和SA@AM复合凝胶球表面形貌。振动样品磁强计(0~±1 T)测量磁化曲线,测试条件为300 K;元素分析仪测试产物元素的分布情况。

    • 分别配制以下系列质量浓度10、20、30、40、50、60、70、80、90 mg·L−1的Pb2+标准溶液(pH 6.0),加入1 g的SA@AM凝胶球置于50 mL溶液中,在25 ℃持续吸附3 h。取上清液,确定滤液中离子的浓度,绘制等温吸附曲线,得到产物中Pb2+的最大吸附量。通过模型拟合离子吸附剂的热力学特性并研究吸附曲线。

    • 取1 g的SA@AM微球于50 mL质量浓度为80 mg·L−1的Pb2+标准溶液。在25 ℃振动吸附,并在5、10、15、30、45、60、75、90、105、120 min的间隔取出上清液,并测量上清液中的离子浓度,绘制吸附量随时间变化的曲线,得到离子吸附的动力学曲线。通过动力学模型拟合离子吸附动力学曲线来研究离子的吸附动力学。

    • 图1可知:在560 cm−1的吸收峰归属于纳米磁性粒子Fe3O4(MNP)的Fe—O伸缩振动峰,3 428 cm−1的吸收峰归属于Fe3O4的—OH的伸缩振动峰[11]。与MNP的红外光谱相比可知:在3 398 cm−1的吸收峰归属于端氨基AM的N—H伸缩振动峰;亚甲基的对称和不对称伸缩振动峰归属于2 919和2 844 cm−1的吸收峰[12];Si—O—C的伸缩振动吸收峰在1 059 cm−1处显现,Fe3O4中Fe—O键的特征吸收峰在560 cm−1出现。比较产物MNP、AM、SA@AM的红外谱可知:在N—H伸缩振动峰归属于3 397 cm−1的吸收峰;制备的产物AM、SA@AM都含有Fe3O4中Fe—O键的特征吸收峰562 cm−1。综上分析可得:图谱所表示的特征峰基本与产物的结构相一致,可以判定目标产物的成功制备。

      图  1  MNP、AM、SA和SA@AM的红外光谱

      Figure 1.  FTIR spectra of MNP, AM, SA andSA@AM

    • NMR结构分析是产物表征常用的有效方法。由于强磁材料的特殊性干扰核磁场强,无法获得较为准确核磁谱图,因此,利用元素分析结合X射线衍射仪(XRD)等表征方法对材料结构进行分析。由表1可知:各样品中均可以检测出碳、硅、氧、氮、铁等元素。MNP经硅烷化反应制备得到的富含端氨基AM,AM中氮和硅的质量分数(4.72%和4.98%)有所增加。氨基改性的AM被包覆在SA@AM中,SA@AM与磁性粒子MNP、AM相比,其碳、氧元素的质量分数增加,硅、氮、铁元素的质量分数减少,SA@AM的组成特征与分析结果相符合。综上所述,元素分析质量分数检测结果与产物实际特征相符合,进一步验证了预期产物的成功合成。

      表 1  产物样品中各元素质量分数

      Table 1.  The mass fraction of each element in the product sample

      磁性材料元素质量分数/%
      MNP13.270.0116.120.3753.25
      AM14.744.9815.974.7247.34
      SA@AM32.961.9220.212.3426.46
    • 产物MNP、中间产物(AM)和终产物(SA@AM)的扫描电镜(TEM)、透射电镜(SEM电镜)照片和复合凝胶球外观照片如图2的所示。从图2可见:氨基改性AM的扫描电镜(SEM)图2A看出其结构单一,大小较为均匀,呈圆球状,颗粒堆积成簇。AM的透射电镜(TEM)图(图2B)看出:端氨基AM表面紧致,为不规则、无定形态,尺寸为15~20 nm,中心部分是磁性核粒子为黑色,边缘部分较为松散,为白色透明状,说明氨基硅烷在磁性核粒子上包覆成功。同时,图2显示,AM发生微量堆积而且相互吸附,可能是由于AM自带的磁力使其发生团聚成簇现象[13]。SA@AM的冻干凝胶球SEM图2C看出:AM颗粒附着包覆在海藻酸钠凝胶上,凝胶球含有较多褶皱和大的空隙。这是凝胶球高吸附性能的基础。SA@AM的外观图2D看出:凝胶球为黑色球型,表面光滑而且具有一定的弹性。因此,从表面形貌定性分析,验证得到了目标复合产物。

      图  2  MNP、AM、SA@AM的扫描电镜、透射电镜和凝胶球外观图

      Figure 2.  SEM, TEM and gel ball appearance of MNP, AM and SA@AM

    • 原料SA、原始产物MNP、AM和终产物SA@AM的XRD谱如图3所示。在图3各样品的XRD图谱中可以得到:MNP、AM和SA@AM在相同位置出现6个典型特征峰,分别为2θ=30.3°、35.4°、43.2°、53.9°、57.2°和 62.8°,分别对应(220)、(311)、(400)、(422)、(511)和(440)6种Fe3O4在X射线中的晶面[14]。其中特征峰的位置和强度均没有发生变化,结构为Fe3O4反尖晶石,磁铁矿晶型表现为顺磁性[15]。表明在改性磁性纳米粒子过程均未改变磁性材料的晶型结构。此外,图3中AM与MNP的XRD曲线比较,非晶相衍射峰在2θ=20.0°~30.0°内出现。此峰是由于非晶相的氨基硅烷包裹在MNP表面所致。终产物SA@AM与SA、AM的XRD曲线图相比,在2θ=20.0°~27.0°内出现SA的非晶相衍射峰;另外,由于SA包覆在MNP表面,使得终产物中Fe3O4在2θ=53.9°的衍射峰变宽。这些结果进一步证明产物磁性粒子MNP、AM和SA@AM的成功合成。

      图  3  SA、MNP、AM和SA@AM的XRD曲线图

      Figure 3.  XRD graph of SA, MNP, AM and SA@AM

    • 原始产物MNP、AM和终产物SA@AM的VSM分析磁化曲线如图4所示。产物的磁场饱和强度采用磁强度计进行测定[16]。在300 K、外部磁场为−1~1 T条件下,各产物几乎无剩磁产生,因为其磁滞曲线为S型而且过原点,同时矫顽力和剩余磁场强度都接近0[17],表明所制备的MNP、AM和SA@AM具有超顺磁性而且有良好的磁力响应性能[18]。测试的结果表示:MNP、AM和SA@AM的磁化值分别为13.8、13.4和6.85 A·m2·kg−1,SA@AM比MNP和AM的磁化值高。粒子表面被硅烷官能团覆盖可能影响产物AM的磁化值,这或许是AM的磁性比MNP稍低的原因。AM被海藻酸钠包覆影响SA@AM的磁化性能,造成其磁性减弱。

      图  4  MNP,AM和SA@AM的磁化曲线图

      Figure 4.  Magnetization curves of MNP, AM and SA@AM

    • 样品的吸光度采用原子分光光度计检测,吸附量根据吸光度结合公式(1)计算得出 [19]

      $$ Q=\frac{\left(C_{0}-C_{\rm{e}}\right) V}{W}\text{。} $$ (1)

      式(1)中:Q表示吸附量(mg·g−1),W表示凝胶的质量(g),C0表示重金属离子的初始质量浓度(mg·L−1),Ce表示金属离子的最终质量浓度(mg·L−1),V表示吸附溶液的体积(mL)。根据公式(1)计算新型磁性微球SA@AM对Pb2+的吸附量,绘制等温吸附性曲线,如图5所示。吸附等温线选择常用的Freundlich和Langmuir模型,其线性方程表示分别如下:

      图  5  SA@AM凝胶球对Pb2+的吸附曲线

      Figure 5.  Isothermal adsorption curve of SA@AM

      $$ \ln q_{\mathrm{e}}=\ln K_{\mathrm{F}}+\frac{1}{n} \ln C_{\rm{e}}^{\prime} \text{;} $$ (2)
      $$ \frac{C_{\rm{e}}^{\prime}}{q_{\rm{e}}}=\frac{C_{\rm{e}}^{\prime}}{q_{\rm{max }}}+\frac{1}{q_{\rm{max }} K_{\rm{L}}}\text{。} $$ (3)

      式(2)和式(3)中:${C}_{\rm{e}}'$表示平衡时离子质量浓度(mg·L−1);qe为平衡时的吸附量(mg·g−1);qmax为饱和时的吸附量(mg·g−1);KFn是Freundlich的吸附常数; KL是Langmuir的吸附常数。材料等温吸附特性分别采用Freundlich和Langmuir模型[20]进行拟合,拟合曲线和结果如图6所示。

      图  6  SA@AM的Langmuir(A)和Freundlich(B)吸附模型拟合图

      Figure 6.  Fitting diagram of the adsorption model of Langmuir (A) and Freundlich (B) of SA@AM

      图5凝胶等温吸附性曲线可知:SA@AM凝胶对Pb2+的最大饱和吸附量为102.12 mg·g−1。随着Pb2+溶液质量浓度的增加,吸附剂对其吸附量也明显增加直至饱和。凝胶对Pb2+的吸附过程具有规律性,显著性检验系数P<0.01表明呈极显著相关。由图6可知:Langmuir模型和Freundlich模型的线性相关系数分别为0.9786和0.9509,对2个相关系数进行显著性检验,均为极显著正相关(P<0.01)。由数值大小可见:Langmuir模型较Freundlich模型线性相关高。Langmuir模型线性拟合结果与实际测试结果较为相近,SA@AM对Pb2+的最大吸附量为105.82 mg·g−1,故凝胶吸附材料对Pb2+的吸附热力学行为更符合Langmuir吸附等温模型。

    • SA@AM对Pb2+的吸附量根据公式(1)计算,动力学吸附曲线如图7所示。常采用准一级反应动力学模型$\ln \left(q_{\mathrm{e}}-q_{\mathrm{t}}\right)=\ln q_{\mathrm{e}}-$$K_{1} t $和准二级反应动力学模型[21]$\dfrac{t}{q_{t}}=\dfrac{1}{K_{2} q_{\rm{e}}^{2}}+\dfrac{t}{q_{\rm{e}}}$描述吸附反应动力学过程。其中:t是吸附时间;qe为吸附达平衡时吸附材料对重金属的吸附量(mg·g−1);qtt时吸附材料对重金属的吸附量(mg·g−1);K1为一级吸附速率常数;K2为二级吸附速率常数。吸附剂动力学吸附特性分别采用准一级动力学模型和准二级动力学模型对其进行拟合,拟合方程及结果如图8所示。

      图  7  SA@AM的吸附动力学曲线

      Figure 7.  Adsorption kinetic curve of SA@AM

      图  8  凝胶吸附动力学模型拟合图

      Figure 8.  Fitting diagram of gel adsorption kinetic model

      图7可知:吸附量随时间增加而增大。在吸附反应的初始阶段(0~45 min),凝胶吸附速率大;在50~80 min时,吸附速率逐渐减慢。当时间达80 min时,水凝胶对Pb2+的吸附基本上达到了吸附动力学平衡。SA@AM对Pb2+的吸附过程是有规律性的,经显著性分析,呈极显著相关(P<0.01)。由图8可知:实验过程中,SA@AM凝胶对Pb2+的最大饱和吸附量为91.72 mg·g−1,从准一级吸附动力学模型线性拟合结果和准二级吸附动力学模型线性拟合结果可得:SA@AM凝胶对Pb2+最大吸附量分别为98.74和101.60 mg·g−1。由此可见:相比于实测值,准二级吸附动力学模型线性拟合的平衡吸附量比准一级动力学模型拟合的更接近。动力学吸附拟合方程的参数可以看出:准二级吸附动力学模型线性相关性(R2=0.982 8)较准一级动力学模型相关性(R2=0.956 6)高,表明极显著相关(P<0.01),故吸附材料对Pb2+的吸附动力学行为更符合准二级吸附动力学模型。LI等[22]关于海藻酸铁介孔碳微球对砷吸附性能的研究,以及CHEN等[23]关于海藻酸钠与纳米Fe3O4共混凝胶球对有机污染物甲基橙的吸附行为的研究均得到类似结果。

    • 图9显示:磁性海藻酸钠凝胶球对Pb2+有良好的磁分离效果,这是由于海藻酸钠凝胶球中包覆有氨基末端的磁性粒子,使得凝胶球含有磁性。参考文献[24]方法,通过吸附-解吸过程来测试磁性海藻酸钠凝胶球的重复利用性。恢复率如图10所示。图10表明:SA@AM对Pb2+的去除率与重复循环解吸次数有关,而且吸附率逐渐减少。每次重复吸附-解吸后,凝胶对Pb2+的吸附量减少6%~7%。经过重复循环5次后,SA@AM对Pb2+的吸附去除率保持在76%以上,说明SA@AM循环性能良好,利于对Pb2+的重复吸附。

      图  9  磁性分离效果图

      Figure 9.  Magnetic separation effect diagram

      图  10  凝胶球对Pb2+的吸附-解吸测试图

      Figure 10.  Repeat adsorption performance test renderings

    • 本研究通过滴定法,将表面接枝端氨基的磁性纳米颗粒包覆于海藻酸钠凝胶球中,制备得到1种新型磁性海藻酸钠复合凝胶球(SA@AM),并通过各种表征方法测试产物,得出结论如下:①红外光谱表明:已经成功获得磁性凝胶产物,通过分析元素质量分数及分布情况证实了产物的元素结构。XRD光谱分析证明端氨基磁性颗粒的非晶相峰的出现;磁化曲线分析可知:产物具备优异磁性能,同时磁化值的差异证实了磁性凝胶球的成功制备。②SA@AM具有独特的磁响应性能,对Pb2+具有较好的吸附能力,达102.12 mg·g−1,吸附能力相比于已有的磁性纳米材料(吸附能力65~90 mg·g−1)更优[25];二级动力学模型更符合凝胶球的吸附动力学性能,Langmuir模型更能充分描述凝胶球的等温吸附规律。循环脱附-吸附过程中证明了材料具有良好的重复利用性能。③本研究所制备出的SA@AM,相比化学吸附剂具有功能磁响应性,可以通过控制外加磁场实现对吸附剂分离回收,为生态环境中治理重金属污染提供了1种绿色、高效的新型应用型功能吸附剂。

参考文献 (25)

目录

/

返回文章
返回