-
森林在陆地生态系统中发挥着重要的碳汇作用。森林生物量的空间精准量化对了解陆地碳储量、碳收支、碳平衡,以及它们与全球气候变化之间的关系具有重要意义[1-3]。森林地上生物量(AGB)为林木干、枝、叶的有机体干质量,不含林木根部、灌木、草本及林下枯枝落叶,是森林生物量的主体部分。近年来,采用遥感技术反演森林AGB展露出巨大的潜力,光学、激光雷达(LiDAR)、被动微波雷达和合成孔径雷达(SAR)等多种遥感数据用于森林AGB的估测,使得森林AGB估测的区域尺度性、经济性及精度等不断提升[3-7]。其中,SAR不受天时、天气的影响,且微波波长较长,在森林中具有较强的穿透能力,因此在获取森林密度、树高、AGB等森林垂直结构因子方面极具潜力[2, 8-10]。SAR估测森林AGB的能力有赖于其工作频率的高低,大量研究证实了低频波段后向散射对森林AGB变化的敏感性更强。在常用于森林监测的微波波段中,频率较低的P波段SAR后向散射系数对森林AGB变化最为敏感[11-13]。目前P波段的研究多基于机载数据展开,且研究区多位于国外,而国内相关研究则开展较少。CARTUS等[1]基于AfriSAR、BioSAR和TropiSAR机载飞行试验,使用P、C、L波段联合进行了森林AGB反演,结果表明P波段与森林结构因子的树干、树枝的相关性较高,P波段的加入有力地提高了反演的准确度和精度。LIAO等[14]使用TropiSAR机载P波段数据,采用层析方法(TomoSAR)将相干幅度、干涉相位和后向散射特征建模对法属圭亚那热带雨林AGB进行了反演,结果表明树高特征的引入可有效提高森林AGB反演精度,决定系数(R2)最高可达0.7。冯琦等[10]使用国产机载P波段数据结合坡度因子,在考虑当地入射角和坡度的情况下建立对数统计模型,对内蒙古根河市生态站的寒温带针叶林进行森林AGB的反演,最高反演精度R2为0.634、均方根误差(RMSE)为12.07 t·hm−2。
现有采用P波段SAR数据进行的森林AGB估测,多集中在采用P波段的后向散射信息、相位和相干性信息,而对于极化信息的利用则较少。由于SAR信息的差异,使得其用于森林AGB估测的方法也差异明显,如采用后向散射信息估测森林地上生物量,多采用线性回归参数模型;而采用相位和相干性信息利用层析技术进行森林AGB估测则多基于植被微波散射模型或电磁波信号模型进行反演。线性回归模型简单灵活,但通常无法表征P波段特征与森林AGB变化之间的复杂关系;植被散射模型或者电磁波信号模型能够体现森林与P波段电磁波之间的部分物理作用机制,但模型较复杂,应用推广困难。
近年来,随着极化SAR数据的丰富,可提取的极化SAR特征涌现,非参数模型被广泛应用于SAR极化特征农作物生长参数的定量反演,并表现出较强的反演能力和较好的应用推广性。鉴于P在森林监测中的潜力,其极化特征在森林AGB估测中并未深入探索,参数模型过于简单、植被微波散射模型理解过于困难,本研究以中国北方典型寒温带森林作为研究对象,使用机载P波段SAR数据,提取多种极化特征,在分析其P波段极化散射特征的基础上,探索采用参数和非参数模型进行森林AGB估测的可行性,旨在明确P波段森林的极化散射特征,探索采用P波段极化SAR数据进行森林AGB估测具体应用的有效方法。
-
研究区为位于内蒙古呼伦贝尔盟的根河市大兴安岭森林生态系统国家野外科学观测研究站(大兴安岭生态站),50°49′~50°51′N,121°30′~121°31′E。该研究站是中国纬度最高的森林生态研究站,面积为102 km2。研究区气候类型为典型的寒温带大陆性季风气候。研究区地势相对平缓,区域内80%的坡度小于15°,海拔高度分布在800~1 200 m,森林覆盖率大于75%,主要树种为兴安落叶松Larix gmelinii、白桦Betula platyphylla、樟子松Pinus sylvestris var. mongolica等。
-
采用的P波段SAR数据由机载CAMSAR系统获得[15]。通过协议方式获取根河实验区机载P波段全极化(HH/HV/VV/VH) SLC数据。该数据是2013年9月以“奖状Ⅱ”飞机平台,以CASMSAR系统右视观测获取的全极化SAR数据。获取过程中飞行方向为自西向东,飞行高度为5 807 m,获取时间为2013年9月13—16日,极化方式为HH/HV/VH/VV,产品模式为SLC,幅宽为6 km × 7 km,中心入射角为55.058°,距离向分辨率为0.666 m,方位向分辨率为0.625 m。机载P波段SAR数据的预处理关键步骤包括多视处理、正射校正、入射角校正和极化方位角校正。多视视数在距离向和方位向均为3,数据的正射校正、入射校正参考文献[10];极化方位角校正过程和算法见文献[16]。P波段SAR数据预处理结果、森林AGB抽样点及林分概况见图1。
-
LiDAR获取的数字表面模型(DSM)、数字高程模型(DEM)用于P波段SAR数据的地理编码,由冠层高度模型(CHM)获取的LiDAR森林AGB数据用于反演模型的训练及验证。本研究获取的机载LiDAR数据是将Leica机载雷达系统荷载于“运-5”飞机平台上,于2012年8—9月在根河实验区开展飞行任务。该原始数据密度为5.6个·m−2的点云数据,激光中心波谱值为1550 nm,在初始点云数据的基础上,提取了研究区域高精度的DEM (图2A)、CHM (图2B)和森林AGB(图2C)等衍生产品。DSM、DEM、CHM数据的详细生成方法参考文献[17],高精度LiDAR森林AGB的详细提取过程与方法参考文献[10,18]。
为保证建模样本和验证样本能够代表整个研究区的森林AGB水平,以高精度LiDAR森林AGB图为基础,按照750 m的空间采样间隔,在ArcGIS中采用交互人工干预(去除道路及裸露地物)的方法选取113个样点(图1B)作为森林AGB反演模型的训练与验证。机载P波段SAR数据覆盖区森林林相不均匀,平均AGB较低,约46.7 t·hm−2,且大于100 t·hm−2的采样点仅有5个。113个样点AGB以10 t·hm−2间隔得分布情况(图1B):0~10 t·hm−2,3个;>10~20 t·hm−2,14个;>20~30 t·hm−2,17个;>30~40 t·hm−2,17个;>40~50 t·hm−2,18个;>50~60 t·hm−2,14个;>60~70 t·hm−2,10个;>70~80 t·hm−2,8个;>80~90 t·hm−2,7个;>90 t·hm−2,5个。
-
极化目标分解方法是从全极化数据中提取地物极化信息的有效方法,目前多种极化分解参数在森林类型识别中表现出巨大的潜力。本研究采用目前常用的极化后向散射系数、常用的3种极化分解方法提取极化SAR特征,并基于此分析森林的极化散射特征。提取P波段HH、HV和VV等3个极化的后向散射系数,基于3个后向散射系数的雷达植被指数(RVI)、极化辨别率参数(PDR);基于Freeman-Durden三分量分解的体散射分量(FVOL)、单次散射分量(FODD)、二次散射分量(FDBL)、体地散射比分量(FD1/FD2,1表示地散射分量是ODD和DBL的和,2表示地散射分量仅为ODD);基于Yamaguchi的体散射分量(YVOL)、单次散射分量(YODD)、二次散射分量(YDBL)、螺旋体散射分量(YHLX);基于H-A-ALPHA极化分解的极化散射熵(entropy)、反熵(anisotropy)、散射角(alpha)、目标方位向角(beta)、相位差角1(gamma)、相位差角2(delta)。3种极化分解方法参考文献[19-20]。由于本次飞行试验时并未布设角反射器用于定标,因此本研究使用的后向散射系数值仅有相对含义。
森林在P波段极化特征响应分析的目的是为了确定P波段对森林AGB动态变化敏感的极化特征参数,从而确定有效的极化特征参数进行森林AGB的估测。将研究区的森林AGB划分为A (表示生物量在0~30 t·hm−2变化时对应后向散射系数的箱线变化,均值约20 t·hm−2),B (31~50 t·hm−2,40 t·hm−2),C (51~70 t·hm−2,60 t·hm−2),D (71~90 t·hm−2,80 t·hm−2),E (>91 t·hm−2,100 t·hm−2)等5个变化等级,分别制作各等级相应P波段SAR提取参数值的箱线图,分析研究区各极化特征参数对森林AGB动态变化的响应,进而分析其极化散射特征。为了定量的分析各极化特征与森林AGB变化的关系,计算了它们之间的皮尔逊相关系数及显著性水平。
-
多元线性逐步回归模型(MLR)是森林AGB估测中最常用、最经典的方法之一。与常规的线性回归模型相比,MLR可同时完成模型输入参数的优选,进而提高森林AGB估测的效率和精度。MLR是将自变量逐个引入,每次判断自变量对因变量影响的显著性,并对模型中的自变量进行检验,逐个从模型中剔除不显著的变量,从而得到最优模型。即在保证显著性值在0.05以下的情况下,筛选相关性高的特征变量,进而得到因变量的最优估计。MLR的实现算法详见文献[21]。
-
KNN[22-25]、SVR[22, 24]和RF[24, 26]是森林AGB估测中常用的非参数模型,与参数模型相比,无固定的模型结构,通常通过数据驱动的方法来确定模型结构并用于森林AGB的估测,因此也称为机器学习方法。在森林AGB估测中,这3种方法各有优势,因此选取这3种方法来探究非参数方法在P波段森林AGB估测中的潜力。
-
反演结果精度的定量评价通过反演结果与真值之间的决定系数(R2)、均方根误差(RMSE)、平均绝对误差(MAE)、估测精度(Acc)来表征。这4个参数的计算公式参考文献[27]。
-
本研究获取的P波段中心波长为64 cm,该波段在森林中的穿透性较强。由图3可知:P波段20个SAR特征均表现出对研究区森林AGB变化的敏感性。P波段3种极化方式后向散射系数对森林AGB在0~110 t·hm−2内动态变化的响应与已有研究[28]相似,即后向散射系数的值均随着森林AGB的升高而缓慢增长。在各森林AGB水平中,HH、HV和VV散射能量强度相差并不明显,并且从箱线图(图3)的中值可以看出:HH的单调增长趋势较其他2个极化明显,且异常值较少。这可能是由于P波段波长较长,比较粗树干等圆柱体形状的散射体为森林中的散射体,使得去极化特征明显降低,因此同极化的HH和VV后向散射能量对AGB变化的敏感性明显高于HV[29]。此外,由后向散射系数计算的RVI也随着森林AGB增加而单调增加且未出现饱和现象,并且通过箱线图的宽度变化可以看出:各水平RVI箱宽变化不明显,说明该值对森林结构的变化不敏感,而对森林AGB的变化比较敏感。相比RVI,PDR非单调增长,在不同森林AGB水平,占主导散射的散射体会发生明显变化[30-31],该现象也可由Freeman-Durden中各个参数随森林AGB变化的响应加以说明。P波段Freeman-Durden分解相关特征中,除FODD和FDBL外,均随着森林AGB的增加而增加,并且2种体地散射比的值均远远大于1。Yamaguchi分解特征对森林AGB的响应趋势与Freeman-Durden分解相关特征的趋势基本一致。P波段H-A-ALPHA分解提取的参数中,散射熵(entropy)随着森林AGB增加而单调增加,而alpha则敏感性不明显。但beta、gamma和delta对森林AGB变化的敏感性则高于散射角alpha。P波段森林的极化散射特征随森林AGB的变化与已有研究中短波长的研究差异明显,说明现有的极化分解建模方法与该森林AGB水平P波段的散射特征有明显差异。
由表1可知:极化分解中表征体散射分量的极化特征与森林AGB变化的显著性较低或不存在显著性,而二次散射特征分量则与森林AGB变化具有强相关性且显著性水平最高。这说明在本研究区,树干与地表形成的二次散射对森林AGB的变化最为敏感,且目前极化分解中的体散模型并不适合P波段研究区森林AGB水平下森林的散射机制。表1的定量分析结果与图4的定性分析结果对比可知:由于各极化参数的值域范围差异明显,图3对森林AGB敏感性较明显的参数在定量分析时相关性并不一定最高,因此图4的分析仅可作为初步参考,对于森林AGB敏感的极化特征参数的分析,仍需要采用皮尔逊系数进行相关性定量分析。
表 1 P波段SAR极化特征与森林AGB相关性分析
Table 1. Correlation coefficients of polarization feature and forest AGB
特征 R P 特征 R P 特征 R P HH 0.401** 0 F_VOL −0.129 0.173 alpha −0.734** 0 HV −0.249** 0.008 Y_DBL 0.719** 0 beta 0.037 0.696 VV −0.322** 0 Y_ODD 0.323** 0 delta 0.221* 0.018 FD1 −0.453** 0 Y_VOL −0.213* 0.024 gamma 0.314** 0.001 FD2 −0.448** 0 Y_HLX 0.187* 0.047 PDR 0.629** 0 F_DBL 0.650** 0 entropy −0.136 0.151 RVI −0.374** 0 F_ODD 0.303** 0.001 anisotropy 0.436** 0 说明:R代表Pearson相关系数;P代表显著性水平,**代表0.01水平上显著;*代表0.05水平上显著 -
从表2可知:4种模型中,MLR模型估测结果精度最低,RF精度最高;而KNN和SVR模型的估测精度则相近,R2相同,RMSE、MAE和Acc也基本相同,比RF估测结果的最高值仅低约2%。
表 2 基于4种模型的P波段SAR 森林AGB估测结果
Table 2. P band SAR forest AGB inversion using four models
波段 反演模型 模型参数 R2 RMSE Acc/% MAE P MLR 显著性为0.0008 0.43 19.16 63.55 16.99 KNN K值为11,欧氏距离 0.54 17.04 71.18 13.44 SVR 惩罚系数7.0 0.54 17.09 71.15 13.45 RF 决策树数为100,树深度为11 0.60 15.98 72.97 12.60 从图4可看出:在整个森林AGB分布中,MLR估测结果分布较其他3种非参数方法分散,在森林AGB大于80 t·hm−2时出现了明显的饱和低估现象。其他3种方法尽管也有低估的现象,但是饱和现象并不明显。此外,本研究中4种方法估测结果的相对误差约30%,而以往区域性森林AGB的估测误差为37%~67%[32],采用P波段HV后向散射系数的估测结果中,同质性森林地区的相对误差约13%,而异质性地区相对误差则约60%[28]。在采用L-波段极化分解参数进行森林AGB反演研究中,在森林AGB水平低于120 t·hm−2时,后向散射的特征优于3种极化分解的特征,这与本研究中P波段的研究结果基本一致[33]。4种方法的估测结果中均出现了低值高估和高值低估的现象,这与以往采用不同遥感数据源进行森林AGB估测的结果一致[32]。图5中,RF的残差分布最接近高斯分布,尽管峰值出现在10 t·hm−2左右,由于其值分布较窄,因此具有较高的估测精度。KNN和SVR的残差分布图均较为连续,并且分布区间明显高于MLR,但由于正值占比较大,因此总体上呈现高估现象。MLR估测结果的残差分布图在10和20 t·hm−2出现了2个明显的峰值,且所有残差值的分布范围较宽,解释了其估测精度低于其他3种方法的原因。在ENGHART等[34]基于C和L-波段参数和非参数方法森林AGB估测的研究中,也发现MLR的估测结果要略低于非参数模型。然而参数和非参数模型的适用性还受到训练样本大小的影响,因此在训练样本较大时可选择非参数模型进行估测,当样本较小时则可优先选择MLR方法进行森林AGB估测[32]。
图 5 森林AGB估测结果与LiDAR抽样点差值直
Figure 5. Histograms of difference between forest AGB estimation results and LiDAR sampling points
为了进一步分析P波段极化特征对森林AGB估测的潜力,本研究将研究区森林AGB划分为不同的等级,然后采用4种估测模型中估测结果最优的RF模型进行估测,估测结果见表3。在本研究中将森林AGB划分为3组,其中第1组分别以30、60 t·hm−2为边界划分为3个子组;而第2组和第3组分别以40和50 t·hm−2为界划分为2个子组。由表3可知:分组界限不同,估测精度有明显的差异,分组划分越详细,估测精度(Acc)越高;此外,3种分组情况的估测结果均表明:在森林AGB平均值约45 t·hm−2,最高值不超过120 t·hm−2时,P波段在森林AGB水平较高的分组估测精度较高,如在第1组中,森林AGB大于30 t·hm−2分组的估测精度比小于30 t·hm−2分组的估测精约高5%;而在以50 t·hm−2为分组界限的2组中,森林高AGB组的估测精度比低AGB组的估测精度约高出6%。表3的结果分析表明:待估森林的AGB水平对P波段极化特征进行森林AGB估测的估测精度有明显影响,且P波段极化信息更适合森林AGB较高区域森林AGB的估测。
表 3 基于4种模型的P波段SAR 森林AGB反演情况
Table 3. P band SAR forest AGB inversion based on four models
序号 AGB分段/
(t·hm−2)R2 RMSE/
(t·hm−2)Acc/% 1 0~30 0.55 4.92 76.12 30~60 0.13 7.95 81.85 >60 0.25 14.89 81.57 2 0~50 0.47 8.46 72.15 >50 0.30 15.80 78.19 3 0~40 0.48 6.52 74.36 >40 0.36 16.21 74.82 -
针对P波段极化SAR数据在森林AGB估测中的潜力,提取了20个P波段极化SAR参数,探索了森林AGB估测中常用的MLR、KNN、SVR和RF方法在使用P波段极化SAR数据进行森林AGB估测的潜力。结果表明:P波段极化SAR信息在森林AGB估测中具潜力,但估测精度受到待估区域森林AGB水平高低的影响;4种估测方法中,非参数方法的估测结果明显优于MLR估测。P波段森林AGB估测结果中,同样存在AGB低值高估和高值低估的现象,其原因仍需要进一步探索。此外由于本研究区的森林AGB均值为45 t·hm−2,最高值低于120 t·hm−2,所以P波段极化信息在AGB高于120 t·hm−2的森林覆盖区中对森林AGB的估测能力仍有待进一步研究。
Forest above ground biomass estimation using airborne P band polarimetric SAR data
-
摘要:
目的 森林生物量的空间精准量化对了解陆地碳储量、碳收支、碳平衡,以及揭示森林碳储量与全球气候变化的影响过程具有重要意义。P波段波长较长,在森林中具有更高的穿透能力,研究机载P波段SAR数据提高森林地上生物量(AGB)估测精度的可行性。 方法 以机载P波段全极化合成孔径雷达(SAR)数据和高精度激光雷达(LiDAR)数据估测的森林AGB抽样点为基础,提取20个极化SAR特征,并分别与森林AGB变化作敏感性响应情况分析。采用多元线性回归模型(MLR)、K近邻方法(KNN)、支持向量回归(SVR)和随机森林(RF)4种估测方法,探究机载P波段SAR数据的森林AGB估测精度。 结果 在较低森林AGB(均值约45 t·hm−2)的森林覆盖区中,P波段的同极化后向散射系数、Freeman-Durden和Yamaguchi分解中的表面和二次散射分量对森林AGB变化敏感;此外H-A-ALPHA极化分解的散射角(alpha)、拓展极化参数极化辨别率参数(PDR)也对森林AGB变化敏感。4种方法估测的森林AGB相对误差均约30%,其中MLR估测结果精度最低,估测精度为63.55%,均方根误差(RMSE)为19.16 t·hm−2;RF估测结果精度最高,估测精度为72.97%,RMSE为15.98 t·hm−2;KNN和SVR估计结果差别不明显,RMSE分别为17.04和17.09 t·hm−2。 结论 P波段SAR数据对估测森林AGB具有一定潜力,3种非参数方法的估测结果明显优于MLR参数方法。此外,P波段的森林AGB估测精度受到待估森林AGB水平高低的影响明显,在森林AGB水平较高的分组中估测精度较高。在森林AGB均值为45 t·hm−2,最大值为120 t·hm−2的森林覆盖区,以50 t·hm−2将森林AGB样点分为2组时,高森林AGB组的估测精度高出低AGB组约6%。图5表3参34 -
关键词:
- P波段 /
- 森林地上生物量 /
- 合成孔径雷达(SAR) /
- 极化
Abstract:Objective Forests play an important role in carbon sequestration in terrestrial ecosystems. The spatial accurate quantification of forest biomass is of great significance to understand terrestrial carbon reserves, carbon budget, carbon balance and the resulting global climate change. Taking the advantage of the longer wavelength of P-band and higher penetration ability in the forest, the feasibility of improving the accuracy of forest above ground biomass (AGB) estimation using airborne P-band SAR data need to be studied . Method Based on the domestic airborne P band full polarimetric SAR data, 20 polarimetric SAR features are extracted, and were analyzed their sensitivity to change of forest AGB. Multiple linear regression model (MLR), k-nearest neighbor method (KNN), support vector regression (SVR) and random forest (RF), which were more popular forest AGB estimation models in previous studies, were used and compared in forest AGB estimation in this study. Result The results showed that polarimetric features including co-polarimetric backscatter coefficients, odd and double bounce scattering components extracted from Freeman-Durden and Yamaguchi decomposition methods, alpha from H-A-ALPHA decomposition method and polarization discrimination ratio (PDR), the extended polarimetric feature were sensitive to the change of forest AGB. The relative errors of estimated AGB using the four estimation methods were all about 30%, among which the accuracy of MLR estimation result was the lowest, with accurancy of 63.55% and root mean square error (RMSE) of 19.16 t·hm−2; The accuracy of RF estimation result was the highest, with Acc of 72.97% and RMSE of 15.98 t·hm−2; There is no significant difference between the accuracies between the estimated results of KNN and SVR, and the values of RMSE for them were 17.04 and 17.09 t·hm−2, respectively. Conclusion P-band SAR data has certain potential for estimating forest AGB. The estimation results of nonparametric method are significantly better than those of MLR. The AGB estimation accuracy of P-band is obviously affected by the level of forest AGB to be estimated, and the estimation accuracy is higher in the group with higher forest AGB level. In the study area, with an average forest AGB around 45 t·hm−2 and maximum value around 120 t·hm−2, the accurancy value for the estimated forest AGB at group with all AGB values lower than 50 t·hm−2 was lower around 6% than the value at group with all forest AGB values higher than 50 t·hm−2. [Ch, 5 fig. 3 tab. 34 ref.] -
Key words:
- P band /
- forest above ground biomass /
- SAR /
- polarimetric
-
木材是一种由纤维素、半纤维素和木质素组成的复杂聚合物。木材的化学成分和多孔结构决定着其弯曲加工性能[1−2],已有研究发现阔叶材弯曲性能普遍优于针叶材[3−4]。近年来,国内外学者从软化处理和顺纹压缩处理对弯曲木材微观结构、化学成分和应力-应变本构关系的影响角度开展了研究,发现压缩处理过程中导管变形对木材弯曲成型的质量影响显著[5]。其中,张燕等[3]研究发现:在允许的应力范围内,顺纹压缩后环孔材拉伸面和压缩面的导管壁均出现了褶皱,有利于实现木材的顺纹压缩。此外,不同早材导管带位置对白栎Quercus alba木材弯曲蠕变性能的影响研究表明:瞬时应变和45 min应变均随早材导管带与受力面之间距离的增加而大幅度减小[6−7]。由此可见,弯曲压缩过程中早材导管带不仅影响细胞变形和力学特性,而且对木材的弯曲性能影响显著。
木材时温等效原理是指木材在较高温度、较短时间内的力学性质和力学行为与其在较低温度、较长时间内的力学性质和力学行为等效,可以快速预测木材在低温状态下长时间内的力学响应[8−9]。PLACET等[10]在0~95 ℃测试温度下探究饱水山毛榉Fagus sylvatica与橡木Quercus sessiliflora的黏弹性以及对时温等效原理的适用性,发现此原理只适用于小于玻璃化转变区域的温度范围。WANG等[11]采用时间-应力叠加原理(time-stress superposition principle, TSSP)和时间-温度-应力叠加原理(time-temperature-stress superposition principle, TTSSP)模拟了高温处理后杉木Cunninghamia lanceolata的弯曲蠕变响应特性,表明其弯曲蠕变行为的温度阈值为180 ℃。含水率、温度和纹理取向对木材静态黏弹性的影响显著[12−14],然而,关于汽蒸预处理对环孔材弯曲蠕变行为的时温等效特性研究未见相关报道。为此,本研究以白栎木材为研究对象,考察不同汽蒸预处理温度、测试温度及早材导管带条件下木材的弯曲蠕变特性并开展时温等效特性研究,以期为木材弯曲加工提供理论和技术支撑。
1. 材料与方法
1.1 材料
试材为美国产白栎木材,环孔材早材,试样取自白栎木材第3个年轮内侧区域,树龄为20 a,胸径25 cm以上,年轮宽度为3~5 mm,产于美国东部,购自中国浙江省湖州市南浔建材市场,其气干密度为(0.76±0.05) g·cm−3。试验前通过恒温恒湿箱(EL-10KA)将其含水率调整至(12.0±1.0)%,然后从同一生长轮内取样并制备40.0 mm×12.0 mm×2.0 mm的试样。根据有无早材导管带制备2种试样(图1):试样A为早材导管带位于试样中间,密度为(0.73±0.07) g·cm−3,试样B为对照组(无早材导管带),密度为(0.78±0.08) g·cm−3。弯曲蠕变试验前,用水热合成反应釜(MQ-200)对试样采用100 ℃饱和蒸汽以及110、120 ℃过热蒸汽预处理,分别用A1(B1)、A2(B2)、A3(B3)表示,未处理用A0(B0)表示,处理时间为60 min,处理结束后通过恒温恒湿箱将汽蒸预处理试样的含水率调节至(12.0±1.0)%。
1.2 早材导管带特性的数值化表征
采用扫描电子显微镜(SEM,TM-3030)研究试样A和B的横切面内早材导管带特性。阔叶树材导管直径以弦向计,在15~260 µm内,导管长度为80~1 700 µm[15]。栎木早材导管弦向直径达250 µm,晚材弦向直径达34 µm,环孔材早材导管分子长度为230~390 µm,小于晚材导管分子长度(270~590 µm)[15]。以弦向直径为35~500 µm,长度为230~390 µm作为筛选早材导管分子的参数阈值。试样A和B的横切面内早材导管带特征如图2所示。运用 MATLAB 2019a 软件实现对试样横切面扫描电镜(SEM)图像的类型转换、增强处理、分割处理以及形态学处理等操作,获取试样横切面早材导管数量、直径和面积等参数,并通过正态分布拟合表征试样横切面早材导管的分布均匀性。如图3所示,经过二值图像处理、结合筛选阈值进行早材导管分子优选、开运算、二次过滤以及早材导管分子标记统计等步骤统计试样和早材导管带厚度,试样的横切面面积和早材导管总面积,以及计算试样的早材导管面积比(RC)和早材导管带中心到受力面距离(RD),进而对试样横切面内早材导管带特征进行数值化表征。
1.3 弯曲蠕变测试
通过动态热机械分析仪(DMA-Q800)在双悬臂夹具(跨距为35 mm)弯曲模式下径向加载5 MPa恒定载荷测试试样的弯曲蠕变特性[16−17],保持时间为45 min,随后撤除恒定载荷,并保持其环境条件45 min。测试过程中通过自带湿度附件控制试样的含水率为(12.0±1.0)%。动态热机械分析仪程序中预设的测试温度分别为20、30、40、50、60、70和80 ℃,对应的相对湿度(RH)依次控制为66%、69%、72%、74%、77%、79%和81%,收集并记录试样弯曲蠕变数据。最后,根据早材导管带、汽蒸预处理温度和测试温度下的弯曲蠕变曲线,选取测试温度20 ℃来绘制试样蠕变与时间对数的关系曲线,经由时温等效合成白栎木材弯曲蠕变特性的主曲线,获得相应的水平移动因子,进而对其长期蠕变行为进行预测表征。
1.4 时温等效性
选取测试温度20 ℃来绘制试样蠕变与对数时间的关系曲线,把其余测试温度条件下的蠕变曲线水平移动,使各曲线彼此叠合形成一定时间范围的蠕变主曲线。叠合主曲线时,水平移动因子 aT 与测试温度的关系用 Williams-Landel-Ferry (WLF)方程进行数学模型表征[18]。WLF 方程的表达式为:
$$ \lg a_{T}=\frac{-D_{1} \times\left(T-T_{0}\right)}{D_{2}+\left(T-T_{0}\right)} 。 $$ (1) 式(1)中:$ \mathrm{lg}{a}_{T} $为时温等效位移因子,T 为测试温度(K);T0 为参考温度(K);D1和 D2 为拟合所得常数。
2. 结果与分析
2.1 早材导管分布特性表征统计
分别选取40幅典型的SEM图像通过MATLAB 2019a软件计算试样的RC和RD并进行正态分布统计,结果如图4 所示:试样A的RC和RD分别为(18.12±0.50)%和(1.12±0.04) mm,而试样B的RC和RD分别为(0.03±0.04)%和0。
由表1可知:试样A的RC和RD服从正态分布,试样B的RC和RD服从均匀分布,差异显著(P<0.05),其导管分子数量及分布状态一致。综上所述,含早材导管带的试样中导管分子的分布状态是相对均匀的,对照组基本上无早材导管存在。
表 1 试样RC和RD的正态分布检验结果Table 1 Normality test result of RC and RD of tested specimens试样 RC/% 自由度 统计量 P RD/mm 自由度 统计量 P A 18.12±0.50 20 0.92 0.12 1.12±0.04 20 0.97 0.86 B 0.03±0.04 20 − − 0±0 20 − − 说明:−表示无统计意义。 2.2 测试温度对白栎木材蠕变的影响
由图5可得:在前45 min内,试样的蠕变均随测试温度的升高而增大。同时,试样蠕变的增长速率随测试温度的升高而增大。当测试温度上升到80 ℃时,所有试样的蠕变行为最明显。分析原因:木材中运动单元获得的活化能随测试温度的升高而增大,相应的分子间相互作用力减小,导致分子间距离增大,进而增大了运动单元的活动空间,试样的蠕变显著增大[13, 19]。此外,一般湿木材木质素的玻璃化转变温度为72~128 ℃[16]。随着测试温度不断升高,白栎木材木质素分子链段的状态从冷冻状态转变为移动状态,并且在80 ℃下发生玻璃化转变。在分子占据体积增大的基础上,随着测试温度的升高,木质素发生自由体积膨胀[20]。因此,运动单元的运动空间增加,试样的蠕变也随之增加。
2.3 汽蒸预处理对白栎木材蠕变的影响
如图6所示:汽蒸预处理试样的瞬时应变和45 min应变整体低于未处理试样。当测试温度相同时,试样的弯曲蠕变随着汽蒸预处理温度的升高而减小。在测试温度20、30、40、50和60 ℃下,相对于A0,试样A1的瞬时应变分别减少了2.14%、2.35%、10.92%、11.97%和1.49%。随着测试温度继续从60 ℃升高到80 ℃,试样A1的瞬时应变分别增加了18.06%和2.60%;在测试温度20、30、40、50、60、70和80 ℃下,试样A2的瞬时应变分别减少了44.82%、46.21%、45.44%、33.13%、25.99%、9.15%和2.70%;在测试温度20、30、40、50、60、70和80 ℃下,试样A3的瞬时应变分别减少了41.11%、44.78%、53.44%、43.08%、42.99%、45.80%和43.24%。然而,相对于B0,相同条件下试样B1的瞬时应变分别减少了13.87%、17.94%、19.40%、13.60%、8.96%、5.14%和21.19%,试样B2和B3表现出相同规律。在测试温度70~80 ℃下,A1的瞬时应变减少幅度随测试温度升高呈负值,说明测试温度升高,应变呈增加的趋势,而B1瞬时应变的减小幅度均呈减小趋势。A2瞬时应变的减少幅度在测试温度50~80 ℃呈逐渐减小的规律,其瞬时应变的减少幅度在测试温度升高到80 ℃时最小。A3和B3的减少幅度基本保持一致,相对于其他温度汽蒸预处理的样品更加趋于稳定。
在测试温度20、30、40、50、60、70和80 ℃下,与A0相比,试样A1的45 min应变分别减少了1.84%、13.01%、0.55%、6.18%、16.69%、2.59%和7.71%,试样A2和A3的45 min应变均存在相同的变化规律。在测试温度20、30、40、50、60、70和80 ℃下,相对于B0,试样B1的45 min应变分别减少了4.01%、15.38%、2.30%、3.01%、18.69%、2.80%和12.71%,试样B2~B3的45 min应变均存在相同的变化规律。试样A1和B1的45 min应变降低幅度远小于A2、A3、B2 和B3,并且A3和B3的45 min应变降低幅度大于A2和B2,特别是在测试温度(50~80 ℃)较高时,宏观表现为蠕变程度小。这是因为无定形物质的半纤维素是组成木材主要成分之一,含有较多亲水性基团,具有较强的吸水性,是木材产生应变的因素之一[20]。在压力蒸汽处理过程中,乙酰基在受热水解过程中会从半纤维素中脱去并生成乙酸,使处理环境的酸性增强[21-22]。此外,半纤维素的聚合度在此水解过程中逐渐降低,产成低聚糖以及单糖,单糖中的戊糖反应产生糠醛,而己糖则反应产生羟甲基糠醛[21−22],这一水解过程会导致形成的乙酸进一步加剧水解反应,促使半纤维素进一步分解。另一方面,在汽蒸预处理条件下,水蒸气密度明显增加,水合氢离子的电离反应促进了乙酰基的断裂和乙酸的形成,使得半纤维素的水解效率大大提高,进而明显降低木材中游离羟基的含量。汽蒸预处理使木材的平衡含水率(EMC)降低,含水率低于15%的木材在热处理温度过程中发生物理变化,导致水分与半纤维素中游离羟基的结合能力降低[23]。在热作用下,半纤维素内部的一部分多糖会裂解为糖醛、糖类,这种物质通过聚合反应生成了不溶于水的聚合物,促使木材的吸水性降低,木材的尺寸稳定性显著提高[24]。
2.4 早材导管带对白栎木材蠕变的影响
由图7可知:测试温度一定时,试样B的蠕变均小于试样 A。此外,当测试温度从20 ℃升高到80 ℃时,试样A的瞬时应变和45 min应变均明显增加。同时,蠕变的增长幅度随测试温度的升高而增加。随着测试温度(20~50 ℃)的升高,试样 A0与 B0、A1与B1、A2与B2以及A3与B3的应变差值逐渐增大,应变差值在温度40~50 ℃时达到最大;在60~80 ℃内应变差值却逐渐减小。与对照组相比,20、30、40、50、60、70和80 ℃测试温度范围内试样A0的瞬时应变分别增长了2.19%、7.19%、19.48%、20.82%、3.03%、2.35%和1.75%。试样A1~A3的瞬时应变均存在相同的变化规律。试样B0~B3的45 min应变均随测试温度的升高而增大。
试样的瞬时应变和45 min应变的应变差值在测试温度40~50 ℃达到最大值,而在60~80 ℃内应变差值逐渐减小,这是因为在测试温度40~50 ℃内出现了“转折点”[6−7]。当测试温度低于转折点时,早材导管带对白栎木材蠕变的影响相对于测试温度更加显著;而测试温度高于转折点时其对试样蠕变的影响比早材导管带更显著。当测试温度进一步升高到80 ℃时,试样A和B的瞬时弹性应变和45 min应变的应变差值相差无几;由此可知,当测试温度升高到80 ℃时,试样的蠕变主要受测试温度的影响。在弹性力学中的孔或圆形孔的应力集中问题中所述,在外加载荷作用下,弹性材料孔结构边缘产生应力集中效果,且孔边缘处的应力将远大于没有孔时的应力[25],此外,含早材导管带的试样密度小于对照组密度,导致试样力学强度变弱,从而引起应变增大,因此早材导管带的存在增大了试样的蠕变。
2.5 时温等效特性
由图8可知:不同汽蒸预处理温度和早材导管带条件下的试样主曲线经过水平移动后均可获得一条较光滑的主曲线,说明在20~80 ℃测试温度和100 ℃~120 ℃汽蒸预处理温度范围内,时温等效适用于白栎木材的弯曲蠕变,主曲线和位移因子函数均受测试温度、早材导管带和汽蒸预处理温度的影响。利用时温等效原理,试件A0和B0的主曲线时间跨度分别由45 min延长至106.87和106.95 s;试件A1和B1的主曲线时间跨度分别由45 min延长至106.96和107.09 s;试件A2和B2的主曲线时间跨度分别由45 min延长至107.63和108.14 s;试件A3和B3的主曲线时间跨度分别由45 min延长至108.09和108.25 s。说明不同温度汽蒸预处理和早材导管带的存在一定程度上影响了主曲线的时间跨度。此外,含早材导管带的试样主曲线时间跨度小于对照组试样。原因是试样A的蠕变均大于试样B,结合孔边应力集中效应,证实了早材导管带的存在导致试样更易发生蠕变。随着时间的推移,前者的弯曲蠕变比后者更明显。此外,试样主曲线时间跨区随着汽蒸预处理温度升高而增大。分析其原因是汽蒸预处理后的样品对木材弯曲蠕变程度减小,汽蒸预处理增强了木材的尺寸稳定性;随着时间的推移,试样蠕变变化变慢。由图9和表2可得:各组试样水平移动因子与测试温度的关系曲线在20~80 ℃的测试温度范围内均能满足WLF方程,所得的拟合曲线较为光滑,相应的回归系数(R2)均大于0.93 (表2),用WLF方程可以对白栎木材弯曲蠕变特性的时间与测试温度关系进行有效表达。
表 2 不同汽蒸预处理温度和早材导管带条件下试样的WLF方程拟合参数与回归系数Table 2 Fitting parameters and regression coefficients of WLF equations for specimens under different steam pretreatment temperature and vessel belt conditions样品编号 D1 D2 R2 A0 −6.979 24 41.669 77 0.994 59 B0 −12.655 52 168.871 85 0.988 92 A1 −6.420 71 46.817 52 0.985 34 B1 −6.21E+13 1.35E+15 0.979 71 A2 −6.770 99 27.946 09 0.960 80 B2 −19.201 34 170.616 94 0.976 85 A3 −16.148 19 153.087 92 0.946 21 B3 −7.66E+14 1.15E+16 0.932 01 3. 结论
本研究结果表明:①试样的瞬时应变和45 min应变随测试温度的升高而增大;而在相同的测试温度下,试样的蠕变随着汽蒸预处理温度的升高而逐渐减小;②在20~80 ℃测试温度和100 ~120 ℃汽蒸预处理温度范围内,时温等效适用于白栎木材弯曲蠕变;③试样的时温等效水平移动因子与测试温度的关系曲线满足类WLF方程,R2均大于0.93,可见,WLF方程能较好地预测木材长期弯曲蠕变行为。
通过本研究可以得出:在一定范围内,测试温度、汽蒸预处理和早材导管带对白栎木材弯曲蠕变行为的影响较为明显,通过时温等效原理可以有效模拟预测白栎木材的长期蠕变特性,但是本研究仅对白栎木材弯曲蠕变特性进行了模拟预测,后续应在长期实际研究中表征白栎木材长期(1~3 a)的弯曲蠕变特性。
-
表 1 P波段SAR极化特征与森林AGB相关性分析
Table 1. Correlation coefficients of polarization feature and forest AGB
特征 R P 特征 R P 特征 R P HH 0.401** 0 F_VOL −0.129 0.173 alpha −0.734** 0 HV −0.249** 0.008 Y_DBL 0.719** 0 beta 0.037 0.696 VV −0.322** 0 Y_ODD 0.323** 0 delta 0.221* 0.018 FD1 −0.453** 0 Y_VOL −0.213* 0.024 gamma 0.314** 0.001 FD2 −0.448** 0 Y_HLX 0.187* 0.047 PDR 0.629** 0 F_DBL 0.650** 0 entropy −0.136 0.151 RVI −0.374** 0 F_ODD 0.303** 0.001 anisotropy 0.436** 0 说明:R代表Pearson相关系数;P代表显著性水平,**代表0.01水平上显著;*代表0.05水平上显著 表 2 基于4种模型的P波段SAR 森林AGB估测结果
Table 2. P band SAR forest AGB inversion using four models
波段 反演模型 模型参数 R2 RMSE Acc/% MAE P MLR 显著性为0.0008 0.43 19.16 63.55 16.99 KNN K值为11,欧氏距离 0.54 17.04 71.18 13.44 SVR 惩罚系数7.0 0.54 17.09 71.15 13.45 RF 决策树数为100,树深度为11 0.60 15.98 72.97 12.60 表 3 基于4种模型的P波段SAR 森林AGB反演情况
Table 3. P band SAR forest AGB inversion based on four models
序号 AGB分段/
(t·hm−2)R2 RMSE/
(t·hm−2)Acc/% 1 0~30 0.55 4.92 76.12 30~60 0.13 7.95 81.85 >60 0.25 14.89 81.57 2 0~50 0.47 8.46 72.15 >50 0.30 15.80 78.19 3 0~40 0.48 6.52 74.36 >40 0.36 16.21 74.82 -
[1] CARTUS O, SANTORO M, WEGMÜLLER U, et al. Benchmarking the retrieval of biomass in boreal forests using P band SAR backscatter with multi-temporal C- and L-band observations[J/OL]. Remote Sensing, 2019, 11(14): 1695 [2022-01-01]. doi: 10.3390/rs11141695. [2] SANTI E, PALOSCIA S, PETTINATO S, et al. Machine-learning applications for the retrieval of forest biomass from airborne P band SAR data[J/OL]. Remote Sensing, 2020, 12(5): 804 [2022-01-05]. doi: 10.3390/rs12050804. [3] LIAO Zhanmang, HE Binbin, QUAN Xingwen. Potential of texture from SAR tomographic images for forest aboveground biomass estimation[J/OL]. Int J Appl Earth Obs Geoinf, 2020, 88: 102049 [2022-01-05]. doi: 10.1016/j.jag.2020.102049. [4] QUAN Xingwen, HE Binbin, YEBRA M, et al. A radiative transfer model-based method for the estimation of grassland aboveground biomass [J]. Int J Appl Earth Obs Geoinf, 2017, 54: 159 − 168. [5] JI Yongjie, XU Kunpeng, ZENG Peng, et al. GA-SVR algorithm for improving forest above ground biomass estimation using SAR data [J]. IEEE J Selected Top Appl Earth Obs Remote Sensing, 2021, 14: 6585 − 6595. [6] LIU Y Y, DIJK A, RAMD J, et al. Recent reversal in loss of global terrestrial biomass [J]. Nat Clim Change, 2015, 5(5): 470 − 474. [7] BOUDREAU J, NELSON R F, MARGOLIS H A, et al. Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec [J]. Remote Sensing Environ, 2008, 112(10): 3876 − 3890. [8] JI Yongjie, HUANG Jimao, JU Yilin, et al. Forest structure dependency analysis of L-band SAR backscatter[J/OL]. PeerJ, 2020, 8: e10055 [2022-01-05]. doi: 10.7717/PEERJ.10055. [9] 李增元, 赵磊, 李堃, 等. 合成孔径雷达森林资源监测技术研究综述[J]. 南京信息工程大学学报(自然科学版), 2020, 12(2): 150 − 158. LI Zengyuan, ZHAO Lei, LI Kun, et al. A survey of developments on forest resources monitoring technology of synthetic aperture radar [J]. J Nanjing Univ Inf Sci Technol Nat Sci Ed, 2020, 12(2): 150 − 158. [10] 冯琦, 陈尔学, 李增元, 等. 基于机载P波段全极化SAR数据的复杂地形森林地上生物量估测方法[J]. 林业科学, 2016, 52(3): 10 − 22. FENG Qi, CHEN Erxue, LI Zengyuan, et al. Forest above-ground biomass estimation method for rugged terrain based on airborne P-band PolSAR data [J]. Sci Silv Sin, 2016, 52(3): 10 − 22. [11] DOBSON M C, ULABY F T, LETOAN T, et al. Dependence of radar backscatter on coniferous forest biomass [J]. IEEE Trans Geosci Remote Sensing, 1992, 30(2): 412 − 415. [12] TOAN T L, BEAUDOIN A, RIOM J, et al. Relating forest biomass to SAR data [J]. IEEE Trans Geosci Remote Sensing, 1992, 30(2): 403 − 411. [13] TOAN T L, QUEGAN S, WOODWARD I, et al. Relating radar remote sensing of biomass to modelling of forest carbon budgets [J]. Clim Change, 2004, 67(2): 379 − 402. [14] LIAO Zhanmang, HE Binbin, QUAN Xingwen, et al. Biomass estimation in dense tropical forest using multiple information from single-baseline P band PolInSAR data [J]. Remote Sensing Environ, 2019, 221: 489 − 507. [15] 黄国满. 机载多波段多极化干涉SAR测图系统——CASMSAR[J]. 测绘科学, 2014, 39(8): 111 − 115. HUANG Guoman. An airborne interferometric SAR mapping system with multi-band and multi-polarization: CASMSAR [J]. Sci Surv Mapp, 2014, 39(8): 111 − 115. [16] ZHAO Lei, CHEN Erxue, LI Zengyuan, et al. Three-step semi-empirical radiometric terrain correction approach for PolSAR data applied to forested areas[J/OL]. Remote Sensing, 2017, 9(3): 269 [2022-01-05]. doi: 10.3390/rs9030269. [17] 穆喜云. 森林地上生物量遥感估测方法研究[D]. 呼和浩特: 内蒙古农业大学, 2015. MU Xiyun. A Study on the Estimating Method of Forest Above Ground Biomass Based on Remote Sensing Data[D]. Huhhot: Inner Mongolia Agricultural University, 2015. [18] 陈传国. 东北主要林木生物量手册[M]. 北京: 中国林业出版社, 1989. CHEN Chuanguo. Woody Biomass Manual of Typical Species in the Northeast of China[M]. Beijing: China Forestry Publishing House, 1989. [19] CLOUDE S R, POTTIER E. A review of target decomposition theorems in radar polarimetry [J]. IEEE Trans Geosci Remote Sensing, 1996, 34(2): 498 − 518. [20] 张王菲, 姬永杰. 极化与干涉SAR植被参数反演[M]. 北京: 中国林业出版社, 2019. ZHANG Wangfei, JI Yongjie. Retrieval of Vegetation Parameters from Polarimetric and Interferometric SAR[M]. Beijing: China Forestry Publishing House, 2019. [21] 姬永杰. 多频极化SAR技术森林地上生物量反演研究[D]. 昆明: 西南林业大学, 2021. JI Yongjie. Retrieval of Forest above Ground Biomass Using Multi-frequency Polarimetric SAR[D]. Kunming: Southwest Forestry University, 2021. [22] 郭颖. 森林地上生物量的非参数化遥感估测方法优化[D]. 北京: 中国林业科学研究院, 2011. GUO Ying. Optimum Non-Parametric Method for Forest Above Ground Biomass Estimation Based on Remote Sensing Data[D]. Beijing: Chinese Academy of Forestry, 2011. [23] TIAN Xin, SU Zhongbo, CHEN Erxue, et al. Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area [J]. Int J Appl Earth Obs Geoinf, 2011, 17: 102 − 110. [24] LU Dengsheng, CHEN Qi, WANG Guangxing, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems [J]. Int J Digital Earth, 2016, 9(1): 63 − 105. [25] 韩宗涛, 江洪, 王威, 等. 基于多源遥感的森林地上生物量KNN-FIFS估测[J]. 林业科学, 2018, 54(9): 70 − 79. HAN Zongtao, JIANG Hong, WANG Wei, et al. Forest above-ground biomass estimation using KNN-FIFS method based on multi-source remote sensing data [J]. Sci Silv Sin, 2018, 54(9): 70 − 79. [26] 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32 − 38. FANG Kuangnan, WU Jianbin, ZHU Jianping, et al. A review of technologies on random forests [J]. Stat Inf Forum, 2011, 26(3): 32 − 38. [27] 魏晶昱, 范文义, 于颖, 等. GF-3全极化SAR数据极化分解估算人工林冠层生物量[J]. 林业科学, 2020, 56(9): 174 − 183. WEI Jingyu, FAN Wenyi, YU Ying, et al. Polarimetric decomposition parameters for artificial forest canopy biomass estimation using GF-3 fully polarimetric SAR data [J]. Sci Silv Sin, 2020, 56(9): 174 − 183. [28] SAATCHI S, MARLIER M, CHAZDON R L, et al. Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass [J]. Remote Sensing Environ, 2011, 115(11): 2836 − 2849. [29] TOAN T L, QUEGAN S, DAVIDSON M W J, et al. The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle [J]. Remote Sensing Environ, 2011, 115(11): 2850 − 2860. [30] NEUMANN M, SAATCHI S S, ULANDER L M H, et al. Assessing performance of L and P band polarimetric interferometric SAR data in estimating boreal forest above-ground biomass [J]. IEEE Trans Geosci Remote Sensing, 2012, 50(3): 714 − 726. [31] KASISCHKE E S, CHRISTENSEN N L, BOURGEAU-CHAVEZ L L. Correlating radar backscatter with components of biomass in loblolly pine forests [J]. IEEE Trans Geosci Remote Sensing, 1995, 33(3): 643 − 659. [32] RODRÍGUEZ-VEIGA P, QUEGAN S, CARREIRAS J, et al. Forest biomass retrieval approaches from earth observation in different biomes [J]. Int J Appl Earth Obs Geoinf, 2019, 77: 53 − 68. [33] GOLSHANI P, MAGHSOUDI Y, SOHRABI H. Relating ALOS-2 PALSAR-2 parameters to biomass and structure of temperate broadleaf Hyrcanian forests [J]. J Ind Soc Remote Sensing, 2019, 47(5): 749 − 761. [34] ENGLHART S, KEUCK V, SIEGERT F. Modeling aboveground biomass in tropical forests using multi-frequency SAR data: a comparison of methods [J]. IEEE J Selected Top Appl Earth Obs Remote Sensing, 2012, 5(1): 298 − 306. 期刊类型引用(1)
1. 黄鹤,李珠,蒋佳荔,李媛. 水热处理温度对马尾松早材与晚材拉伸蠕变行为的影响. 木材科学与技术. 2025(01): 22-29+36 . 百度学术
其他类型引用(2)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220111