留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

农杆菌介导遗传转化获得转CP4基因籼稻的研究

胡欢 李媛 丁筠 曹含章 吕尊富 李飞飞

胡欢, 李媛, 丁筠, 等. 农杆菌介导遗传转化获得转CP4基因籼稻的研究[J]. 浙江农林大学学报, 2021, 38(2): 420-425. DOI: 10.11833/j.issn.2095-0756.20200436
引用本文: 胡欢, 李媛, 丁筠, 等. 农杆菌介导遗传转化获得转CP4基因籼稻的研究[J]. 浙江农林大学学报, 2021, 38(2): 420-425. DOI: 10.11833/j.issn.2095-0756.20200436
LU Jie, ZHENG Wei-lie, LAN Xiao-zhong. Biomass of Rhodiola fastigiata[J]. Journal of Zhejiang A&F University, 2008, 25(6): 743-748.
Citation: HU Huan, LI Yuan, DING Yun, et al. Agrobacterium-mediated transformation of CP4 gene into indica rice[J]. Journal of Zhejiang A&F University, 2021, 38(2): 420-425. DOI: 10.11833/j.issn.2095-0756.20200436

农杆菌介导遗传转化获得转CP4基因籼稻的研究

DOI: 10.11833/j.issn.2095-0756.20200436
基金项目: 国家自然科学基金青年基金资助项目(31401461);浙江农林大学学生科研训练项目(KX20180017)
详细信息
    作者简介: 胡欢(ORCID: 0000-0001-6807-1145),从事水稻转基因研究。E-mail: 1364213853@qq.com
    通信作者: 李飞飞(ORCID: 0000-0002-6233-4204),副教授,从事植物基因工程研究。E-mail: lifei-fei@163.com
  • 中图分类号: S336

Agrobacterium-mediated transformation of CP4 gene into indica rice

  • 摘要:   目的  建立籼稻‘中恢161’Oryza sativa subsp. indica ‘Zhonghui 161’农杆菌Agrobacterium tumefaciens介导的转化体系。  方法  以籼稻‘中恢161’的成熟胚为材料,设置了5个草甘膦质量浓度(100、200、300、400和500 mg·L−1)进行胚性愈伤组织的草甘膦敏感性试验。利用农杆菌介导法,将草甘膦抗性基因CP4-EPSPS导入‘中恢161’的胚性愈伤组织中,转化后的胚性愈伤组织分别在含有300、350和400 mg·L−1草甘膦的选择培养基上进行抗性筛选。抗性愈伤组织进一步分化、成苗。  结果  草甘膦质量浓度为300~400 mg·L−1时,愈伤组织褐化率约50%,具有很好的选择效果。经统计,300、350和400 mg·L−1草甘膦抗性筛选后,愈伤组织阳性率分别为40.16%、61.72%和84.04%,抗性愈伤组织的分化率为46.43%,成苗率为32.84%。共获得67株再生小苗,经PCR检测,43株成功转入CP4基因,再生植株阳性率为64.18%。  结论  建立了‘中恢161’农杆菌介导的转化体系。图5参20
  • 城市园林绿化事业的快速发展导致园林废弃物的数量日益增多[1]。堆肥已成为园林废弃物资源化利用的主要方式之一[2-5]。园林废弃物中的木本植物残体存在大量难降解的木质素。这些木质素溶解性差,没有任何易被水解的键,分子结构复杂且不规则,含有各种稳定的复杂键型,微生物及其分泌的酶不易与之结合[6]。这些木质素还包裹着纤维素,即使微生物可分解单独存在的纤维素,但细胞壁中木质素对纤维素起到保护作用,纤维素的降解仍受到限制[7-8],严重影响堆肥进程,因此促进木质素降解是加快堆肥进程和提高堆肥产品品质的重要环节[9]。自然界中的真菌、细菌及相应微生物群落可通过产生分解木质素的酶系统(漆酶、锰过氧化物酶和木质素过氧化物酶)将木质素完全降解,且大多数真菌降解效果强于细菌[6, 10]。堆肥中添加微生物菌剂可显著提高木质素降解率,加快堆肥进程[8, 11]。YU等[12]通过二次回归正交设计研制出了一种园林废弃物专用复合菌剂,其木质素降解能力强于有效微生物复合菌(EM菌)。何慧中等[13]开发出一种复合功能菌剂,添加到桉树Eucalyptus皮堆肥中,木质素降解效果显著,与对照相比木质素含量下降了78.78%。目前,有关木质素降解的菌剂研究多集中在液体菌剂,但液体菌剂存在生产工序复杂,易污染,易失活,不便于保存等缺点。因此,有必要将木质素降解菌制成固体菌剂,弥补液体菌剂的不足。微生物固定化技术是指通过物理或化学的手段将游离的微生物限定在一定的空间区域,保持其生物活性并能反复利用的方法[14]。将菌株运用固定化方式制成的固体菌剂,具有生产成本低,耐储存,不易失活,便于运输等优点,有利于菌剂在更大范围内推广和应用[15]。然而,固体菌剂的产品质量受多种因素影响,如接菌量、保护剂浓度和含水率可直接影响菌剂产品的稳定性和应用效果,而且国内外关于木质素降解菌固定化的研究尚不充分,有关园林废弃物堆肥的报道更为鲜见。鉴于此,本研究将1株木质素降解菌通过固定化的方式制成固体菌剂,以有效活菌数为评价指标,对菌剂制作过程中的主要影响因素进行优化,再通过正交试验获得最佳固体菌剂的制备条件,将其应用到园林废弃物堆肥中进行效果检验,以期为该类菌剂的研制与应用提供理论依据。

    菌种为曲霉属Aspergillus sp.真菌No.11[1],目前保存于北京林业大学林学院土壤生物学实验室。堆肥原料来源于北京植物园,主要为花草树木的人工修剪物和自然生长产生的枯枝落叶,粉碎成1~2 cm粒径。培养基:马铃薯葡萄糖肉汤(PDB)培养基和马铃薯葡萄糖琼脂(PDA)培养基。载体与保护剂:通过预实验确定生物质炭和米糠为固定化载体,海藻糖为保护剂,载体混合质量比为1∶1。

    1.2.1   种子液的制备

    将4 ℃保存的菌株No.11接种到PDA培养基上,28 ℃下培养3 d完成活化。将活化后的菌株No.11挑取至装有100 mL PDB培养基的摇瓶中,置于28 ℃、200 r·min−1的摇床中培养48 h(对数生长期末)获得种子液备用。

    1.2.2   单因素优化试验

    接菌量试验:按照载体质量的5%、10%、15%、20%和25%接种种子液,调节料水质量比为1.0∶0.8,搅拌均匀,28 ℃培养48 h。培养完成后放在40 ℃烘箱中完全烘干,在室温下干燥密封保存30 d后,测定有效活菌数。

    保护剂体积分数试验:种子液中分别添加体积分数为0、4%、8%、12%、16%和20%的保护剂,按载体质量的10%接种到载体中,调节料水质量比为1.0∶0.8,混匀后,28 ℃培养48 h。培养完成后放在40 ℃烘箱中完全烘干,在室温下干燥密封保存30 d后,测定有效活菌数。

    含水率试验:向载体中接种质量分数为10%的种子液,调节料水质量比为1.0∶0.8,混合均匀,28 ℃培养48 h之后,放在40 ℃烘箱中烘至含水率为5%、10%、15%、20%和25%,在室温下干燥密封保存30 d后,测定有效活菌数。

    1.2.3   正交试验设计

    根据1.2.2节试验结果确定优化范围,其中接菌量为5%、10%、15%,保护剂体积分数为0、4%、8%,含水率为10%、15%、20%,进行3因素3水平正交试验设计。具体方案见表1。根据表1,向载体中接种相应水平的种子液和保护剂,调节料水质量比为1.0∶0.8,混合均匀,28 ℃培养48 h,之后放在40 ℃烘箱中烘至该处理对应的含水率。将制备好的固体菌剂在室温环境下干燥密封保存30 d,测定有效活菌数,确定最佳菌剂的制备条件。

    表 1  正交试验设计
    Table 1  Design of the orthogonal experiment
    水平因素
    接菌量/%保护剂/%含水率/%
    1 5010
    210415
    315820
    下载: 导出CSV 
    | 显示表格
    1.2.4   固体菌剂堆肥效果验证

    堆肥模拟试验。将粉碎后的园林废弃物分别装入500 mL锥形瓶,装80 g·瓶−1,调节含水率达60%,共4组处理,分别为不添加菌剂(ck)、添加质量分数为0.5%市售EM菌剂(T1)、添加质量分数为0.5%自制固体菌剂(T2)、添加质量分数为1.0%自制固体菌剂(T3)。各组处理3次重复。搅拌均匀后用8层纱布封好瓶口,置于恒温培养箱中避光培养。为模拟堆肥过程中的升温、高温和降温阶段,弥补堆肥模拟试验中因堆体较小,无法自主升温的缺陷,人工进行培养箱温度的调节:温度从25 ℃逐渐上升至50 ℃,再逐渐降至30 ℃。各阶段经历时间分别为5、30、5 d。

    样品采集。采集第1、8、16、24、32、40 天的堆肥样品鲜样1 g,测定木质素降解相关酶的酶活力;采集第1 天和第40 天堆肥样品测定pH、电导率(EC)、D(465)/D(665)[样品滤液在465 nm处吸光度D(465)和665 nm处吸光度D(665)的比值]、种子发芽指数(IG)、木质素质量分数和纤维素质量分数等指标。

    木质素降解相关酶活力测定。漆酶、锰过氧化物酶和木素过氧化物酶活力测定参照田林双[16]的木质素降解相关酶类测定标准方法。

    堆肥腐熟指标测定。pH和EC测定:称取待测样品5 g,置于100 mL塑料瓶中,加入50 mL蒸馏水,200 r·min−1振荡1 h,过滤其上清液,用pH 400防水型笔式pH计和EC 400防水型笔式电导率/TDS/盐度计分别测定各样品的pH和EC;样品滤液在465 nm处吸光度D(465)和665 nm处吸光度D(665)测定:用UV-6100紫外可见分光光度计 (上海元析仪器有限公司)测定样品滤液在465 nm处吸光度D(465)和665 nm处吸光度D(665);IG测定:取5 g鲜样置于100 mL塑料瓶中,加入50 mL蒸馏水,振荡1 h后获取上清液,将2张滤纸平铺到直径为9 cm的培养皿中,滤纸上加入5 mL上清液,以蒸馏水为空白对照,播撒白菜Brassica chinensis种子20粒·皿−1,置于25 ℃培养箱中培养48 h后记录发芽率和根长。计算IGIG=(上清液处理的发芽率×根长)/(空白组的发芽率×根长)×100%。木质素、纤维素降解率测定:木质素、纤维素质量分数分别用硝酸-乙醇法和72%硫酸法进行测定[17]

    1.2.5   数据分析

    采用Excel 2010 和SPSS 22.0 软件对数据进行分析处理。

    接菌量可直接影响固体菌剂的质量。接菌量过少会延长菌株的生长停滞期,过大会增加生产成本,也会增强微生物之间的竞争作用[18]。由图1A可知:固体菌剂中的有效活菌数随接菌量的增加呈先增加后减少的趋势,接菌量为10%时有效活菌数最高,达3.73×1010 CFU·g−1;其次是接菌量为5%和15%时,有效活菌数达2.50×1010 CFU·g−1以上;当接菌量超过15%时,菌剂中的有效活菌数逐渐降低,低于2.50×1010 CFU·g−1。因此,选用接菌量5%、10%和15%作为正交试验的3个水平。

    图 1  接菌量、保护剂体积分数和含水率对有效活菌数的影响
    Figure 1  Effect of inoculation amount, protective agent concentration and water content on living bacteria count

    微生物菌剂中添加一定量的保护剂可以增强其耐储藏性和稳定性,能直接影响菌剂的产品质量与应用效果[19]。由图1B可看出:当保护剂体积分数为8%时,活菌数最高达7.10×1010 CFU·g−1,保护剂体积分数<8%时,有效活菌数随保护剂体积分数升高而增多;当保护剂体积分数>8%后,随着保护剂体积分数的升高,有效活菌数显著(P<0.05)降低,低于4.00×1010 CFU·g−1。因此,选用0、4%和8%作为正交试验的3个水平。

    含水率对固体菌剂的储存有很大影响。含水率过高容易滋生杂菌,使固体菌剂受到污染影响应用效果,含水率过低不利于菌株的生存,一段时间后有效活菌数会大幅度降低[20]。由图1C可知:随着含水率的提高,固体菌剂中有效活菌数呈先升高后降低的趋势,含水率为15%时有效活菌数最高,可达5.17×1010 CFU·g−1;含水率为10%和20%时,固体菌剂中有效活菌数可达4.00×1010 CFU·g−1以上;含水率为5%和25%时,固体菌剂的储存效果最差,有效活菌数仅为2.00×1010 CFU·g−1左右。综上可知,当固体菌剂含水率为10%~20%时,有效活菌数较高,因此,选用10%、15%、20%作为正交试验中的3个水平。

    表2可知:在接菌量、保护剂体积分数和含水率等3种因素中,影响程度最大的是接菌量,其次是含水率,影响程度最小的是保护剂体积分数。固体菌剂制备的最佳配方为A2B3C2,即:接菌量10%、保护剂体积分数8%、含水率15%。该条件下,菌剂中有效活菌数达1.26×1011 CFU·g−1,符合GB 20287−2006《农用微生物菌剂》的标准(>0.50×108 CFU·g−1)。

    表 2  正交试验的极差分析
    Table 2  Range analysis of orthogonal test
    处理接菌量
    (A)/%
    保护剂
    (B)/%
    含水率
    (C)/%
    有效活菌数/
    (×1010 CFU·g−1)
    1 5 010 5.87±0.17 b
    2 5 415 1.03±0.09 d
    3 5 820 2.23±0.12 c
    410 020 0.53±0.05 e
    510 410 6.23±0.17 b
    610 81512.57±0.05 a
    715 015 2.30±0.36 c
    815 420 0.50±0.08 e
    915 810 1.17±0.31 d
    K1 9.13 8.70 13.27
    K2 19.33 7.76 15.90
    K3 3.97 15.97 3.26
    平均K1 3.04 2.90 4.42
    平均K2 6.44 2.59 5.30
    平均K3 1.32 5.32 1.09
    极差R 5.12 2.74 4.21
      说明:不同小写字母表示不同处理间差异显著(P<0.05)
    下载: 导出CSV 
    | 显示表格
    2.3.1   堆肥腐熟指标

    pH是评价堆肥腐熟程度的指标之一。堆肥腐熟后,pH一般为7.0~8.5[21]。由表3可知:堆肥结束时各处理pH均在8.0左右,符合NY 525−2002《有机肥料》标准。

    表 3  堆肥腐熟指标测定结果
    Table 3  Determination results of composting maturity index
    处理pHEC/(mS·cm−1)D(465)/D(665)IG/%
    ck7.89±0.04 a0.35±0.00 a5.85±0.53 a106.00±15.31 a
    T18.01±0.13 a0.34±0.02 a6.22±0.06 a114.00±21.44 a
    T28.01±0.03 a0.34±0.01 a6.26±0.11 a118.00±3.55 a
    T37.97±0.06 a0.32±0.01 a6.46±0.09 a112.00±10.93 a
      说明:相同小写字母表示不同处理间差异不显著(P>0.05)
    下载: 导出CSV 
    | 显示表格

    EC可以表示堆肥中可溶性总盐的含量,其大小能影响植物的生长,EC过高的堆肥产品可以影响土壤理化性质,使植物生长受到毒害。EC小于4.00 mS·cm−1,表明堆肥已达到腐熟,对植物生长无毒害[22]。由表3可知:ck处理EC为0.35 mS·cm−1,各处理的EC相近,均小于4.00 mS· cm−1,在腐熟标准之内。

    D(465)/D(665)能反映出胡敏酸分子的稳定程度,D(465)/D(665)较大说明胡敏酸相对稳定,较小说明胡敏酸结构简单,因此可用来分析评价堆肥的腐殖化作用大小[9]。由表3可知:堆肥结束时,各处理的D(465)/D(665)均为6.0左右。

    IG是判断堆肥产品是否腐熟的生物学指标。堆肥产品未腐熟时会产生对植物生长有毒有害的物质,抑制植物的生长。一般情况下,当IG大于80%就可认为产品已达到腐熟[23]。由表3可知:各处理的IG均超过80%,堆肥产品对植物无毒。

    综上可知,堆肥进行40 d后,各处理的pH和EC均达到腐熟标准且无显著差异,但添加菌剂后可以缩短堆肥腐熟的时间[24]。各处理的D(465)/D(665)均为6.0左右,说明其缩合度和芳构化仍很低,这也从另一方面表明腐殖质活性较强[9]。各处理的IG均超过80%,这与ZHANG等[25]测定的园林废弃物堆肥产品IG一致。

    2.3.2   木质素酶活力测定结果

    堆肥过程中微生物会分泌各种酶,从而将木质素类大分子物质转化成腐殖质等促进植物生长的物质[26]。与木质素降解相关的生物酶主要包括漆酶、锰过氧化物酶和木质素过氧化物酶[27]

    在堆肥过程中,漆酶对木质素的降解起着非常重要的作用,研究漆酶活力的变化对评价堆肥进程及微生物活动强度至关重要[28]。由图2A可看出:除T3外,其余处理漆酶活力在初始阶段相差不大,呈现先降后升趋势,与陈建军等[29]研究结果一致。可能是堆肥材料中某些小分子物质先降解,之后微生物再降解木质素类难降解的大分子物质。T3酶活力先升后降,可能与其开始微生物数量较多,分解速率较高有关。堆肥进行到24 d时,T1、T2和T3漆酶活力远超过ck,说明添加自制菌剂与市售菌剂都可大大增强堆肥中微生物的活动强度,随着微生物菌落增多,产酶能力也增加。第24 天之后,T3酶活力下降,ck酶活力上升,T1与T2酶活力变化不大,且大小相当,均达80 U·L−1(1 U=16.67 nkat)左右。菌株No.11的研究结果也显示:与可高效降解木质素的黄孢原毛平革菌Phanerochaete chrysosporium相比,此菌株有更强的产酶能力,也进一步说明自制固体菌剂有更大的应用潜力。

    图 2  堆肥过程中漆酶、锰过氧化物酶和木质素过氧化物酶酶活力变化
    Figure 2  Changes of laccase, manganese peroxidase and lignin peroxidase activity during composting

    锰过氧化物酶是一种酚氧化物酶,可与其他酶共同作用提高对木质素的降解作用[10]。由图2B可看出:添加菌剂的处理组锰过氧化物酶活力均高于ck,说明添加菌剂可以提高堆肥中锰过氧化物酶的酶活力。堆肥初始阶段,所有处理组的锰过氧化物酶活力均出现先降后升趋势,可能与堆肥中的氮素含量有关,氮素含量会影响微生物分泌锰过氧化物酶[27]。第8 天后所有处理组酶活力又出现了上升趋势,说明微生物代谢活动增强,开始分泌锰过氧化物酶,T2与T3在第16天时达到峰值,T1的峰值出现在第24天左右。这表明添加自制固体菌剂后菌株可较快适应环境分泌锰过氧化物酶。有研究表明:锰过氧化物酶在限氮高锰培养基中产量较高[10],因此制备此类菌剂时,可通过优化含氮量提高产锰过氧化物酶的能力。

    木质素过氧化物酶是一种含亚铁血红素的过氧化物酶,可直接与芳香底物发生反应,也可通过氧化低分子量的中介体而间接地发挥作用[30]。由图2C可看出:所有处理组木质素过氧化物酶活力均呈现先升后降趋势,添加菌剂的处理组酶活力的峰值出现时间均早于ck,且峰值高于ck,表明加入菌剂后可明显提高微生物分泌木质素过氧化酶的速率[31]。堆肥的后期,木质素过氧化酶显著降低,分析原因可能与此时碳氮比的变化有关。

    2.3.3   木质素和纤维素降解率测定结果

    木质素是一种在自然界中广泛存在的有机高分子化合物,多存在于植物的细胞壁中[32]。木质素的完全降解由细菌、放线菌和真菌共同参与,其中真菌起重要作用[33]。由图3可看出:添加菌剂的处理木质素与纤维素降解率均高于ck,T3木质素降解率达46.65%,其次是T2,木质素降解率为30.43%,而T1的木质素降解率仅为21.74%。

    图 3  不同处理的木质素和纤维素降解率
    Figure 3  Degradation rate of lignin and cellulose in different treatments

    纤维素是植物细胞壁的主要结构成分,通常与半纤维素和木质素结合在一起[34]。自然界中有许多微生物可以通过酶的作用分解植物残体中的纤维素,但细胞壁中木质素对纤维素起到保护作用,所以木质素和纤维素的分解都受到限制[6]。由图3可知:添加菌剂后可提高园林废弃物堆肥中纤维素降解率,其中T1降解率为18.33%,T2降解率为16.67%,T3纤维素降解率最高,达30.00%。

    综上可知,T2木质素降解率高于T1,说明自制固体菌剂对园林废弃物中木质素的降解效果较好。纤维素降解率结果显示:T1略强于T2,这可能是因为市售菌剂中的菌株对纤维素降解能力较好,而自制固体菌剂中的菌株主要产生木质素降解相关酶,对木质素的降解效果较好。T3的木质素降解率与纤维素降解率均高于T2,说明在考虑成本的前提下,需进一步研究自制固体菌剂的添加量,以获得最大经济效益。与王顺利等[35]制备出堆肥菌剂CC-1相比,接菌量相当的情况下添加自制固体菌剂可使纤维素降解率提高11.68%,木质素降解率提高46.65%。这可能与菌株No.11的特殊菌丝结构有关,同时说明自制固体菌剂可高效降解木质素和纤维素。与尹爽等[36]研制的复合菌剂相比,添加自制固体菌剂木质素降解率较高,可能是因为自制固体菌剂更易于微生物在堆肥中均匀生长,能极大程度地发挥降解作用。自制固体菌剂可以较好地分解园林废弃物中的木质素,并能提高纤维素降解率。

    木质素降解菌No.11的最佳固定化条件为:接菌量10%、保护剂体积分数8%、含水率15%。在此条件下,获得的固体菌剂成品保存30 d后,其有效活菌数达1.26×1011 CFU·g−1,符合GB 20287−2006《农用微生物菌剂》的要求。

    添加自制固体菌剂的堆肥产品pH为8.01,达到NY 525−2002《有机肥料》标准,EC为0.34 mS·cm−1D(465)/D(665)为6.26,IG达118%,对植物无毒。

    堆肥中添加自制木质素降解固体菌剂有利于木质素降解酶系的产生,漆酶、锰过氧化物酶和木质素过氧化物酶的酶活力均得到提升。与不添加菌剂相比,木质素降解率提高23.91%,纤维素降解率提高8.34%;0.5%接种比例下,与EM菌相比,纤维素降解率未提高,木质素降解率提高8.69%。

  • 图  1  籼稻‘中恢161’胚性愈伤组织在不同质量浓度草甘膦培养基中培养20 d后的褐化率

    Figure  1  Browning rate of O.sativa subsp.indica ‘Zhonghui 161’ callus cultured in different concentrations of glyphosate for 20 days

    图  2  籼稻‘中恢161’胚性愈伤组织在不同质量浓度草甘膦培养基中培养20 d后的褐化情况

    Figure  2  Browning rate of O. sativa subsp. indica ‘Zhonghui 161’ callus cultured in different concentrations of glyphosate for 20 days

    图  3  籼稻‘中恢161’再生植株CP4基因的PCR检测

    Figure  3  PCR result of CP4 gene from glyphosate-resistance plants

    图  4  CP4蛋白活性试纸条检测

    Figure  4  Protein activity of CP4 by strip test

    图  5  CP4基因转化籼稻‘中恢161’胚性愈伤组织的各个阶段

    Figure  5  Various stages of transforming CP4 gene into embryogenic callus of O.sativa subsp. indica ‘Zhonghui 161’

  • [1] 李俊, 刘翠琼, 尹伟伦, 等. 转基因植物中标记基因研究概况[J]. 植物学报, 2009, 44(4): 497 − 505.

    LI Jun, LIU Cuiqiong, YIN Weilun, et al. A survey of marker genes in transgenic plants [J]. J Bot, 2009, 44(4): 497 − 505.
    [2] 王关林, 方宏筠. 植物基因工程原理与技术[M]. 北京: 科学出版社, 1998: 214 − 218.
    [3] 贾士荣. 转基因植物食品中标记基因的安全性评价[J]. 中国农业科学, 1997, 30(2): 1 − 15.

    JIA Shirong. Safety evaluation of marker genes in transgenic plant food [J]. Agric Sci China, 1997, 30(2): 1 − 15.
    [4] MULLINS M G, TANG F C A, FACCIOTTI D. Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitisrupestris Scheele and buds of Vitis vinifera L. [J]. Biotechnology, 1990, 8: 1041 − 1045.
    [5] NEHRA N S, CHIBBAR R N, LEUNG N, et al. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs [J]. Plant J, 1994, 5(2): 285 − 297.
    [6] ZHOU H, ARROWSMITH J W, FROMM M E, et al. Glyphosate-tolerant CP4 and GOX genes as a selectable maker in wheat transformation [J]. Plant Cell Rep, 1995, 15: 159 − 163.
    [7] 王和勇. 植物转化体草甘膦筛选技术平台的建立[D]. 广州: 中山大学, 2004.

    WANG Heyong. Establishment of Screening Technology Platform for Glyphosate in Plant Transformation[D]. Guangzhou: SunYat-sen University, 2004.
    [8] 苏军, 胡昌泉, 翟红利, 等. 农杆菌介导籼稻明恢86高效稳定转化体系的建立[J]. 福建农业学报, 2003, 18(4): 209 − 213.

    SU Jun, HU Changquan, ZHAI Hongli, et al. Establishment of a highly efficient and stable transforming system mediated by Agrobacterium tumefacien in indica rice [J]. J Fujian Agric, 2003, 18(4): 209 − 213.
    [9] 童普国, 欧阳解秀, 阎新, 等. 1个组培特性优良的籼稻品种的发现及其农杆菌转化体系的建立[J]. 湖南农业大学学报(自然科学版), 2016, 42(3): 225 − 230.

    TONG Puguo, OUYANG Jiexiu, YAN Xin, et al. Discovery of an indica rice variety with excellent tissue culture characteristics and establishment of its Agrobacterium transformation system [J]. J Hunan Agric Univ Nat Sci Ed, 2016, 42(3): 225 − 230.
    [10] CHAN Mingtsair, LEE Tsemin, CHANG Hsinhsiung. Transformation of indica rice(Oryza sativa L.)mediated by Agrobacterium tumefaciens [J]. Plant Cell Physiol, 1992, 33(5): 577 − 583.
    [11] HIEI Y, OHTA S, KOMARI T, et al. Efficient transformation of rice(Oryza sativa L.)mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA [J]. Plant J, 1994, 6(2): 271 − 282.
    [12] 温莉娴, 周菲, 邹玉兰. 抗除草剂转基因水稻的研究进展[J]. 植物保护学报, 2018, 45(5): 954 − 960.

    WEN Lixian, ZHOU Fei, ZOU Yulan. Research progress of herbicide resistant transgenic rice [J]. J Plant Prot, 2018, 45(5): 954 − 960.
    [13] 张秀香. 水稻成熟种子组织培养体系的优化及建立[J]. 安徽农学通报, 2012, 18(12): 39 − 40, 42.

    ZHANG Xiuxiang. Optimization and establishment of tissue culture system for mature rice seeds [J]. Bull Anhui Agric, 2012, 18(12): 39 − 40, 42.
    [14] 马永光, 于翠梅, 杨巍, 等. 水稻农杆菌转化体系中共培养方法的优化[J]. 园艺与种苗, 2011(4): 26 − 28.

    MA Yongguang, YU Cuimei, YANG Wei, et al. Optimization of co-cultivation methods in the transformation system of Agrobacterium tumefaciens [J]. Hortic Seedlings, 2011(4): 26 − 28.
    [15] 王慧, 闫晓红, 徐杰, 等. 我国抗草甘膦基因的发掘现状[J]. 农业生物技术学报, 2014, 22(1): 109 − 118.

    WANG Hui, YAN Xiaohong, XU Jie, et al. Current status of glyphosate resistant genes in China [J]. Acta Agric Biotech, 2014, 22(1): 109 − 118.
    [16] 邱萍. 籼稻浙恢7954遗传转化体系的优化及其应用[D]. 金华: 浙江师范大学, 2012.

    QIU Ping. Optimization and Application of Genetic Transformation System of Indica Rice Zhehui 7954[D]. Jinhua: Zhejiang Normal University, 2012
    [17] 苏军. 淀粉合成相关基因转化籼型杂交稻亲本及育种利用研究[D]. 福州: 福建农林大学, 2005.

    SU Jun. Studies on the Transformation of Starch Synthesis Related Genes into Indica Hybrid Rice Parents and Their Breeding Utilization[D]. Fuzhou: Fujian Agricultural and Forestry University, 2005.
    [18] 董喜才, 杜建中, 王安乐, 等. 乙酰丁香酮在植物转基因研究中的作用[J]. 中国农学通报, 2011, 27(5): 292 − 299.

    DONG Xicai, DU Jianzhong, WANG Anle, et al. The role of acetosyringone in plant transgenic research [J]. China Agron Bull, 2011, 27(5): 292 − 299.
    [19] SAHOO K K, TRIPATHI A K, PAREK A, et al. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars [J]. Plant Methods, 2011, 7(1): 49.
    [20] 刘元风, 刘彦卓, 王金花, 等. 根癌农杆菌介导籼稻遗传转化影响因素研究[J]. 分子植物育种, 2005, 3(5): 737 − 743, 748.

    LIU Yuanfeng, LIU Yanzhuo, WANG Jinhua, et al. Study on the influencing factors of Agrobacterium tumefaciens mediated genetic transformation of indica rice [J]. Mol Plant Breed, 2005, 3(5): 737 − 743, 748.
  • [1] 杨正宇, 周佳君, 胡恒康, 张启香.  香榧胚性愈伤组织的悬浮培养动力学及对赤霉素的响应 . 浙江农林大学学报, 2025, 42(1): 103-111. doi: 10.11833/j.issn.2095-0756.20240291
    [2] 靳皓然, 杨善为, 袁蕾慧子, 潘倩, 侯思璐, 范晓明, 袁德义.  油茶未授粉胚珠愈伤组织诱导及形态学和细胞学特征 . 浙江农林大学学报, 2023, 40(4): 773-782. doi: 10.11833/j.issn.2095-0756.20220507
    [3] 周佳君, 胡恒康, 龚丽, 干安格, 喻卫武, 吴家胜, 黄坚钦, 张启香.  农杆菌介导的香榧幼胚遗传转化体系 . 浙江农林大学学报, 2022, 39(1): 13-21. doi: 10.11833/j.issn.2095-0756.20210196
    [4] 张路, 丁晗, 桂和荣.  伴矿景天叶片愈伤组织诱导及植株再生 . 浙江农林大学学报, 2018, 35(3): 567-571. doi: 10.11833/j.issn.2095-0756.2018.03.024
    [5] 胡佳卉, 王小德.  羊角槭愈伤组织诱导、增殖与分化 . 浙江农林大学学报, 2018, 35(5): 975-980. doi: 10.11833/j.issn.2095-0756.2018.05.024
    [6] 龚丽, 胡恒康, 胡渊渊, 喻卫武, 吴家胜, 黄坚钦, 张启香.  香榧幼胚发育与胚性感受态之间的相关性 . 浙江农林大学学报, 2018, 35(5): 861-867. doi: 10.11833/j.issn.2095-0756.2018.05.010
    [7] 王晨阳, 陈红贤, 王明梅, 张敏, 王意敏, 刘忠华.  国槐槐角种胚愈伤组织黄酮粗提液的抗氧化性 . 浙江农林大学学报, 2017, 34(5): 887-894. doi: 10.11833/j.issn.2095-0756.2017.05.016
    [8] 何少海, 姚盛存, 丰宇凯, 汪轲, 李飞飞.  农杆菌介导bar基因转化水稻胚性愈伤组织的研究 . 浙江农林大学学报, 2017, 34(1): 129-136. doi: 10.11833/j.issn.2095-0756.2017.01.018
    [9] 付建新, 张超, 王艺光, 赵宏波.  桂花组织基因表达中荧光定量PCR内参基因的筛选 . 浙江农林大学学报, 2016, 33(5): 727-733. doi: 10.11833/j.issn.2095-0756.2016.05.001
    [10] 侯明勇, 何征.  自然元素在农特产品包装设计中的生态呈现 . 浙江农林大学学报, 2013, 30(2): 286-291. doi: 10.11833/j.issn.2095-0756.2013.02.021
    [11] 蓝云龙, 吴令上, 裘波音, 高燕会, 斯金平.  鱼腥草RAPD分子标记的多态性 . 浙江农林大学学报, 2008, 25(3): 309-313.
    [12] 李培仙, 陈敏, 谢吉民, 朱建军.  原位聚合法制备草甘膦微胶囊 . 浙江农林大学学报, 2008, 25(3): 350-354.
    [13] 何新华, 陈力耕, 郭长禄.  发根农杆菌介导的杨梅遗传转化研究初报 . 浙江农林大学学报, 2007, 24(4): 433-436.
    [14] 乔桂荣, 栾维江, 潘红伟, 卓仁英.  利用农杆菌介导法获得RNAi转基因枫香的研究 . 浙江农林大学学报, 2007, 24(2): 140-144.
    [15] 施春华.  11种草甘膦助剂除草活性筛选 . 浙江农林大学学报, 2007, 24(1): 86-90.
    [16] 哀建国, 杨勇.  RNA 介导的植物基因沉默作用及其应用 . 浙江农林大学学报, 2005, 22(1): 123-128.
    [17] 李建荣.  乙氧氟草醚、乙草胺和盖草能在苗圃中的应用 . 浙江农林大学学报, 2003, 20(4): 434-437.
    [18] 唐东芹, 钱虹妹, 黄丹枫, 唐克轩.  百合基因转化胚性愈伤组织受体系统的建立 . 浙江农林大学学报, 2003, 20(3): 273-276.
    [19] 朱玉球, 廖望仪, 黄坚钦, 孙晓萍.  山核桃愈伤组织诱导的初步研究 . 浙江农林大学学报, 2001, 18(2): 115-118.
    [20] 张立钦, 郑勇平, 罗士元, 胡加共.  杨树湿地松组织培养愈伤组织耐盐性* . 浙江农林大学学报, 1997, 14(1): 16-21.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200436

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/2/420

图(5)
计量
  • 文章访问数:  2354
  • HTML全文浏览量:  343
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 修回日期:  2020-12-10
  • 网络出版日期:  2021-04-01
  • 刊出日期:  2021-04-01

农杆菌介导遗传转化获得转CP4基因籼稻的研究

doi: 10.11833/j.issn.2095-0756.20200436
    基金项目:  国家自然科学基金青年基金资助项目(31401461);浙江农林大学学生科研训练项目(KX20180017)
    作者简介:

    胡欢(ORCID: 0000-0001-6807-1145),从事水稻转基因研究。E-mail: 1364213853@qq.com

    通信作者: 李飞飞(ORCID: 0000-0002-6233-4204),副教授,从事植物基因工程研究。E-mail: lifei-fei@163.com
  • 中图分类号: S336

摘要:   目的  建立籼稻‘中恢161’Oryza sativa subsp. indica ‘Zhonghui 161’农杆菌Agrobacterium tumefaciens介导的转化体系。  方法  以籼稻‘中恢161’的成熟胚为材料,设置了5个草甘膦质量浓度(100、200、300、400和500 mg·L−1)进行胚性愈伤组织的草甘膦敏感性试验。利用农杆菌介导法,将草甘膦抗性基因CP4-EPSPS导入‘中恢161’的胚性愈伤组织中,转化后的胚性愈伤组织分别在含有300、350和400 mg·L−1草甘膦的选择培养基上进行抗性筛选。抗性愈伤组织进一步分化、成苗。  结果  草甘膦质量浓度为300~400 mg·L−1时,愈伤组织褐化率约50%,具有很好的选择效果。经统计,300、350和400 mg·L−1草甘膦抗性筛选后,愈伤组织阳性率分别为40.16%、61.72%和84.04%,抗性愈伤组织的分化率为46.43%,成苗率为32.84%。共获得67株再生小苗,经PCR检测,43株成功转入CP4基因,再生植株阳性率为64.18%。  结论  建立了‘中恢161’农杆菌介导的转化体系。图5参20

English Abstract

胡欢, 李媛, 丁筠, 等. 农杆菌介导遗传转化获得转CP4基因籼稻的研究[J]. 浙江农林大学学报, 2021, 38(2): 420-425. DOI: 10.11833/j.issn.2095-0756.20200436
引用本文: 胡欢, 李媛, 丁筠, 等. 农杆菌介导遗传转化获得转CP4基因籼稻的研究[J]. 浙江农林大学学报, 2021, 38(2): 420-425. DOI: 10.11833/j.issn.2095-0756.20200436
LU Jie, ZHENG Wei-lie, LAN Xiao-zhong. Biomass of Rhodiola fastigiata[J]. Journal of Zhejiang A&F University, 2008, 25(6): 743-748.
Citation: HU Huan, LI Yuan, DING Yun, et al. Agrobacterium-mediated transformation of CP4 gene into indica rice[J]. Journal of Zhejiang A&F University, 2021, 38(2): 420-425. DOI: 10.11833/j.issn.2095-0756.20200436
  • 在遗传转化获得抗性植株时,转化体的抗性筛选是遗传转化能否取得成功的关键步骤。通常在选择培养基中加入合适种类和浓度的筛选剂,使其产生一定的筛选压起到抗性筛选的作用。转化体内选择标记基因的表达产物可对特定筛选剂产生抗性,使转化受体材料继续保持正常的生长发育[1]。目前的研究中,卡那霉素、潮霉素等抗生素被普遍作为筛选剂使用[2-3]。但是由于水稻Oryza sativa胚性愈伤组织对抗生素具有生理抗性,以抗生素为选择标记进行抗性筛选,不能起到很好的筛选效果,且经抗生素筛选后的转化体在分化和再生阶段易受抑制或产生白化苗[4-6]。以草甘膦作为筛选剂可以提高选择的灵敏度,消除转化体生理抗性对筛选结果的影响,克服了以往研究中抗生素筛选的局限性。可遗传的草甘膦抗性基因突变率低,并可在后代中稳定表达,因此进行抗草甘膦作物的培育是可行的[7]。籼稻Oryza sativa subsp. indica和粳稻Oryza sativa subsp. japonica是栽培稻的2个亚种,随着水稻遗传转化技术的发展,大部分粳稻品种已经建立了成熟的遗传转化体系,并成功引入抗虫、抗病、生长发育调控等诸多有利基因[8]。而大多数籼稻品种组培特性不佳,愈伤组织诱导率低,继代过程易褐化且分化再生频率低,导致籼稻的遗传转化效率低,有的品种甚至难以转化。尤其是对生产上广泛推广、农艺性状优良的重要品种而言,其改良与育种进程受到严重限制[9]。CHAN等[10]于1992年尝试利用农杆菌Agrobacterium tumefaciens介导法转化籼稻幼根愈伤组织,对转化体进行Southern印记杂交,结果表明:目的基因片段已成功转入转化体细胞中。后经酶活性检测,目的基因可在转化体中稳定表达。1994年,HIEI等[11]为建立高效稳定的农杆菌遗传转化体系,采用了“双超元”载体,并通过在菌液添加乙酰丁香酮(As)活化Vir基因提高转化效率等方法,推进了遗传转化技术在籼稻中的研究应用。目前,虽然已有转抗草甘膦基因的籼稻遗传转化体系的报道,但是转化效率低,还未建立一个高效的转化体系[12]。基于此,本研究选取具有成功再生体系的籼稻‘中恢161’ Oryza sativa subsp. indica ‘Zhonghui 161’为材料,利用农杆菌介导法,转入草甘膦抗性基因(CP4),探索适合的草甘膦质量浓度用于抗性筛选,并对农杆菌介导的转化过程进行了合理优化,建立‘中恢161’农杆菌介导的转化体系。

    • 籼稻‘中恢161’成熟胚;农杆菌菌株EHA105;含CP4基因的表达载体p1300-HC。

    • 将成熟种子去壳,进行消毒[13],接种于诱导培养基R1[NB(N6+B5)+3.0 mg·L−12.4-D+0.5 g·L−1脯氨酸+0.1 g·L−1肌醇+0.3 g·L−1水解酪蛋白+30.0 g·L−1蔗糖+4.0 g·L−1Gelrite]上,接种20 粒·皿−1。放入培养条件为28 ℃,光照16 h/黑暗8 h的组培室中诱导培养。5~7 d后,可观察到幼芽处有淡黄色愈伤组织,统计每皿的出愈数和出愈率。15 d后,剥下色泽鲜黄、结构紧密、生理状态良好的胚性愈伤组织,分散平铺于新鲜配制的胚性愈伤组织增殖培养基R1上进行增殖培养。继代2~4次后,增殖并产生大量的胚性愈伤组织,可用做后期转化的受体材料。

    • 设置5组草甘膦质量浓度(100、200、300、400和500 mg·L−1),重复3次,设空白对照,接种20块·皿−1。15 d后,观察胚性愈伤组织的色泽、是否增殖等外观形态,统计胚性愈伤组织褐化率,选出合适的草甘膦质量浓度范围作为筛选压。

    • 利用悬浮培养基R2(NB+0.5 g·L−1脯氨酸+0.1 g·L−1肌醇+0.3 g·L−1水解酪蛋白+30 g·L−1蔗糖+100 μmol·L−1乙酰丁香酮)将培养好的含CP4基因表达载体的农杆菌菌株EHA105稀释至D(600)为0.5~0.8,用其侵染胚性愈伤组织[14]。将转化好的胚性愈伤组织用无菌滤纸吸干多余的菌液,适当干燥后,用灭菌镊子夹取愈伤组织分散地平铺在铺有1层无菌滤纸的共培养培养基R3(NB+0.5 g·L−1脯氨酸+0.1 g·L−1肌醇+0.3 g·L−1水解酪蛋白+30.0 g·L−1蔗糖+100 μmol·L−1乙酰丁香酮+4.0 g·L−1Gelrite)上,20 块·皿−1。于25 ℃培养室中暗培养2~3 d。取出共培养后的愈伤组织,用含100 mg·L−1羧苄青霉素的无菌蒸馏水清洗3~4次,直至清洗液澄清透明。适度干燥后,用镊子夹取愈伤组织整齐均匀地平铺在筛选培养基R4(NB+3 mg·L−12.4-D+0.5 g·L−1脯氨酸+0.1 g·L−1肌醇+0.3 g·L−1水解酪蛋白+0.5 g·L−1谷氨酰胺+30.0 g·L−1蔗糖+4.0 g·L−1Gelrite+0.5 g·L−1头孢霉素+不同质量浓度草甘膦)上。抗性筛选培养基中草甘膦质量浓度分别为300、350和400 mg·L−1

    • 将抗性愈伤组织系移至分化培养基R5(NB+0.5 mg·L−1 NAA+3.0 mg·L−16-BA+0.5 g·L−1脯氨酸+0.1 g·L−1肌醇+0.3 g·L−1水解酪蛋白+0.5 g·L−1谷氨酰胺+30.0 g·L−1蔗糖+4.0 g·L−1Gelrite)上进行分化培养。约15~25 d,部分抗性愈伤组织长出绿点。待绿点进一步分化形成小苗,并长至2 cm左右时将其转移至生根培养基R6(1/2NB+20.0 g·L−1蔗糖+0.1 g·L−1肌醇+8.0 g·L−1琼脂)上生根培养。待幼苗生长出大量的茁壮根系,可将其从生根培养基中取出,小心洗净其根系附着的培养基,置于培养箱中炼苗,增强幼苗对环境的适应性,1周后将健壮的幼苗移至大棚成活。

    • 利用TPS法提取转基因植株叶片DNA。利用CP4基因引物(CP4-F: TTCCTTTAGGATTTCAGCATCAGTG, CP4-R: TCCTTCATGTTCGGCGGTCTC)进行CP4基因的PCR扩增,目的片段大小为400 bp。扩增后的产物经质量分数为1%琼脂糖凝胶电泳鉴定,统计阳性率。取阳性植株叶片,利用CP4基因表达检测试纸条进行再生植株抗性检测。

    • 图1图2所示:‘中恢161’的胚性愈伤组织在不含草甘膦的培养基中可正常生长且大量增殖,未发生褐化现象;在含100 mg·L−1草甘膦的培养基中,绝大多数胚性愈伤组织可正常生长增殖,褐化率低,仅为5.00%,未起到选择作用;在含200 mg·L−1草甘膦的培养基中褐化率为16.67%,选择效果不明显;在含300 mg·L−1草甘膦的培养基中,褐化率为41.67%,且与200 mg·L−1相比差异显著(P<0.05),选择效果好,适合作为筛选压;在含400 mg·L−1草甘膦的培养基中,大部分胚性愈伤组织发生褐化,少部分正常生长,褐化率为65.00%,选择效果明显;在含500 mg·L−1草甘膦的培养基中,胚性愈伤组织基本发生褐化,褐化率为91.67%,显著高于其他质量浓度下的褐化率(P<0.05),说明选择压过大。结果表明:草甘膦质量浓度为300~400 mg·L−1时,胚性愈伤组织褐化率约50%,具有很好的筛选效果。

      图  1  籼稻‘中恢161’胚性愈伤组织在不同质量浓度草甘膦培养基中培养20 d后的褐化率

      Figure 1.  Browning rate of O.sativa subsp.indica ‘Zhonghui 161’ callus cultured in different concentrations of glyphosate for 20 days

      图  2  籼稻‘中恢161’胚性愈伤组织在不同质量浓度草甘膦培养基中培养20 d后的褐化情况

      Figure 2.  Browning rate of O. sativa subsp. indica ‘Zhonghui 161’ callus cultured in different concentrations of glyphosate for 20 days

    • 转化后的胚性愈伤组织在含有300、350和400 mg·L−1草甘膦的选择培养基上进行抗性筛选,分别获得200、113、和84块抗性愈伤组织,提取抗性愈伤组织DNA进行CP4基因的PCR检测,阳性愈伤组织的PCR扩增产物经电泳可获得长度为400 bp的条带,与预期相符,表明CP4基因已成功整合到转化体内。进行3个草甘膦质量浓度抗性筛选后愈伤组织阳性率分别为40.16%、61.72%和84.04%。共获得67株再生植株,提取再生植株叶片DNA进行CP4基因的PCR检测。其中阳性植株43株,再生植株阳性率为64.18%(图3)。

      图  3  籼稻‘中恢161’再生植株CP4基因的PCR检测

      Figure 3.  PCR result of CP4 gene from glyphosate-resistance plants

    • 抗性检测结果(图4)表明:检测的43株PCR阳性植株中,有25株表现为CP4基因表达,表达率为58.13%。

      图  4  CP4蛋白活性试纸条检测

      Figure 4.  Protein activity of CP4 by strip test

    • 遗传转化再生过程如图5所示:对籼稻‘中恢161’成熟胚进行胚性愈伤组织诱导,约7 d可诱导出胚性愈伤组织(图5A)。胚性愈伤组织进行2~4次继代增殖(图5B),约40 d后进行遗传转化。转化后的胚性愈伤组织在选择培养基上进行抗性筛选(图5C~D),一段时间后,抗性愈伤组织系会出现增殖(图5E)。约50 d后,抗性愈伤组织于R5培养基上进行分化培养,约15~25 d,长出绿点(图5F)。1个月左右,长出小苗(图5G)。小心取出转移至R6培养基进行生根培养(图5H)。约15 d,幼苗长出大量的茁壮根系,将其从培养基中移出,小心洗净根部培养基。置于培养箱中炼苗,炼苗1周后可移至大棚成活。对再生植株进行CP4基因的PCR检测,保留阳性植株。从诱导胚性愈伤组织至获得抗草甘膦再生植株的整个过程需要4~6个月。

      图  5  CP4基因转化籼稻‘中恢161’胚性愈伤组织的各个阶段

      Figure 5.  Various stages of transforming CP4 gene into embryogenic callus of O.sativa subsp. indica ‘Zhonghui 161’

    • 本研究建立了以草甘膦抗性基因CP4为选择标记的‘中恢161’遗传转化体系。非转化体的EPSPS酶活性较低,草甘膦可与S3P形成EPSPS-S3P-草甘膦复合体而竞争性抑制EPSPS酶活性,植物体内蛋白质合成受阻,生长受到抑制,不能正常生长分化[15]。而转化体抗草甘膦基因CP4的表达产物EPSPS酶具有高催化活性和低草甘膦亲和力不易与草甘膦结合,故能够进行正常的生长分化。因此,通过草甘膦筛选可获得转抗草甘膦基因CP4的再生植株。相较于以抗生素抗性基因为选择标记,草甘膦抗性基因不仅能作为筛选标记也能作为目的基因,使受体植物获得除草剂抗性,而且草甘膦比潮霉素等抗生素便宜[7]。不同植物细胞对草甘膦的抗性存在差异,选择合适的草甘膦质量浓度作为抗性筛选的筛选压是影响转化效率的关键因素。本研究将转化后的胚性愈伤组织分别在含有300、350和400 mg·L−1草甘膦的选择培养基上进行抗性筛选,进一步分化、成苗,共获得67株再生植株,进行CP4基因的PCR检测,其中阳性植株43株,再生植株阳性率为64.18%,达到很好的选择效果。

    • 能否成功进行遗传转化的重要前提是选择适合的植物材料作为转化受体。水稻幼胚分裂能力强,易形成大量优质胚性愈伤组织,但受季节的影响,水稻幼胚利用不便,且在组织培养过程中易受微生物污染,转化效率不高,因此作为转化体存在一定的困难[16]。成熟胚方便储存与利用,不受季节限制和胚性愈伤组织诱导率较高,通常被作为遗传转化和再生的良好的外源体材料。苏军[17]比较了不同代龄的胚性愈伤组织,发现第4、5代的胚性愈伤组织转化效率较高,并且分化能力也较强。早代愈伤组织不易接受外源遗传物质。但晚代愈伤组织容易出现质地软、水渍化等现象,影响遗传转化成功率。本研究选择胚性愈伤组织代龄为3~4代,可有效减少愈伤组织老化、色泽暗黄、结构松散和褐化率高等问题,有效提高了遗传转化效率。

    • 为提高遗传转化效率,本研究采取一系列措施对转化过程进行合理优化。①转化阶段选用色泽鲜黄、外观形态良好、结构紧致的愈伤组织与农杆菌共培养,淘汰外观发白发软发褐的愈伤组织。②在共培养基R2和悬浮培养基R3中加入100 μmol·L−1乙酰丁香酮,可诱导农杆菌Vir基因的活化,从而促进外源基因的整合,极大提高转化效率[18]。③农杆菌菌液经悬浮培养液R3稀释后,D(600)为0.5~0.8。此时为最适菌液浓度,既不会使农杆菌在转化体表面过多繁殖影响其正常生长,又具一定的侵染能力,提高了转化效率。④黑暗条件下共培养2~3 d为适合的共培养时长。共培养时间过短,目的基因不能成功整合至转化体细胞内[19-20]

参考文献 (20)

目录

/

返回文章
返回