留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无人机可见光影像的毛竹林郁闭度估测方法

王雨阳 王懿祥 李明哲 梁丹

贾代伟, 沈月琴, 朱臻, 等. 林业雇工劳动质量对农户营林技术效率的影响[J]. 浙江农林大学学报, 2019, 36(6): 1225-1232. DOI: 10.11833/j.issn.2095-0756.2019.06.021
引用本文: 王雨阳, 王懿祥, 李明哲, 等. 基于无人机可见光影像的毛竹林郁闭度估测方法[J]. 浙江农林大学学报, 2022, 39(5): 981-988. DOI: 10.11833/j.issn.2095-0756.20210576
JIA Daiwei, SHEN Yueqin, ZHU Zhen, et al. Impact of the labor quality of hired forestry labor on the technical efficiency of farmers' forestry management[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1225-1232. DOI: 10.11833/j.issn.2095-0756.2019.06.021
Citation: WANG Yuyang, WANG Yixiang, LI Mingzhe, et al. Estimation method of Phyllostachys edulis forest canopy density based on UAV visible image[J]. Journal of Zhejiang A&F University, 2022, 39(5): 981-988. DOI: 10.11833/j.issn.2095-0756.20210576

基于无人机可见光影像的毛竹林郁闭度估测方法

DOI: 10.11833/j.issn.2095-0756.20210576
基金项目: 浙江省林业局与中国林业科学研究院合作项目(2019SY06)
详细信息
    作者简介: 王雨阳(ORCID: 0000-0002-9496-0891),从事无人机遥感等研究。E-mail: 2804649121@qq.com
    通信作者: 梁丹(ORCID: 0000-0002-6713-122X),讲师,博士,从事测量误差理论与无人机遥感研究。E-mail: liangdan812345@163.com
  • 中图分类号: S758.5

Estimation method of Phyllostachys edulis forest canopy density based on UAV visible image

  • 摘要:   目的  由于毛竹Phyllostachys edulis的生长特点和经营特点,使得毛竹林郁闭度在毛竹林经营中尤为重要,只有保持适宜毛竹生长的郁闭度,才能提高毛竹生产力。研究无人机可见光影像的毛竹林郁闭度估测方法,可实现实时快速获取毛竹林的郁闭度。  方法  以普通旋翼无人机可见光毛竹林影像为研究对象,基于像元的阈值分类、像元的监督分类、多尺度分割的阈值分类、多尺度分割的监督分类等4种方法,选取不同钩梢和郁闭度的样地36个,利用现有软件和MATLAB编程,对各样地的毛竹林竹冠区域进行快速提取,进而估算林分郁闭度,对比目视解译的郁闭度真值计算各方法的估算精度,利用单因素方差分析比较4种方法在不同钩梢和不同郁闭度下估算郁闭度的表现。  结果  基于像元的阈值分类、基于像元的监督分类、基于多尺度分割的阈值分类、基于多尺度分割的监督分类等4种方法的郁闭度估算总体精度依次为91.81%、92.96%、93.47%、98.86%,郁闭度估测值绝对误差依次为0.038、0.030、0.024、0.004。钩梢和郁闭度等对提取结果没有显著影响。  结论  基于多尺度分割的监督分类方法总体精度最高,估算绝对误差最小,能够满足快速、准确提取并估测毛竹林林分郁闭度的要求,且适用于不同经营类型的毛竹林。图2表6参28
  • 南方集体林区以丘陵为主的地形特征决定了林业生产过程中客观上存在着机械替代率低的问题。由于大量农村劳动力进入城市非农就业,林业经营主体需要通过雇佣劳动力以解决劳动力不足的问题[1];日趋扩大的规模化经营对雇佣劳动力的依赖程度急剧增大,委托代理关系也应运而生。委托代理关系下的营林生产过程往往存在着信息不对称和“道德风险”等问题,导致雇主对劳动过程的监督不到位[2];而相对粗放的林业生产中,雇主无法准确观测劳动力的投入程度,雇工生产效率较低[3]。因此,在南方集体林区不断推进林业规模化经营的背景下,开展雇工劳动质量对农户营林技术效率的影响研究具有重要的理论和现实意义。国内外学者关于雇佣劳动对农林业生产影响的研究主要集中在农业领域。一种观点认为雇佣劳动对农业生产效率产生了负面影响。雇佣劳动存在“道德风险”,雇佣劳动力的边际产出小于自有劳动力的边际产出,要保证劳动质量必须要付出大量的监督成本。有研究发现:存在雇工行为的家庭农业经营雇主,需要花费10%的劳动力时间来监督雇工,对劳动力在其他用途上的配置产生挤出效应。还有研究表明:团队组织内部监督不完备与激励不足,将会降低生产效率[4]。另一观点则认为雇佣劳动对农业生产效率有正向影响。张五常[5]认为分成制、定租制和混合制等委托-代理机制[3]是有效的。相比之下,目前针对林业雇工研究较少,从雇工视角探讨南方集体林区农户营林生产效率影响因素的研究还未见报道。本研究基于浙江省的实地调研数据,采用计量模型测算样本农户的营林技术效率,分析雇工劳动质量对农户营林技术效率的影响,以期为林业规模化经营中存在的雇工劳动问题提供决策依据。

    根据委托-代理理论[3],存在于雇佣劳动中“道德风险”会导致雇佣劳动力的边际产出小于自有劳动力的边际产出;而相对粗放的林业生产管理会增加劳动力的监督难度,加重林业雇佣劳动中的机会主义行为。即营林生产过程中雇佣劳动会在一定程度上影响技术效率的提高。同时,雇工投入水平的差异对农户营林技术效率的影响也是不同的。雇工投入越多,则家庭自有劳动力越少,劳动监督难度越大,雇工劳动力的道德风险也越大,从而导致劳动生产质量下降,林业生产效率会因此受到影响(落入到生产可能性曲线内部)。就家庭自有劳动力与雇工关系而言,拥有剩余索取权的家庭自有劳动力更多地参与到营林生产中,则边际产出会随之升高,劳动质量会得到更大程度的保证,雇佣劳动对林业生产效率的负面影响程度也相对减弱。因此,可提出以下研究假说:农户营林生产过程中的雇佣劳动会对营林生产造成负面影响,且雇工劳动质量不同,雇佣劳动对农户营林技术效率的影响程度也不同。

    技术效率(technical efficiency, TE)是目前测度生产单位效率水平最常见的指标之一,一般用生产单位的实际产出与其理论上所能实现的最大潜在产出的比值来表示,本研究选用技术效率来衡量样本经营农户营林生产效率水平。用Yi表示第i个农户的林业产出,则随机前沿生产函数(stochastic frontier approach,SFA)可表示为:YifXiβ)exp(Vi-Ui)。其中:fXiβ)代表生产前沿面,Xi为生产要素的投入,本研究指资本、土地和劳动力的投入;(Vi-Ui)为混合误差,其中Vi表示随机误差,包含测度误差及不可控因素;Ui为技术效率损失,表示农户i的技术非效率项,服从独立的截断正态分布Nmiδu2),其中mi为数学期望,δu2为方差。

    技术无效率函数(mi)可设定为:$ {m_i} = {\delta _0} + \sum\limits_j {{\delta _j}{Z_{ji}} + {\mu _i}} $。其中:i表示第i位样本农户,Zji表示影响技术效率的各外生变量,δj为待估参数,反映各外生变量对技术效率的影响程度,μi为纯随机误差项。

    在此基础上求解出技术效率水平:TiEYiUiXij)/EYiUi=0,Xij)=exp(-Ui),从而求解出平均技术效率:$ T = \frac{1}{n}\sum\limits_{i = 1}^n {{T_i}} $。其中:n为农户数量,本研究采用最大似然估计法来估计前沿生产函数的参数。

    本研究以浙江省南方集体林区为案例点,充分考虑地理位置、自然资源和社会经济发展差异,按农民人均可支配收入分层抽样选取浙江省建德市、开化县2个县(市)作为样本县(市)。2地农民人均可支配收入为23 998和15 736元,存在明显差异,反映出浙江省不同地区经济发展的差异性;森林覆盖率为76.2%和80.9%,均超出浙江省的平均水平,林业代表性较好。采取随机抽样法,在2个样本县(市)随机选取6个乡(镇),其中开化3个乡(镇),建德3个乡(镇)。为保证问卷的质量与信息的真实性,调查采取“一对一”的访谈模式。共得到农户有效样本245户,其中有雇工参与的农户151户,无雇工参与的农户94户。

    杉木Cunninghamia lanceolata是样本地区分布最广的树种之一,也是当地农户最主要的林业收入来源之一;因此,本研究以杉木为案例树种进行调研。调查内容包括农户家庭基本情况、林地基本情况、1个营林周期内最大地块上杉木的生产投入和产出情况等。样本分布见表 1

    表  1  农户有效样本分布情况
    Table  1.  Specific distribution of effective sample of farmers
    县(市)乡(镇)合计/户比例/%
    开化华埠许家源208.2
    联丰208.2
    池淮芹源208.2
    玉坑208.2
    芹阳泉坑218.6
    小桥头208.2
    建德李家沙墩头83.3
    长林239.4
    石鼓93.7
    龙桥10.4
    新桥20.8
    李家20.8
    建德大同上马10.4
    小溪源249.8
    永平10.4
    竹林10.4
    竹源135.3
    航头大店口218.6
    东村145.7
    溪沿10.4
    罗源10.4
    曹源20.8
    总计245100.0
    下载: 导出CSV 
    | 显示表格

    在测算林业技术效率之前,需要先确定前沿函数的具体形式,常见的前沿函数形式有C—D生产函数和超越对数生产函数。相对于前者,后者不仅形式灵活、易估计、包容性强,而且允许要素间替代弹性可变,没有对技术变化附加任何限制条件,因此近似性更好。考虑到南方集体林区农户拥有林地地块数量普遍较多,而农户林业生产中最重视且存更大雇佣劳动可能性的一般是最大地块,因此,本研究采用农户最大地块1个经营周期内的营林投入产出变量来构建生产函数。超越对数生产函数公式如下:lnYiβ0+β1lnKi+β2lnLi+β3lnMi+β4(lnKi2+β5(lnLi2+β6(lnMi2+β7lnKilnLi+β8lnMilnMi+β9lnKilnMi+Vi-Ui。其中:Y表示最大地块1个经营周期内的林业产出(主伐量)(m3);K表示农户在最大地块的1个经营周期内所投入的费用(元);L表示农户在最大地块的1个经营周期内所投入的劳动投工数量(工);M表示最大地块面积(hm2);β0~β9为待估参数。

    通过对超越对数生产函数求导可以分别计算出各投入要素的产出弹性。资本投入要素的产出弹性为:η1β1+2β4lnK+β7lnL+β9lnM。劳动力投入要素的产出弹性为:η2β2+2β5lnL+β7lnK+β8lnM。土地投入要素的产出弹性为:η3β3+2β6lnM+β8lnL+β9lnK。农户技术无效率函数表示为:$ {m_i} = {\delta _0} + \sum\limits_{j = 1}^{j = 5} {{\delta _j}{h_j} + \sum\limits_{j = 6}^{j = 16} {{\delta _j}{Z_{ji}} + {\mu _i}} } $。其中hj为关键变量,代表雇工劳动质量,表示农户最大地块1个经营周期内雇佣劳动力的投工质量情况,Zj为控制变量。

    为全面测度营林雇工劳动质量问题,本研究构建了雇工年龄比例、雇工性别比例、雇工投工所占比例、受过技术培训的雇工所占比例等具体指标[6]作为关键变量。具体如下。①雇工年龄比例:40岁以下雇工所占比例(h1)、60岁以上雇工所占比例(h2);②雇工性别比例:男雇工所占比例(h3);③雇工投工所占比例:总投工中雇工所占比例(h4);④受过技术培训的雇工所占比例(h5)。

    一般研究将影响技术效率的地块特征、农业生产特征、户主特征等外生因素作为控制变量。①地块特征主要包括地块的地理位置(最大地块离家距离)、农户家庭山林总面积、农户家庭林地总块数、最大地块立地质量。地块离家距离越近,越便于林农对林地进行管理,所以,预期最大地块离家距离会对农户营林技术效率产生负向影响。农户家庭山林总面积越大、林地总块数越多意味着农户管理林地的难度也越大,平均到每个地块的管理时间就会越少,因此,预期其会对农户营林技术效率产生负向影响[7]。土地细碎不利于先进机械设备和技术的推广,控制病虫害难度加大,难以实现规模经营[8],虽然也有研究表明耕地面积与生产率之间的反向关系[9],但有些研究却表明此种关系并不显著[10],因此预期其总效应不明确。地块的立地质量对效率的影响是显而易见的,肥沃的土壤相对于贫瘠的土壤更能提高农户的生产效率[11],因此预期其会对农户营林技术效率会产生正向影响。②农业生产特征包括家庭务农人数、家庭总收入以及农户是否为补贴户。家庭务农人数会直接影响到劳动力要素的投入,因此预期其会对农户营林技术效率产生正向影响。农户家庭总收入的增加会加大农户的林业投资[12],预期会对农户营林技术效率产生正向影响。农户若为补贴户,林业补贴的增加也会增加农户对林业的资本投入,因此假设其会对农户营林技术效率产生正向影响。③户主特征。包括户主年龄、户主的受教育年限、户主健康状况、户主是否担任过村干部。户主年龄对其技术效率的影响方向取决于该农户是更富有经验还是更守旧[13];户主受教育年限越长,越能有效利用先进的农业生产技术[14],因此,假设其会对农户营林技术效率产生正向影响。户主健康状况对农户营林技术效率的影响也是显而易见的:户主健康状况越好,越有利于家庭营林生产劳动和决策,因此假设其会对技术效率产生正向影响。干部身份一方面会带来收入效应,即干部获得先进生产技术和农业生产信息的渠道更多,这会对农户营林技术效率产生正效应;另一方面,干部身份同样存在替代效应,即干部用于家庭经营的时间更少,从事家庭经营的机会成本也较高,这会对农户营林技术效率产生负效应[15]。因此其具体影响尚不可知。具体控制变量如下:Z6表示农户是否为补贴户(0代表否,1代表是);Z7表示户主是否为村干部(0代表否,1代表是);Z8为农户家庭务农人数(人);Z9为户主年龄(岁);Z10为户主受教育年限(年);Z11为户主健康状况(1代表好,2代表中,3代表差);Z12表示农户家庭总收入(元);Z13为农户家庭山林总面积(hm2);Z14表示农户经营的山林总块数(块);Z15表示农户经营山林中最大地块的立地质量(1代表好,2代表中,3代表差);Z16表示最大地块离家的距离(km)。

    表 2可知:样本农户最大地块整个营林周期内单位面积的平均产出为108.62 m3·hm-2,农户最大地块整个营林周期内单位面积的平均资本投入为8 214.47元·hm-2,单位面积平均劳动力投入为375.23工·hm-2,平均林地投入为2.02 hm2

    表  2  随机前沿生产函数模型变量的描述性统计
    Table  2.  Descriptive statistics of variables in Stochastic Frontier Approach's model
    统计值变量最大地块总产出/(m3·hm-2最大地块资本投入/(元·hm-2最大地块面积/hm2最大地块劳动力投入/(工·hm-2
    平均值108.628 214.472.02375.23
    标准差94.705 187.261.14278.28
    下载: 导出CSV 
    | 显示表格

    技术效率损失模型中(表 3),户主的平均年龄为57.24岁,平均受教育年限为7.20 a,可以看出该地区的劳动力质量较差。88.00%的立地质量为中等及以上,最大地块离家距离平均为1.97 km,表明样本地区的立地质量和交通条件对林业经营相对有利。样本农户家庭户均地块为3.41块,表明样本地区林地细碎化问题并不严重。农户的家庭总收入均值为95 501.74元,说明样本地区当地的经济条件利于林业发展。所有样本农户中仅有27.00%的农户为补贴户,说明国家的林补政策还未真正地惠及该地区。

    表  3  技术效率损失模型变量的描述性统计
    Table  3.  Descriptive statistics of variables in the loss of technical efficiency's model
    变量类型具体变量平均值标准差最小值最大值
    雇工劳动质量40岁以下雇工所占比例0.450.240.101.00
    60岁以上雇工所占比例0.490.170.011.00
    男雇工所占比例0.850.160.201.00
    总投工中雇工所占比例0.720.250.051.00
    雇佣的工人中受过技术培训的工人所占比例0.780.420.101.00
    户主特征户主年龄(岁)57.249.382786
    户主教育年限7.203.52016
    户主是否为村干部(0代表否,1代表是)0.330.4601
    户主健康状况:好0.840.3601
    户主健康状况:差0.120.2201
    农业生产特征家庭务农人数(人)1.181.0505
    家庭总收入(元)95 501.74104 235.30520724 652
    是否为补贴户(0代表否,1代表是)0.270.4401
    地块特征家庭总地块数3.412.87020
    最大地块质量:好0.540.4901
    最大地块质量:差0.120.3101
    最大地块离家距离(km)1.972.030.0215
    山林总面积3.528.260.0396.67
    说明:“户主健康状况”参照组为“中”,“最大地块质量”参照组为“中”
    下载: 导出CSV 
    | 显示表格

    为消除因自变量之间多重共线性导致的模型估计结果偏差,在模型估计前对雇工质量各指标进行相关性检验。结果发现(表 4):雇工质量各指标之间不存在多重共线性问题,各指标可以作为自变量放入模型进行估计。

    表  4  雇工质量各指标系数相关矩阵
    Table  4.  Relevance matrix of index coefficients of employee quality
    40岁以下雇工所占比例60岁以上雇工所占比例男雇工所占比例总投工中雇工所占比例雇佣的工人中受过技术培训的工人所占比例
    40岁以下雇工所占比例1.00
    60岁以上雇工所占比例0.181.00
    男雇工所占比例0.240.151.00
    总投工中雇工所占比例0.010.000.331.00
    雇佣的工人中受过技术培训的工人所占比例0.240.020.100.231.00
    下载: 导出CSV 
    | 显示表格

    利用广义似然比(LR)检验可降低对SFA模型的依赖,避免函数形式的误设,从而从设定的待估计模型中筛选出最能拟合样本数据的模型。LR公式可表示为:RL=-2[lnLH0)-lnLH1)] ~χ2k)。其中:LH0)和LH1)分别是零假设H0和备择假设H1下的似然函数值,表示受约束条件的自由度。将LR统计量与临界值进行比较,当LR统计量值大于临界值时拒绝原假设,否则,接受原假设。给出的2个零假设为:(1)规模户和非规模户的前沿面并没有显著的差异,即模型不需要添加是否为规模户的虚拟变量。(2)外生变量对技术效率无任何影响,即模型不需要添加外生变量影响因素。LR验证结果如表 5所示。相对于基准模型,假设1在1%显著性水平上没有被拒绝,而假设2在1%显著性水平上拒绝原假设;说明原假设1对应的模型较好地拟合了样本数据,可作为本研究测度技术效率的主要模型。

    表  5  假设检验结果
    Table  5.  Hypothesis test results
    零假设LR统计量自由度χ2 0.01临界值结论
    H0:不应该设置规模户虚拟变量0.001920.97接受
    H0:外生变量对技术效率无影响126.3101428.49拒绝
    下载: 导出CSV 
    | 显示表格
    3.2.1   随机前沿生产函数模型估计结果分析

    表 6为随机前沿生产函数模型的估计结果。将表 6的回归系数代入上文生产投入要素产出弹性计算公式中可得到各投入要素的产出弹性。计算得:土地投入要素的产出弹性为2.25,说明样本地区林业生产对土地投入的依赖程度较高,即林业生产中最为稀缺的生产要素是土地,增加土地投入可以大幅度地提高林业产出。资本(-0.09)和劳动力(-0.23)投入要素的产出弹性均为负值,说明目前样本地区林业存在过度投入资本和劳动力的情况,单纯依靠增加林业劳动力和林业资本投入并不会带来林业产出的增加,相反还可能导致林业产出减少。

    表  6  随机前沿生产函数模型估计结果
    Table  6.  Estimated results of Stochastic Frontier Approach's model
    变量系数变量系数
    最大地块资本投入0.589***(0.091)劳动力投入的平方项-0.029*(0.016)
    最大地块面积(土地投入)0.746***(0.240)资本投入×土地投入0.160**(0.068)
    最大地块劳动力投入0.017(0.125)土地投入×劳动力投入0.108*(0.063)
    资本投入的平方项0.051***(0.010)资本投入×劳动力投入-0.014(0.035)
    土地投入的平方项-0.410***(0.137)常数项-0.368(0.259)
    说明:*,**,***分别表示通过10%,5%,1%水平下的显著性检。括号内数值为回归标准误
    下载: 导出CSV 
    | 显示表格
    3.2.2   技术效率损失模型估计结果分析

    在245份有效样本农户中,家庭最大地块1个营林周期内有雇佣劳动力的农户有151户,占总体样本的61.63%。总体农户平均技术效率值为0.57,有雇工农户平均技术效率值为0.59,无雇工农户的平均技术效率值为0.76。由表 7可知:如果消除技术效率的损失,总体样本农户的平均技术效率还有43.00%的提升空间。由描述性统计结果可粗略看出无雇工农户的平均技术效率高于有雇工农户的平均技术效率,但雇佣劳动对农户技术效率的具体影响有待进一步计量分析。由样本农户雇工情况对农户营林技术效率损失影响的估计结果(表 8)可知:在控制其他变量不变的情况下,雇工会对农户营林技术效率造成负面影响(P<0.10)。雇工劳动质量指标中,总投工中雇工所占比例对农户的营林技术效率具有负向影响(P<0.05);原因可能是家庭自有劳动力和雇佣劳动力劳动质量存在异质性,雇主对劳动过程的监督很难到位,由此造成总投工中雇工所占比例越高,农户营林技术效率越低。户主年龄对农户的营林技术效率具有正向的影响(P<0.10);原因可能是随着户主年龄增大,其营林生产经验越丰富,对家庭营林生产越有利。户主良好的身体状况对农户营林生产技术效率具有正向影响(P<0.05);作为家庭最主要的林业劳动力和决策者,户主身体健康程度对林业生产至关重要。家庭总收入对农户营林生产技术效率具有正向影响(P<0.05);原因在于农户家庭总收入的增加会减少农户家庭林业生产的资金约束,农户林业投资概率会增大。山林总面积和家庭总地块数都对农户的营林技术效率具有负向影响(P<0.10);农户家庭山林总面积越大、家庭总地块数越多,农户管理林地的难度也越大,平均到每个地块的管理时间就会越少,农户无法对林地进行精细化地管理,影响了技术效率的提高。好的地块质量对农户营林生产技术效率具有负向影响(P<0.10);这与预期的影响方向相反,可能的原因是:农户会对质量较好的地块相对投入更少的肥料和劳动力等生产要素,因此使立地质量较优的地块产出情况反而不如立地质量较差的地块。

    表  7  样本农户营林技术效率总体情况
    Table  7.  Overall situation of technical efficiency of sample farmers in forestry management
    描述性统计农户类型平均值标准差最小值最大值
    全部农户0.570.200.120.92
    有雇工农户0.590.250.060.98
    无雇工农户0.760.120.240.92
    下载: 导出CSV 
    | 显示表格
    表  8  雇工情况及雇工劳动质量对农户营林技术效率损失的影响估计结果
    Table  8.  Estimation of the impact of employment and labor quality of employees on technical efficiency of farmers' forestry management
    变量类型具体变量系数具体变量系数
    雇工情况是否雇工(0代表否,1代表是)0.373*(0.212)40岁以下雇工所占比例1.139(0.814)
    及雇工劳60岁以上雇工所占比例-0.474(0.509)
    动质量男雇工所占比例0.662(0.511)
    总投工中雇工所占比例1.205**(0.538)
    雇佣的工人中受过技术培训的工人所占比例-2.115(1.328)
    户主特征户主年龄(岁)-0.011(0.009)户主年龄(岁)-0.027*(0.016)
    户主教育年限-0.008(0.022)户主教育年限0.052(0.044)
    户主是否为村干部(0代表否,1代表是)0.182(0.160)户主是否为村干部(0代表否,1代表是)0.181(0.245)
    户主健康状况:好-0.498**(0.242)户主健康状况:好-1.130**(0.489)
    户主健康状况:差-0.180(0.324)户主健康状况:差-0.132(0.883)
    农业生产家庭务农人数(人)0.035(0.078)家庭务农人数(人)0.084(0.106)
    特征家庭总收入(元)-0.000**(0.000)家庭总收入(元)-0.000**(0.000)
    是否为补贴户(0代表否,1代表是)0.333**(0.165)是否为补贴户(0代表否,1代表是)0.317(0.259)
    地块特征家庭总地块数0.035(0.026)家庭总地块数0.090*(0.049)
    最大地块质量:好0.221(0.155)最大地块质量:好0.640*(0.359)
    最大地块质量:差-0.117(0.241)最大地块质量:差0.196(0.460)
    最大地块离家距离(km)-0.040(0.037)最大地块离家距离(km)-0.052(0.061)
    山林总面积-0.005(0.022)山林总面积0.042*(0.022)
    常数项1.643***(0.623)常数项0.303(1.099)
    σ20.318***(0.070)σ20.801***(0.268)
    γ0.876***(0.073)γ0.995***(0.003)
    说明:“户主健康状况”参照组为“中”,“最大地块质量”参照组为“中”;*,**,***分别表示通过10%,5%,1%水平下的显著性检验。括号内数值为回归标准误
    下载: 导出CSV 
    | 显示表格

    本研究发现:样本农户的营林技术效率的平均值为0.57,表明样本农户在当前技术水平下平均56.60%的产出可以通过现有的生产要素组合来获得,样本农户的营林技术效率还有43.40%的提升空间。农户营林生产过程中的雇佣劳动确实会对营林生产造成负面影响,雇工劳动质量不同,对提高农户营林技术效率的影响程度不同;营林生产总投工中雇工所占比例越大,对提高农户营林技术效率的负面影响程度越大。

    建立有效的劳动监督和管理机制。雇佣劳动力在劳动过程中缺乏有效的劳动监督,雇工劳动质量低下,是营林生产技术效率下降的主要原因。因此,农户应根据雇工实际情况建立有效劳动监督机制,在劳动生产可计量的环节尝试使用绩效工资,并根据劳动成果给予一定的激励措施,减少雇工过程中“搭便车”行为的发生,从而提高雇工劳动的质量。在目前林业规模经营日趋普遍的情况下,传统的生产经营和管理方式越来越难以适应,迫切需要建立高效的林业生产管理机制。革新传统林业管理理念,启用具有现代管理才能的人才管理林业经营;在林业生产的各个环节,制定科学合理的管理细则和林业生产流程。

    推进适度规模经营,加大林业科技服务投入。解决各林业经营主体营林生产过程中的雇工劳动质量问题的关键是解决农村劳动力不足的问题。因此,推广林业机械化生产、开拓新型经营方式、积极推进林业适度规模经营均能在很大程度上解决上述问题。在地形条件较平缓的地区的林业规模经营户中可以依靠推进农业机械化替代劳动力,解决雇佣劳动所带来的劳动质量问题。同时,在机械替代较为困难的地区,可以尝试开拓林业服务外包、农户之间合作经营和托管经营等新型林业经营方式,促使劳动力要素配置更加专业化,也可以缓解由于雇佣劳动力所带来的劳动质量问题。对规模经营中出现的雇工劳动问题,需要进一步研究以寻找雇工劳动最优的比例,从劳动力层面对农户适度规模经营提出要求。

  • 图  1  双峰法最优阈值示意图

    Figure  1  Schematic diagram of the double peak threshold method

    图  2  不同方法提取竹冠效果对比示意图

    Figure  2  Comparison of the bamboo crown extraction results with different methods

    表  1  毛竹林样地基本情况

    Table  1.   Basic information of plot sites

    类型郁闭度样地/
    平均胸
    径/cm
    平均树
    高/m
    坡度/
    (°)
    坡向
    钩梢 0~0.7138.919.911.6北坡 
    钩梢 0.7~0.889.039.416.1西北坡
    钩梢 0.8~1.038.659.213.3北坡 
    未钩梢128.589.617.1东南坡
    下载: 导出CSV

    表  2  不同毛竹林的最优参数组合

    Table  2.   Optimal parameter combination of different Moso bamboo stands     

    类型郁闭度分割尺度形状因子紧致度因子
    0~0.7290.30.5
    钩梢 0.7~0.8310.30.5
    0.8~1.0290.30.5
    未钩梢410.30.5
    下载: 导出CSV

    表  3  不同方法的毛竹林竹冠提取精度及郁闭度误差对比

    Table  3.   Bamboo crown extraction accuracy and canopy density error of different methods

    方法总体精度/%生产者精度/%用户精度/%郁闭度误差
    TP91.81±3.08 c93.34±3.37 c96.24±2.03 b0.038±0.026 c
    SP92.96±3.66 bc95.47±3.29 b95.64±2.64 b0.030±0.026 ab
    TM93.47±2.53 b96.10±2.24 b95.57±2.57 b0.024±0.018 b
    SM98.86±0.53 a99.15±0.40 a99.36±0.53 a0.004±0.003 a
      说明:同列不同小写字母表示差异显著(P<0.05)
    下载: 导出CSV

    表  4  4种方法下钩梢和未钩梢毛竹林竹冠区域的提取精度

    Table  4.   Extraction accuracy of the four methods with truncation and non-truncation

    类型方法总体精度/%生产者精度/%用户精度/%
    钩梢 TP92.82±2.57 Ab93.85±3.11 Ac95.96±2.32 Ab
    SP93.95±2.74 Ab96.67±1.39 Ab95.00±2.98 Ab
    TM94.05±2.25 Ab96.15±2.04 Ab95.49±2.90 Ab
    SM98.9±0.59 Aa99.14±0.45 Aa99.27±0.61 Aa
    未钩梢TP89.80±3.12 Bb92.33±3.77 Ac96.81±1.15 Ab
    SP90.97±4.52 Bb93.07±4.57 Bc96.92±0.98 Bb
    TM92.30±2.77 Bb96.01±2.70 Ab95.73±1.81 Ac
    SM98.78±0.37 Aa99.16±0.29 Aa99.55±0.22 Aa
      说明:同列不同小写字母表示相同林分类型在不同方法之     间差异显著(P<0.05);同列不同大写字母表示相同     方法在不同林分类型之间差异显著(P<0.05)
    下载: 导出CSV

    表  5  4种方法下钩梢和未钩梢毛竹林的郁闭度误差

    Table  5.   Canopy density error of the four methods with truncation and non-truncation

    类型方法郁闭度误差类型方法郁闭度误差
    钩梢TP0.029±0.021 Ab未钩梢TP0.052±0.029 Bc
    SP0.023±0.015 AbSP0.042±0.039 Bbc
    TM0.022±0.016 AbTM0.026±0.023 Ab
    SM0.003±0.003 AaSM0.004±0.003 Aa
      说明:同列不同小写字母表示相同林分类型在不同方法之     间差异显著(P<0.05);同列不同大写字母表示相同     方法在不同林分类型之间差异显著(P<0.05)
    下载: 导出CSV

    表  6  不同方法下郁闭度对毛竹林竹冠提取精度的影响

    Table  6.   Effect of canopy density on the extraction accuracy under different methods

    郁闭度方法总体精度/%生产者精度/%用户精度/%
    0~0.7TP93.70±2.44 Ab95.04±2.50 Ab95.26±2.69 Ab
    SP94.98±2.11 Ab97.02±1.37 Ab95.33±2.90 Ab
    TM93.89±2.66 Ab96.15±2.52 Ab94.70±3.32 Ab
    SM98.82±0.69 Aa99.11±0.53 Aa99.09±0.68 Aa
    0.7~0.8TP92.21±2.65 Ab92.43±3.83 Ac97.03±1.68 Ab
    SP93.62±4.31 Ab96.97±1.43 Ab95.22±4.78 Ab
    TM92.71±1.40 Ab96.11±1.43 Ab95.19±1.90 Ab
    SM98.88±0.48 Aa99.08±0.32 Aa99.42±0.48 Aa
    0.8~1.0TP90.68±1.46 Ac92.46±1.39 Ac96.14±0.74 Ab
    SP93.62±4.31 Ab96.97±1.43 Ab95.22±4.78 Ab
    TM92.71±1.40 Ab96.11±1.43 Ab95.19±1.90 Ab
    SM99.28±0.33 Aa99.48±0.22 Aa99.66±0.33 Aa
      说明:同列不同小写字母表示相同郁闭度在不同方法之     间差异显著(P<0.05);同列不同大写字母表示相同     方法在不同郁闭度之间差异显著(P<0.05)
    下载: 导出CSV
  • [1] HERBERT T J. Area projections of fisheye photographic lenses [J]. Agric For Meteorol, 1987, 39(2/3): 215 − 223.
    [2] 濮毅涵, 徐丹丹, 王浩斌. 基于数码相片的林冠郁闭度提取方法研究[J]. 林业资源管理, 2020(6): 153 − 160.

    PU Yihan, XU Dandan, WANG Haobin. An approach on estimating canopy closure via digital images [J]. For Resour Manage, 2020(6): 153 − 160.
    [3] 高云飞, 李智广, 杨胜天, 等. 基于SPOT 5影像的郁闭度反演方法[J]. 水土保持研究, 2012, 19(2): 267 − 270.

    GAO Yunfei, LI Zhiguang, YANG Shengtian, et al. Study on canopy density retrieval method from SPOT 5 [J]. Res Soil Water Conserv, 2012, 19(2): 267 − 270.
    [4] 李擎, 王振锡, 王雅佩, 等. 基于GF-2号遥感影像的天山云杉林郁闭度估测研究[J]. 中南林业科技大学学报, 2019, 39(8): 48 − 54.

    LI Qing, WANG Zhenxi, WANG Yapei, et al. Study on canopy density inversion of Picea schrenkiana forest based on GF-2 remote sensing image [J]. J Cent South Univ For Technol, 2019, 39(8): 48 − 54.
    [5] 李蕴雅. UAV/RS 3D像对森林信息提取方法研究[D]. 北京: 北京林业大学, 2016.

    LI Yunya. Study on the Method of Extracting Forest Information from 3D UAV/RS[D]. Beijing: Beijing Forestry University, 2016.
    [6] JONATHAN L, MARC P D, STÉPHANIE B, et al. A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery [J]. Forests, 2013, 4(4): 922 − 944.
    [7] DANDOIS J P, ELLIS E C. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision [J]. Remote Sensing Environ, 2013, 136(5): 259 − 276.
    [8] 李丹, 张俊杰, 赵梦溪. 基于FCM和分水岭算法的无人机影像中林分因子提取[J]. 林业科学, 2019, 55(5): 180 − 187.

    LI Dan, ZHANG Junjie, ZHAO Mengxi. Extraction of stand factors in UAV image based on FCM and watershed algorithm [J]. Sci Silv Sin, 2019, 55(5): 180 − 187.
    [9] 苏迪, 高心丹. 基于无人机航测数据的森林郁闭度和蓄积量估测[J]. 林业工程学报, 2020, 5(1): 156 − 163.

    SU Di, GAO Xindan. Estimation of forest canopy density and stock volume based on UAV aerial survey Data [J]. J For Eng, 2020, 5(1): 156 − 163.
    [10] 汪霖. 基于无人机高分影像的森林参数估测方法[D]. 南京: 南京林业大学, 2020.

    WANG Lin. Estimation Method of Forest Parameters based on UAV High Resolution Image[D]. Nanjing: Nanjing Forestry University, 2020.
    [11] 申景昕, 范少辉, 刘广路, 等. 毛竹林采伐林窗近地层温度时空分布特征[J]. 生态学杂志, 2020, 39(11): 3549 − 3557.

    SHEN Jingxin, FAN Shaohui, LIU Guanglu, et al. Spatiotemporal distribution characteristics of temperature on the surface layer of cutting gap of Phyllostachys edulis forest [J]. Chin J Ecol, 2020, 39(11): 3549 − 3557.
    [12] 宋庆妮, 杨清培, 刘骏, 等. 毛竹扩张对常绿阔叶林土壤氮素矿化及有效性的影响[J]. 应用生态学报, 2013, 24(2): 338 − 344.

    SONG Qingni, YANG Qingpei, LIU Jun, et al. Effects of Phyllostachys edulis expansion on soil nitrogen mineralization and its availability in evergreen broadleaf forest [J]. Chin J Appl Ecol, 2013, 24(2): 338 − 344.
    [13] 杨清培, 杨光耀, 宋庆妮, 等. 竹子扩张生态学研究: 过程、后效与机制[J]. 植物生态学报, 2015, 39(1): 110 − 124.

    YANG Qingpei, YANG Guangyao, SONG Qingni, et al. Ecological studies on bamboo expansion: process, consequence and mechanism [J]. Chin J Plant Ecol, 2015, 39(1): 110 − 124.
    [14] 孙晓艳, 杜华强, 韩凝, 等. 面向对象多尺度分割的SPOT 5影像毛竹林专题信息提取[J]. 林业科学, 2013, 49(10): 80 − 87.

    SUN Xiaoyan, DU Huaqiang, HAN Ning, et al. Multi-Scale segmentation, object-based extraction of Moso bamboo forest from SPOT 5 imagery [J]. Sci Silv Sin, 2013, 49(10): 80 − 87.
    [15] 赵敏, 赵银娣. 面向对象的多特征分级CVA遥感影像变化检测[J]. 遥感学报, 2018, 22(1): 119 − 131.

    ZHAO Min, ZHAO Yindi. Object-oriented and muti-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery [J]. J Remote Sensing, 2018, 22(1): 119 − 131.
    [16] 黄慧萍, 吴炳方. 地物提取的多尺度特征遥感应用分析[J]. 遥感技术与应用, 2003(5): 276 − 281.

    HUANG Huiping, WU Bingfang. Analysis of the mutli-scale characteristiscs with objects extraction [J]. Remote Sensing Technol Appl, 2003(5): 276 − 281.
    [17] ADDINK E A, JONG S, PEBESMA E J. The importance of scale in object-based mapping of vegetation parameters with hyperspectral imagery [J]. Photogramm Eng Remote Sensing, 2007, 73(8): 905 − 912.
    [18] DRĂGUŢ L, CSILLIK O, EISANK C, et al. Automated parameterisation for multi-scale image segmentation on multiple layers [J]. ISPRS J Photogramm Remote Sensing, 2014, 88: 119 − 127.
    [19] 刘金丽, 陈钊, 高金萍, 等. 高分影像树种分类的最优分割尺度确定方法[J]. 林业科学, 2019, 55(11): 95 − 104.

    LIU Jinli, CHEN Zhao, GAO Jinping, et al. Research on the method of determining the optimal segmentation scale for tree species classification of high-resolution image [J]. Sci Silv Sin, 2019, 55(11): 95 − 104.
    [20] PUREVDORJ T, TATEISHI R, ISHIYAMA T, et al. Relationships between percent vegetation cover and vegetation indices [J]. Int J Remote Sensing, 1998, 19(18): 3519 − 3535.
    [21] 祁媛, 徐伟诚, 王林琳, 等. 基于无人机遥感影像的沙糖橘果树提取方法研究[J]. 华南农业大学学报, 2020, 41(6): 126 − 133.

    QI Yuan, XU Weicheng, WANG Linlin, et al. Study on the extraction method of sugar tangerine fruit trees based on UAV remote sensing images [J]. J South China Agric Univ, 2020, 41(6): 126 − 133.
    [22] MEYER G E, NETO J C. Verification of color vegetation indices for automated crop imaging applications [J]. Comput Electron Agric, 2008, 63(2): 282 − 293.
    [23] 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5): 152 − 159.

    WANG Xiaoqin, WANG Miaomiao, WANG Shaoqiang, et al. Extraction of vegetation information from visible unmanned aerial vehicle images [J]. Trans Chin Soc Agric Eng, 2015, 31(5): 152 − 159.
    [24] 陈时跃. 基于无人机可见光影像的郁闭山地杉木人工林的单木与林分结构参数提取[D]. 杭州: 浙江农林大学, 2020.

    CHEN Shiyue. Extraction of Individual Tree and Stand Structure Parameters based on RGB Images UVA in Closed Canopy Mountainous Forest [D]. Hangzhou: Zhejiang A&F University, 2020.
    [25] 汪霖, 李明阳, 方子涵, 等. 基于无人机数据的人工林森林参数估测[J]. 林业资源管理, 2019(5): 61 − 67.

    WANG Lin, LI Mingyang, FANG Zihan, et al. Plantation forest parameter estimation based on UAV data [J]. For Resour Manage, 2019(5): 61 − 67.
    [26] 智献坡, 李明泽, 于颖, 等. 应用4-scale模型对人工针叶林郁闭度的反演[J]. 东北林业大学学报, 2020, 48(12): 5 − 11.

    ZHI Xianpo, LI Mingze, YU Ying, et al. Artficial coniferous forest remote sensing by using geometric optical model [J]. J Northeast For Univ, 2020, 48(12): 5 − 11.
    [27] 刘赛赛, 陈冬花, 栗旭升, 等. 基于高分一号PMS的新疆落叶松林分郁闭度遥感定量估测[J]. 西北农林科技大学学报(自然科学版), 2020, 48(7): 57 − 66.

    LIU Saisai, CHEN Donghua, LI Xusheng, et al. Quantitative estimation of stand closure density of Larix sibirica by remote sensing based on GF-1 PMS [J]. J Northwest A&F Univ Nat Sci Ed, 2020, 48(7): 57 − 66.
    [28] 严羽. 基于无人机的林分郁闭度和树高估测研究[D]. 杭州: 浙江农林大学, 2019.

    YAN Yu. Estimation of Canopy Density and Tree Height Based on UAV[D]. Hangzhou: Zhejiang A&F University, 2019.
  • [1] 王佳雨, 朱玲姣, 黄程鹏, 姜培坤, 查强威, 陈林海.  硅肥和生物质炭添加对毛竹林土壤活性硅组分的影响 . 浙江农林大学学报, 2024, 41(3): 496-505. doi: 10.11833/j.issn.2095-0756.20230366
    [2] 王雨齐, 张前前, 张文卓, 俞叶飞, 吕强锋, 滕秋梅, 李永春.  延胡索产量和品质对杉木林郁闭度和凋落物处理的响应 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240461
    [3] 曹善郅, 周家树, 张少博, 姚易寒, 刘娟, 李永夫.  生物质炭基尿素和普通尿素对毛竹林土壤氧化亚氮通量的影响 . 浙江农林大学学报, 2023, 40(1): 135-144. doi: 10.11833/j.issn.2095-0756.20220254
    [4] 陈旭, 刘宗悦, 徐钧杰, 祁祥斌, 余树全.  天目山毛竹林皆伐后群落的恢复特征 . 浙江农林大学学报, 2022, 39(4): 705-716. doi: 10.11833/j.issn.2095-0756.20210595
    [5] 王铮屹, 戴其林, 柏宬, 陈涵, 库伟鹏, 赵明水, 余树全.  天目山皆伐毛竹林自然更新群落类型与多样性分析 . 浙江农林大学学报, 2020, 37(4): 710-719. doi: 10.11833/j.issn.2095-0756.20190472
    [6] 杨帆, 汤孟平.  毛竹林立地与结构的关系及其对生物量的影响 . 浙江农林大学学报, 2020, 37(5): 823-832. doi: 10.11833/j.issn.2095-0756.20190572
    [7] 谢巧雅, 余坤勇, 邓洋波, 刘健, 范华栋, 林同舟.  杉木人工林冠层高度无人机遥感估测 . 浙江农林大学学报, 2019, 36(2): 335-342. doi: 10.11833/j.issn.2095-0756.2019.02.015
    [8] 贾鹏刚, 夏凯, 董晨, 冯海林, 杨垠晖.  基于无人机影像的银杏单木胸径预估方法 . 浙江农林大学学报, 2019, 36(4): 757-763. doi: 10.11833/j.issn.2095-0756.2019.04.016
    [9] 赵赛赛, 汤孟平, 唐思嘉, 张军, 李岚, 庞春梅, 赵明水.  毛竹林分可视化研究 . 浙江农林大学学报, 2016, 33(5): 826-833. doi: 10.11833/j.issn.2095-0756.2016.05.014
    [10] 张丽景, 葛宏立.  利用MODIS数据估测毛竹林总初级生产力 . 浙江农林大学学报, 2014, 31(2): 178-184. doi: 10.11833/j.issn.2095-0756.2014.02.003
    [11] 孟海月, 刘强, 吴伟光.  不同经营类型毛竹林经营效益及固碳能力分析 . 浙江农林大学学报, 2014, 31(6): 959-964. doi: 10.11833/j.issn.2095-0756.2014.06.020
    [12] 赵晓, 吕玉龙, 王聪, 李亚丹, 杜华强.  毛竹林叶面积指数和郁闭度空间分布协同克里格估算 . 浙江农林大学学报, 2014, 31(4): 560-569. doi: 10.11833/j.issn.2095-0756.2014.04.011
    [13] 蔡彦彬, 宋照亮, 姜培坤.  岩性对毛竹林土壤硅形态的影响 . 浙江农林大学学报, 2013, 30(6): 799-804. doi: 10.11833/j.issn.2095-0756.2013.06.001
    [14] 陈孝丑, 刘广路, 范少辉, 官凤英, 苏文会, 黄金华.  连续施肥对毛竹林生长特征及生物量空间构型的影响 . 浙江农林大学学报, 2012, 29(1): 52-57. doi: 10.11833/j.issn.2095-0756.2012.01.010
    [15] 马瑞升, 杨斌, 张利辉, 刘志平.  微型无人机林火监测系统的设计与实现 . 浙江农林大学学报, 2012, 29(5): 783-789. doi: 10.11833/j.issn.2095-0756.2012.05.023
    [16] 崔瑞蕊, 杜华强, 周国模, 徐小军, 董德进, 吕玉龙.  近30 a安吉县毛竹林动态遥感监测及碳储量变化 . 浙江农林大学学报, 2011, 28(3): 422-431. doi: 10.11833/j.issn.2095-0756.2011.03.012
    [17] 叶耿平, 刘娟, 姜培坤, 周国模, 吴家森.  集约经营措施对毛竹林生长季土壤呼吸的影响 . 浙江农林大学学报, 2011, 28(1): 18-25. doi: 10.11833/j.issn.2095-0756.2011.01.004
    [18] 王冬云, 张卓文, 苏开君, 王光, 雷云飞, 林明磊, 张培, 钟庸.  广州流溪河流域毛竹林的水文生态效应 . 浙江农林大学学报, 2008, 25(1): 37-41.
    [19] 高志勤, 傅懋毅.  不同毛竹林土壤碳氮养分的季节变化特征 . 浙江农林大学学报, 2006, 23(3): 248-254.
    [20] 何福基, 吴明安, 倪荣新, 谢正成, 张建忠.  杉木种子园郁闭度对种子产量的影晌 . 浙江农林大学学报, 1995, 12(3): 311-315.
  • 期刊类型引用(4)

    1. 朱臻,薛家依,宁可. 规模化经营背景下劳动监督对营林质量的影响研究:来自南方集体林区三省规模户的实证数据. 农林经济管理学报. 2021(01): 78-91 . 百度学术
    2. 高润,刘洁. 林业经济实现可持续发展的重要性分析. 林产工业. 2021(04): 99-101 . 百度学术
    3. 肖琦,洪英. 新形势下林业科技对林业发展的重要性分析. 林产工业. 2021(05): 69-71+76 . 百度学术
    4. 修丕师,张晓梅. 重点国有林区职工林下经济创业潜力及支持路径研究. 林业经济问题. 2020(06): 626-633 . 百度学术

    其他类型引用(8)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210576

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/5/981

图(2) / 表(6)
计量
  • 文章访问数:  725
  • HTML全文浏览量:  310
  • PDF下载量:  93
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-08-19
  • 修回日期:  2022-05-20
  • 录用日期:  2022-06-15
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-10-20

基于无人机可见光影像的毛竹林郁闭度估测方法

doi: 10.11833/j.issn.2095-0756.20210576
    基金项目:  浙江省林业局与中国林业科学研究院合作项目(2019SY06)
    作者简介:

    王雨阳(ORCID: 0000-0002-9496-0891),从事无人机遥感等研究。E-mail: 2804649121@qq.com

    通信作者: 梁丹(ORCID: 0000-0002-6713-122X),讲师,博士,从事测量误差理论与无人机遥感研究。E-mail: liangdan812345@163.com
  • 中图分类号: S758.5

摘要:   目的  由于毛竹Phyllostachys edulis的生长特点和经营特点,使得毛竹林郁闭度在毛竹林经营中尤为重要,只有保持适宜毛竹生长的郁闭度,才能提高毛竹生产力。研究无人机可见光影像的毛竹林郁闭度估测方法,可实现实时快速获取毛竹林的郁闭度。  方法  以普通旋翼无人机可见光毛竹林影像为研究对象,基于像元的阈值分类、像元的监督分类、多尺度分割的阈值分类、多尺度分割的监督分类等4种方法,选取不同钩梢和郁闭度的样地36个,利用现有软件和MATLAB编程,对各样地的毛竹林竹冠区域进行快速提取,进而估算林分郁闭度,对比目视解译的郁闭度真值计算各方法的估算精度,利用单因素方差分析比较4种方法在不同钩梢和不同郁闭度下估算郁闭度的表现。  结果  基于像元的阈值分类、基于像元的监督分类、基于多尺度分割的阈值分类、基于多尺度分割的监督分类等4种方法的郁闭度估算总体精度依次为91.81%、92.96%、93.47%、98.86%,郁闭度估测值绝对误差依次为0.038、0.030、0.024、0.004。钩梢和郁闭度等对提取结果没有显著影响。  结论  基于多尺度分割的监督分类方法总体精度最高,估算绝对误差最小,能够满足快速、准确提取并估测毛竹林林分郁闭度的要求,且适用于不同经营类型的毛竹林。图2表6参28

English Abstract

贾代伟, 沈月琴, 朱臻, 等. 林业雇工劳动质量对农户营林技术效率的影响[J]. 浙江农林大学学报, 2019, 36(6): 1225-1232. DOI: 10.11833/j.issn.2095-0756.2019.06.021
引用本文: 王雨阳, 王懿祥, 李明哲, 等. 基于无人机可见光影像的毛竹林郁闭度估测方法[J]. 浙江农林大学学报, 2022, 39(5): 981-988. DOI: 10.11833/j.issn.2095-0756.20210576
JIA Daiwei, SHEN Yueqin, ZHU Zhen, et al. Impact of the labor quality of hired forestry labor on the technical efficiency of farmers' forestry management[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1225-1232. DOI: 10.11833/j.issn.2095-0756.2019.06.021
Citation: WANG Yuyang, WANG Yixiang, LI Mingzhe, et al. Estimation method of Phyllostachys edulis forest canopy density based on UAV visible image[J]. Journal of Zhejiang A&F University, 2022, 39(5): 981-988. DOI: 10.11833/j.issn.2095-0756.20210576
  • 林分郁闭度是指林木树冠垂直投影面积占林地总面积的比例,是反映林分密度的重要指标,在森林资源调查中尤为重要。在传统的森林资源调查中,获取林分郁闭度的主要方法为抬头望法,该方法耗时耗力,获取的数据精度较低,且只适用于面积小、地势缓的林地,难以在地理环境复杂的大区域内应用。随着数字成像技术的发展,HERBERT[1]提出利用鱼眼相机拍摄全天空相片进行郁闭度估测,扩大了拍摄的林冠范围;濮毅涵等[2]基于普通可见光照片中的树叶、树干和天空进行分类,将估测结果与抬头望法结果进行模型比较,得到决定系数(R2)为0.77,但该方法适用于地形平坦的林区,在地形复杂的山地难以应用。为克服地形因子的限制,不少学者基于卫星遥感影像对乔木林林分郁闭度的提取进行了研究。高云飞等[3]基于SPOT 5影像,对各波段的遥感影像像元亮度值进行组合,建立反演模型,最终得到最佳组合模型的R2为0.66;李擎等[4]为提高模型精度,基于高分二号(GF-2)遥感影像,结合光谱信息、纹理特征和地形因子构建郁闭度估测模型,模型精度达89.82%。然而卫星遥感成本高、时效低、灵活性低[5],相比之下无人机可见光遥感在中小型遥感区域作业中能发挥更大的优势,满足动态森林资源监测的条件和需求,并提供更多可能性[6-8]。苏迪等[9]基于无人机可见光影像,利用主成分分析确定模型的主成分变量,建立郁闭度回归方程,估算精度为83.18%;汪霖[10]结合无人机可见光影像得到的数字正射影像(DOM)和冠层高度模型(CHM),使用阈值法对树冠区域进行提取并计算郁闭度,平均精度为92.93%。以上关于乔木林分郁闭度遥感估测的研究都取得了一定的成果,能够满足林业调查需求,然而,目前基于无人机可见光影像的毛竹林林分郁闭度估测研究为数不多。

    毛竹作为中国南方重要的笋、竹两用竹种,是最重要的森林资源之一。第九次全国森林清查结果显示:毛竹林面积为467 hm2,占竹林总面积的73%[11]。由于毛竹林的生长特点(扩鞭)[12-13]和经营特点(择伐),使得林分郁闭度在毛竹林经营中尤为重要,出笋率和采伐结果都将反映在郁闭度上,只有保持适宜毛竹生长的郁闭度,才能提高毛竹生产力。毛竹林多分布在山地丘陵地区,传统的实地调查工作量大、效率低、工作周期长、精确度低。随着无人机技术的发展,无人机林业遥感为实现低成本、高时效、高分辨率、高灵活性的动态森林资源监测提供了技术基础。基于无人机和图像识别技术的单木树冠提取已有一定进展。然而相比其他乔木林,毛竹林竹冠具有特殊性,分为钩梢与未钩梢2种形态,且竹冠鲜少呈单个状态,具有“重叠性”,目前还没有利用现有方法直接获取单株毛竹竹冠的研究。本研究对无人机可见光影像的毛竹林郁闭度估测方法进行了分析,以期为快速获取毛竹林的郁闭度提供参考。

    • 研究区位于浙江省湖州市安吉县(30°23′~30°53′N,119°14′~119°53′E),该区地处长江三角洲腹地,属于亚热带季风气候,植被类型为亚热带常绿阔叶林,年均气温为12.2~15.6 ℃,年均降水量为1 100~1 900 mm。研究区内光照充足,雨量充沛,竹资源丰富,竹林总面积达757 km2,占森林面积56.47%,其中毛竹占79.30%,被誉为“中国竹乡”。

    • 根据是否钩梢和郁闭度2个因素选设样地,共调查36个10 m×10 m的样地,其中已钩梢毛竹林样地24个,未钩梢毛竹林样地12个。利用研究区数字正射影像目视解译获得毛竹林的郁闭度,未钩梢样地为抛荒毛竹林,处于无人经营状态,郁闭度均大于0.9,故在本研究中不再细分郁闭度等级。样地基本情况见表1

      表 1  毛竹林样地基本情况

      Table 1.  Basic information of plot sites

      类型郁闭度样地/
      平均胸
      径/cm
      平均树
      高/m
      坡度/
      (°)
      坡向
      钩梢 0~0.7138.919.911.6北坡 
      钩梢 0.7~0.889.039.416.1西北坡
      钩梢 0.8~1.038.659.213.3北坡 
      未钩梢128.589.617.1东南坡
    • 数据采集所用无人机遥感系统为大疆Phantom 4 RTK,飞行系统包括3部分:飞行器、云台相机和遥控器。飞行器提供多方位视觉系统,可稳定飞行和精准悬停,进行航点飞行作业;机身装备机载D-RTK,可提供厘米级高精度准确定位,实现更精准的测绘作业。Phantom 4 RTK配备24 mm广角相机、高精度防抖云台及图像传感器、机械快门,确保成像效果。遥控器的主要功能包括作业设计、远距离信号传输和航拍高清画面实时监测等。

      2020年11月18日14:00—15:00,天气晴朗、无风、无云,采用大疆Phantom 4 RTK搭载光学相机对选定研究区域进行拍摄。无人机飞行高度为160 m,飞行范围东西走向为222.82 m,南北走向为106.28 m,航向重叠率为90%,旁向重叠率为80%,飞行路线设计为“S”型路线。拍摄共得原始照片142张,空间分辨率为3.36 cm,照片共3波段:红波段(R)、绿波段(G)、蓝波段(B)。

    • 使用大疆智图软件对无人机所获取照片进行图像处理,通过三维重建技术,生成带有空间参考信息的数字表面模型(DSM)和色调自然、无明显接痕的正射影像图。图像处理的主要流程包括:①数据预处理,对照片进行校验、筛选、对齐,剔除一些无法进行后续合成的照片;②空三加密,通过空三计算得到密集点云和纹理;③生成网格,得到带空间参考信息的数字表面模型和数字正射影像。

    • 在毛竹林高分辨率遥感影像中,由于影像信息太多、林间空隙太杂,经常会产生“同物异谱”和“同谱异物”现象,而在分类前执行分割能有效解决该问题[14-16]

      多尺度分割是从任意一像元开始,自下而上进行合并的一种分割手段,其参数设置包括分割尺度、形状因子和紧致度因子。其中形状因子的取值为[0,1],它包含了形状和光谱2个方面的意义,取值越大,表示在同质性标准中形状因子所占比例越高,光谱因子所占比例就越低,反之亦然。紧致度因子包含紧致度和光滑度,两者权重之和也为“1”。分割尺度作为各参数中最重要的一项,决定了分割所得的多边形对象内部的异质性,分割尺度越大,所生成的对象面积就越大,数目就越少,反之亦然[17]。本研究采用eCognition软件中的Estimation of Scale Paramater 2(ESP2)插件来确定分割尺度,通过设置一系列的参数进行迭代,计算局部方差以及局部方差变化率(ROC)[18-19]ROC=[VL−(VL−1)]/(VL−1)×100。其中:VL表示尺度为L时分割结果中所有对象局部方差值的方差;VL−1表示尺度为L−1时分割结果中所有对象局部方差值的方差。

      本研究对不同类型的毛竹林进行不同参数组合实验,得到不同毛竹林的最优参数组合(表2)。

      表 2  不同毛竹林的最优参数组合

      Table 2.  Optimal parameter combination of different Moso bamboo stands     

      类型郁闭度分割尺度形状因子紧致度因子
      0~0.7290.30.5
      钩梢 0.7~0.8310.30.5
      0.8~1.0290.30.5
      未钩梢410.30.5
    • ①基于像元的阈值分类(TP)。通过设定不同的特征阈值,将图像分为若干类。常用的特征值包括2类:直接来自于原始图像的灰度或彩色特征和由原始灰度或彩色值变换得到的特征值。基于无人机影像的毛竹林竹冠区域阈值分类的关键在于选取能有效区分竹冠与非竹冠的最优阈值。通过选取竹冠与非竹冠的样点,得到各样点的阈值,统计不同阈值所包含的像元数目,绘成具有明显峰值与谷值的曲线图[20-21]。2个峰值对应位置分别为竹冠与非竹冠的典型特征值,谷值为竹冠与非竹冠交界处对应的特征值,也就是最优阈值(图1)。

      图  1  双峰法最优阈值示意图

      Figure 1.  Schematic diagram of the double peak threshold method

      特征值的选取对提取精度至关重要,本研究使用ENVI软件对数字正射影像中的红、绿、蓝波段进行主成分分析,得到红光和绿光波段包含98%以上的信息量,故选取由红、绿波段变换得到的归一化绿红差异指数(INGRD)为特征值[22-23],在MATLAB中对竹冠区域进行提取,表达式为INGRD=(GR)/(G+R)。其中R为红光波段,G为绿光波段。②基于像元的监督分类(SP)。根据已知训练区提供的样本,选取并求出特征参数作为决策规则,建立判别函数对各类图像进行分类的一种方法。本研究建立竹冠区与非竹冠区2种样本,并在ENVI软件中选择最大似然法作为分类算法进行竹冠区域提取,该方法根据训练样本的均值和方差,评价待分类像元和训练样本之间的相似性进而分类,可同时考虑2个以上的波段和类别。③基于多尺度分割的阈值分类(TM)。与传统基于像元的分类不同,基于多尺度分割的阈值分类是一种面向对象分类,其分类的基本单元为影像对象,基本内容分为影像分割与影像分类2个独立模块。结合了多尺度分割的分类方法,在精确分类的同时,很好地兼顾了地物的宏观尺度和微观特征,极大地消除了传统分类带来的“椒盐效应”。在分割的基础上,本研究使用INGRD对竹冠区域进行阈值提取。④基于多尺度分割的监督分类(SM)。该分类也是在多尺度分割的基础上,基于对象进行监督分类。本研究通过eCognition软件进行多尺度分割,并选择最邻近值分类法进行分类提取,该方法通过均匀地选择样本,建立训练集,统计样本的特征信息,通过计算未分类对象与样本之间的距离进行分类,并提取竹冠区域。

    • 郁闭度是指树冠的总垂直投影面积(m2)与该样方的总面积(m2)之比,反映林分的密度和林分光能利用程度,是抚育间伐的重要指标,郁闭度=总冠幅/样方总面积。

    • 在无人机影像的基础上,根据竹冠部分的亮度、纹理和阴影等特征,在ArcGIS软件中对各个小样地进行目视解译,并以目视解译的结果作为真值对4种方法进行精度评价[24]。分别用正确识别的竹冠总面积(AC,m2)、真实的竹冠总面积(AR,m2)、识别的竹冠面积(AD,m2)、正确识别的非竹冠面积(AN,m2)、样地面积(AS,m2)、真实郁闭度(RD)、分类结果得到的郁闭度(DC)等7个指标进行精度和误差的计算。总体精度(OA)=(AC+AN)/AS×100%;用户精度(UA)=AC/AD×100%;生产者精度(PA)=AC/AR×100%;郁闭度误差(DE)=|RDDC|。

    • 使用SPSS 25.0对各样地的总体精度、用户精度、生产者精度、郁闭度误差进行统计分析,采用单因素方差分析法(one-way ANOVA)进行显著性检验,采用LSD法进行多重比较分析(P=0.05),文中数据为平均值±标准差。

    • 图2可见:无论是在钩梢毛竹林还是未钩梢毛竹林中,基于像元的阈值分类法的结果存在较多错分和漏分的情况,且提取结果存在“碎片化”情况。基于像元的监督分类法的漏分情况较少,但存在较多的错分且提取结果呈“碎片化”;基于多尺度分割的阈值分类法提取的树冠存在较严重的错分和漏分情况;基于多尺度分割的监督分类法基本解决了树冠提取结果“碎片化”的问题,提高了所提取树冠的整体性,减少了错分和漏分的情况。从表3可以看出:基于多尺度分割的监督分类法的总体精度、生产者精度和用户精度都显著高于其他3种方法(P<0.05);基于多尺度分割的监督分类法郁闭度误差最小,为0.004,显著低于其他3种方法(P<0.05),表明使用基于多尺度分割的监督分类法提取毛竹林郁闭度的结果明显优于其他3种方法。

      图  2  不同方法提取竹冠效果对比示意图

      Figure 2.  Comparison of the bamboo crown extraction results with different methods

      表 3  不同方法的毛竹林竹冠提取精度及郁闭度误差对比

      Table 3.  Bamboo crown extraction accuracy and canopy density error of different methods

      方法总体精度/%生产者精度/%用户精度/%郁闭度误差
      TP91.81±3.08 c93.34±3.37 c96.24±2.03 b0.038±0.026 c
      SP92.96±3.66 bc95.47±3.29 b95.64±2.64 b0.030±0.026 ab
      TM93.47±2.53 b96.10±2.24 b95.57±2.57 b0.024±0.018 b
      SM98.86±0.53 a99.15±0.40 a99.36±0.53 a0.004±0.003 a
        说明:同列不同小写字母表示差异显著(P<0.05)
    • 表4所示:在基于多尺度分割的监督分类法中,是否钩梢对总体精度均没有显著影响,说明基于多尺度分割的监督分类法对钩梢和未钩梢毛竹林均适用;在其他3种方法中,钩梢毛竹林总体精度显著高于未钩梢毛竹林,说明这3种方法更适用于钩梢毛竹林。无论是钩梢林分,还是未钩梢林分,基于多尺度分割的监督分类法的总体精度均显著高于其他3种方法(P<0.05)。

      表 4  4种方法下钩梢和未钩梢毛竹林竹冠区域的提取精度

      Table 4.  Extraction accuracy of the four methods with truncation and non-truncation

      类型方法总体精度/%生产者精度/%用户精度/%
      钩梢 TP92.82±2.57 Ab93.85±3.11 Ac95.96±2.32 Ab
      SP93.95±2.74 Ab96.67±1.39 Ab95.00±2.98 Ab
      TM94.05±2.25 Ab96.15±2.04 Ab95.49±2.90 Ab
      SM98.9±0.59 Aa99.14±0.45 Aa99.27±0.61 Aa
      未钩梢TP89.80±3.12 Bb92.33±3.77 Ac96.81±1.15 Ab
      SP90.97±4.52 Bb93.07±4.57 Bc96.92±0.98 Bb
      TM92.30±2.77 Bb96.01±2.70 Ab95.73±1.81 Ac
      SM98.78±0.37 Aa99.16±0.29 Aa99.55±0.22 Aa
        说明:同列不同小写字母表示相同林分类型在不同方法之     间差异显著(P<0.05);同列不同大写字母表示相同     方法在不同林分类型之间差异显著(P<0.05)

      表5可见:基于多尺度分割的监督分类法所得到的郁闭度误差最小,在钩梢林分中仅为0.003,在未钩梢林分中仅为0.004,显著低于其他3种方法(P<0.05)。在基于多尺度分割的监督分类法和基于多尺度分割的阈值分类法中,是否钩梢对郁闭度误差没有显著影响;在基于像元的监督分类法和基于像元的阈值分类法中,钩梢毛竹林的郁闭度误差显著低于未钩梢毛竹林(P<0.05)。

      表 5  4种方法下钩梢和未钩梢毛竹林的郁闭度误差

      Table 5.  Canopy density error of the four methods with truncation and non-truncation

      类型方法郁闭度误差类型方法郁闭度误差
      钩梢TP0.029±0.021 Ab未钩梢TP0.052±0.029 Bc
      SP0.023±0.015 AbSP0.042±0.039 Bbc
      TM0.022±0.016 AbTM0.026±0.023 Ab
      SM0.003±0.003 AaSM0.004±0.003 Aa
        说明:同列不同小写字母表示相同林分类型在不同方法之     间差异显著(P<0.05);同列不同大写字母表示相同     方法在不同林分类型之间差异显著(P<0.05)
    • 表6可见:4种方法对不同郁闭度毛竹林的总体精度均没有显著影响,说明这4种方法在不同郁闭度的毛竹林中均适用。

      表 6  不同方法下郁闭度对毛竹林竹冠提取精度的影响

      Table 6.  Effect of canopy density on the extraction accuracy under different methods

      郁闭度方法总体精度/%生产者精度/%用户精度/%
      0~0.7TP93.70±2.44 Ab95.04±2.50 Ab95.26±2.69 Ab
      SP94.98±2.11 Ab97.02±1.37 Ab95.33±2.90 Ab
      TM93.89±2.66 Ab96.15±2.52 Ab94.70±3.32 Ab
      SM98.82±0.69 Aa99.11±0.53 Aa99.09±0.68 Aa
      0.7~0.8TP92.21±2.65 Ab92.43±3.83 Ac97.03±1.68 Ab
      SP93.62±4.31 Ab96.97±1.43 Ab95.22±4.78 Ab
      TM92.71±1.40 Ab96.11±1.43 Ab95.19±1.90 Ab
      SM98.88±0.48 Aa99.08±0.32 Aa99.42±0.48 Aa
      0.8~1.0TP90.68±1.46 Ac92.46±1.39 Ac96.14±0.74 Ab
      SP93.62±4.31 Ab96.97±1.43 Ab95.22±4.78 Ab
      TM92.71±1.40 Ab96.11±1.43 Ab95.19±1.90 Ab
      SM99.28±0.33 Aa99.48±0.22 Aa99.66±0.33 Aa
        说明:同列不同小写字母表示相同郁闭度在不同方法之     间差异显著(P<0.05);同列不同大写字母表示相同     方法在不同郁闭度之间差异显著(P<0.05)
    • 本研究4种方法提取的毛竹林竹冠区域精度均在90%以上,而汪霖等[25]通过提取单个树冠面积,得到提取树冠区域的总体精度为93.09%,高于本研究基于像元的阈值分类法和基于像元的监督分类法,但低于基于多尺度分割的阈值分类法和基于多尺度分割的监督分类法,证明在分类前执行分割能有效提高提取精度。4种方法在竹冠区域提取精度上,基于像元的提取精度小于基于多尺度的提取精度。可能是相比于乔木林,毛竹林由于其扩鞭生长的特殊性,竹冠部分难以单个呈现,具有很强的整体性,使用传统基于像元的提取方法难以达到对整体性的要求。基于多尺度分割的监督分类法表现最好的原因是在保证对象内部同质性最大的基础上进行的分类,且结合了光谱、纹理等信息进行分类,分类依据更全面;而相较于基于多尺度分割的监督分类法,基于多尺度分割的阈值分类法由于分类规则只基于光谱信息,较为单一,故精度较低。

      在基于像元的阈值分类法、基于像元的监督分类法和基于多尺度分割的阈值分类法中,是否钩梢对竹冠区域提取的影响存在较大影响。其一是由于未钩梢毛竹林郁闭度过高,林隙较小且颜色与竹冠接近,导致光学影像的饱和度增高,对特征量的敏感度随之下降,造成误差[26-27];其二是由于未钩梢毛竹林一般处于无人经营状态,存在毛竹倒伏现象和新老竹之间的光谱差异,造成误差。但是,基于多尺度分割的监督分类法则不受毛竹林是否钩梢的影响,其原因是多尺度分割得到内部同质性最大、外部同质性最小的斑块,很好保留了分类必需的有效信息,且避免了高分辨率影像中过于丰富的光谱与纹理信息所带来的干扰,减少错分与漏分的情况,基于此进行的监督分类能在保证竹冠整体性的前提下,通过训练样本分别提取钩梢与未钩梢毛竹林的特征参数,从而提取毛竹林竹冠区域。

      在4种方法中郁闭度对竹冠区域的提取均不存在显著影响,说明4种方法对不同郁闭度的毛竹林竹冠提取都有较好的适用性。原因是不同郁闭度的毛竹林遥感影像的光谱与纹理特征差别不大,这4种方法都足以从影像中提取稳定的特征量对竹冠区域进行提取。

      就郁闭度估测结果而言,4种方法提取的郁闭度误差都小于0.04,其中基于多尺度分割的监督分类法的误差最低,郁闭度误差仅为0.004,说明基于无人机的可见光影像可以用于毛竹林的郁闭度提取,具有很高的应用价值。苏迪等[9]基于冠层高度模型数据进行主成分确定自变量建立郁闭度模型,通过检验得到模型精度为83.18%,低于本研究的估测精度,说明基于影像提取的郁闭度优于建模所得的郁闭度。严羽[28]使用标记控制分水岭算法对树冠区域与非树冠区域进行分割,基于分割得到的树冠区域面积与实测面积对比,得到郁闭度估测误差为2.33%,高于本研究基于像元的阈值分类法、基于像元的监督分类法和基于多尺度分割的阈值分类法,但低于基于多尺度分割的监督分类法。

    • 在提取毛竹林竹冠区域和郁闭度的中,本研究基于像元的阈值分类、基于像元的监督分类、基于多尺度分割的阈值分类、基于多尺度分割的监督分类等4种方法都达到了较高精度,其中基于多尺度分割的监督分类法的提取结果精度最高,竹冠区域总体精度为98.86%,郁闭度误差为0.004,显著优于其他3种方法,而且是否钩梢对于基于多尺度分割的监督分类法提取竹冠区域没有影响。在4种方法中,郁闭度对竹冠区域的提取均不存在显著影响。总体上,低廉轻便的无人机搭载可见光相机节省了大量的调查时间与精力,提高了调查效率与精度,可以用于大面积毛竹林竹冠区域和郁闭度的提取。

参考文献 (28)

目录

/

返回文章
返回