留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

昆明市林火驱动因子及火险区划研究

朱政 赵璠 王秋华 高仲亮 邓小凡 黄鹏桂

刘子昕, 王琦, 闫承琳, 等. 木塑复合材料3DP设备微滴喷射过程仿真及关键参数研究[J]. 浙江农林大学学报, 2024, 41(3): 651-658. DOI: 10.11833/j.issn.2095-0756.20230511
引用本文: 朱政, 赵璠, 王秋华, 等. 昆明市林火驱动因子及火险区划研究[J]. 浙江农林大学学报, 2022, 39(2): 380-387. DOI: 10.11833/j.issn.2095-0756.20210339
LIU Zixin, WANG Qi, YAN Chenglin, et al. Simulation of micro-droplet injection process and key parameters based on 3DP equipment of wood-plastic composites[J]. Journal of Zhejiang A&F University, 2024, 41(3): 651-658. DOI: 10.11833/j.issn.2095-0756.20230511
Citation: ZHU Zheng, ZHAO Fan, WANG Qiuhua, et al. Driving factors of forest fire and fire risk zoning in Kunming City[J]. Journal of Zhejiang A&F University, 2022, 39(2): 380-387. DOI: 10.11833/j.issn.2095-0756.20210339

昆明市林火驱动因子及火险区划研究

DOI: 10.11833/j.issn.2095-0756.20210339
基金项目: 国家自然科学基金资助项目(32160374);云南省应用基础研究计划项目(202101AT070045);云南省农业联合专项(2018FG001-097)
详细信息
    作者简介: 朱政(ORCID: 0000-0002-9204-9623),从事林业信息工程研究。E-mail: 774188964@qq.com。通信作者:;赵璠(ORCID:0000-0002-6432-0412),副教授,从事林业信息工程研究。E-mail: fzhao@ swfu.edu.cn
  • 中图分类号: S762.2

Driving factors of forest fire and fire risk zoning in Kunming City

  • 摘要:   目的  对昆明市2000—2015年的火点数据进行分析,确定主要林火驱动因子,建立昆明市林火预报模型并进行火险区划,为昆明市林火预防提供参考。  方法  基于林火数据,选取气象、地形、植被、人为等17个林火驱动因子构建Logistic回归林火概率模型,并划分5个中间模型选取全样本的显著变量因子,用受试者工作特征曲线(ROC)进行模型检验与评价,基于全样本的模型结果分析昆明市主要林火驱动因子,并计算得到林火发生概率的最佳阈值,根据Logistic模型结果划分五级火险区。  结果  海拔、距居民点距离、距铁路距离、归一化植被指数(NDVI)值、月均地表温度、月均气压、月均相对湿度、月均风速、人均国内生产总值(GDP)等9个因子与昆明市林火发生概率存在显著关系;Logistic模型的预测准确率高达81.7%;ROC曲线下面积(AUC)的值为0.905;划分的最佳阈值为0.342;火险区划的五级火险区面积比率分别为48.82%、35.17%、11.26%、2.55%、2.20%。  结论  昆明市林火主要驱动因子是气象因子;昆明市高火险区集中分布在五华区、盘龙区、官渡区、呈贡区、西山区、安宁市等西南部地区。图4表3参22
  • 木塑复合材料增材制造是一种新兴的木质材料成型技术,具有成型速度快、材料利用率高、绿色环保等特点。目前木塑复合材料增材制造方式主要包括熔融沉积(fused deposition modelling, FDM)技术[1]、选择性激光烧结(selective laser sintering, SLS)技术[2]和三维打印与胶黏(three dimensional printing and gluing, 3DP)技术[3]。木塑复合材料3DP主要是针对木质纤维物理力学特性,利用微滴喷射与紫外光固化技术,实现木塑粉末材料常温下的高精度成型[4]。成型过程结合了紫外线固化黏结剂(UV胶)常温成型特性和微滴喷射技术高精度、高通量和高驱动频率等特点,解决了传统3D打印中木质纤维不耐高温的问题,为木质材料的3D打印提供新方案。

    在3DP工艺中,液滴质量和液滴速度等液滴参数是打印过程的重要变量[58],对3DP成型质量具有重要影响。木塑复合材料3DP中液滴参数受到喷射阀结构和液滴成形过程的影响,存在喷胶量偏大、高速打印液滴冲击导致粉层飞溅等问题,不能完全适应木塑复合材料3DP的成型需求。为实现对阀体结构参数和工艺参数的优化,提高打印过程的精度和稳定性。预试验测定了UV胶黏度、撞针工作速度等关键参数,基于喷射阀结构、撞针位移特性构和UV胶参数,建立了微滴喷射过程的流体体积函数(volume of fluid, VOF)仿真模型,并验证了模型的准确性。基于有限元模拟仿真和试验设计(design of experiment, DOE)方法[9],通过单因素试验阐释喷射参数对液滴参数的影响过程,得到了合理的仿真参数范围,正交试验得到了最优微滴喷射因素组合,为木塑复合材料3DP微滴喷射过程的研究提供理论模型和数据支持。

    采用的木塑复合材料3DP设备为自主设计研发,3DP设备系统主要由铺粉系统、微滴喷射系统、控制系统等部分组成。喷射阀作为喷射系统的重要部件,其工作原理如图1所示。撞针在工作中处于常开状态,用于控制阀体的开闭,其工作过程可分为开阀、下降、关阀和上升等4个阶段,在微滴喷射过程中,下降阶段撞针的动能和关阀阶段的压差是液滴质量产生的主要因素[10]。本研究重点对撞针下降阶段和关阀阶段进行仿真分析。

    图 1  撞针工作原理示意图
    Figure 1  Schematic diagram of the working principle of the striker

    UV胶(A332,奥斯邦);科研级旋转流变仪(Kinexus Ultra+,耐驰);激光位移传感器(LK-G5001,基恩士);高速相机(FASTCAM NovaS16,活图隆)。

    采用旋转流变仪对UV胶进行恒定温度的流变特性测试。UV胶的流变特性曲线如图2所示。UV胶黏度受剪切速率影响明显。打印过程中喷嘴处UV胶的剪切速率高于100 s−1,需要考虑黏度变化对微滴喷射过程的影响[11]。采用激光位移传感器对针阀内撞针位移进行测定,测得撞针稳定振幅为0.185 mm,最大振幅为0.230 mm,撞针位移和时间呈线性关系,因为震荡时间较短,仿真过程中通常将撞针下降速度视为匀速[12],其速度为0.1~0.9 m·s−1

    图 2  UV胶流变特性曲线图
    Figure 2  Rheological characteristic curve of UV adhesive
    1.3.1   微滴喷射关键参数

    根据预试验结果和实际工况,喷射过程中工艺参数如下:UV胶的密度为1 050 kg·m−3,UV胶黏度为0.094γ−0.945 Pa·s (γ指剪切速率),撞针的下降速度为0.1~0.9 m·s−1,供胶压力为0.1~0.5 MPa。流体在流道内中流动状态可以分为层流和紊流,通常用雷诺数(Re)来表征流体流动情况[13]。取喷嘴处液体的最大流速为0.9 m·s−1,计算喷嘴处的Re远小于2 100,判定UV胶喷射过程流动状态为层流。根据已知公式推知,在微滴喷射过程中,供胶压力、撞针速度、UV胶黏度、喷嘴直径等喷射参数对微滴喷射过程有重要影响[14]

    1.3.2   仿真模型建立

    建立包含阀体结构参数和工艺参数的简化喷射阀二维模型如图3所示。其中撞针球头半径(R)为1.00 mm,撞针直径(D)为0.1 mm,喷嘴长度(l)为1.4 mm,腔体高度(h)为5 mm,喷嘴直径(d)0.10~0.30 mm,撞针行程(s)取最大振幅为0.23 mm,阀座锥角(θ)为90°~130°,阀座间隙($ {{\delta}} $)为0.25~0.45 mm,空气域的面积为3 mm×10 mm。将撞针球面壁面设置为动网格,采用UDF中宏函数Define CG_motion控制撞针沿y轴方向匀速下降。为验证阀体结构参数和工艺参数对微滴喷射过程的影响,分别在喷嘴入口和出口处设置压力、流量和速度监测点,设置每一仿真步数为1 μs,输出一次点位的仿真数据。并二维(Q2D)与三维(Q3D)质量流率的计算公式:Q3D =1/2πR Q2D ,以积分换算的方式获得三维液滴的仿真质量参数。

    图 3  喷射阀二维模型示意图
    Figure 3  Schematic diagram of two-dimensional model of needle-type jet valve

    模拟属于瞬态模拟,需要进行网格无关性试验,研究网格数量与仿真结果的相关性[15]。取计算时间6 ms处主液滴最大速度验证。当网格密度为0.04、0.08、0.16 mm时液滴速度分别为1.130、1.120和1.122 m·s−1,速度变化范围在2%以内,达到了仿真的要求。为了兼顾仿真效率和准确度,取面网格密度为0.08 mm组进行后续仿真分析。

    采用木塑复合材料3DP设备作为液滴发生装置,以A332UV胶作为分散剂,由空压机提供压力,经输气管与胶筒连通,利用高速相机进行图像采集,设置采集频率为5 kHz。高速相机获取液滴的速度范围为0.616~1.080 m·s−1,仿真过程中液滴的速度变化范围为0.730 ~1.120 m·s−1。此外运动初期仿真液滴速度高于液滴实际速度。这主要由撞针运动过程的震荡被仿真简化为匀速运动引起。仿真过程误差小于20%,达到仿真的要求。

    以撞针速度、供胶压力、喷嘴直径、阀座锥角和腔体间隙等喷射参数为自变量,选取出口速度、出口压力和质量流率为过程参数,以液滴质量和主液滴速度等液滴参数为评价指标,研究自变量对微滴喷射成形过程的影响。

    以单因素试验(表1)结果为基础,选取撞针速度、供胶压力、喷嘴直径3组参数为试验因素设计3因子3水平试验绘制L9(43)正交试验表(表2)。A、B、C分别指代喷嘴直径、撞针速度、供胶压力共3个变量,下标1、2、3分别指代低、中、高共3个参数水平。

    表 1  单因素试验各水平取值
    Table 1  Values for each level of single factor experiment
    水平撞针速度/
    (m·s−1)
    驱动气压/
    MPa
    喷嘴直径/
    mm
    阀座锥角/
    (º)
    阀体间隙/
    mm
    10.10.10.10 900.25
    20.30.20.151000.30
    30.50.30.201100.35
    40.70.40.251200.40
    50.90.50.301300.45
    中间组0.50.20.201200.35
    下载: 导出CSV 
    | 显示表格
    表 2  正交试验因素表
    Table 2  Orthogonal experiment table
    组合
    编号
    喷嘴直径
    (A)/mm
    撞针速度
    (B)/(m·s−1)
    供胶压力
    (C)/MPa
    液滴质量/
    μg
    液滴速度/
    (m·s−1)
    A1B1C10.100.30.11.162 20.90
    A1B2C20.100.60.21.162 12.20
    A1B3C30.100.90.31.166 83.60
    A2B1C20.150.30.29.450 73.62
    A2B2C30.150.60.37.299 53.38
    A2B3C10.150.90.12.945 22.07
    A3B1C30.200.30.321.563 45.84
    A3B2C10.200.60.110.426 91.68
    A3B3C20.200.90.212.048 13.95
    下载: 导出CSV 
    | 显示表格

    根据UDF函数设定,当撞针速度为0.1、0.3、0.5、0.7、0.9 m·s−1时撞针达到最大行程时间(即撞针与阀座撞击时间点)分别为2.296、0.765、0.458、0.327、0.254 ms。根据仿真试验,因阀座间隙液滴参数的影响较小,故未列出其对液滴参数的影响曲线。

    2.1.1   喷嘴直径对微滴喷射的影响

    图4可知:液滴质量的变化率和终值均与喷嘴直径呈正相关。在喷嘴直径小于0.20 mm时,UV胶以液滴形式生成,喷嘴直径与液滴速度呈负相关,当喷嘴直径大于0.20 mm时,UV胶以液柱的形式喷射,出口速度和出口压力的峰值提前。随着喷嘴半径的升高,主液滴断裂时间延后,破碎液滴产生更高的相对初速度,因导致液滴速度呈先升高后降低的变化趋势。

    图 4  不同喷嘴直径下液滴质量、液滴速度、出口压力变化线图
    Figure 4  Droplet mass, droplet velocity and outlet pressure variation diagrams under different nozzle diameters
    2.1.2   阀座锥角对微滴喷射的影响

    图5显示:出口速度和出口压力的峰值大小与液滴阀座锥角呈正相关。UV胶速度和压力在撞针与阀座接触时产生剧烈变化。在下降阶段,阀座锥角对微滴喷射过程影响较小,随着撞针接近阀座,液滴质量急剧变化,且数值大小呈与阀座锥角呈负相关。较小的阀座锥角具有更大的纵向速度分量,可以在撞击过程产生更大的液滴驱动力,从而获得更高的液滴质量和速度。

    图 5  不同阀座锥角下液滴质量、液滴速度、出口压力变化线图
    Figure 5  Droplet mass, droplet velocity and outlet pressure variation diagrams under different valve seat cone angles
    2.1.3   撞针速度对微滴喷射的影响

    图6显示:速度和压力的峰值与撞针速度呈正相关。液滴质量与撞针速度呈负相关,主液滴速度与撞针速度呈正相关。撞针速度与UV胶流体剪切速率呈正相关,根据UV胶流变特性,UV胶流体黏度大幅减小,导致出口速度极值和质量流率随撞针速度升高。随着剪切速率升高,黏度变化范围减小,液滴出口速度和质量流率随撞针速度增高变化不再显著,且由于撞针运动时间的差异(T0.1=9T0.9),在撞针速度较低时,时间成为影响液滴质量的主要因素,在撞针速度为0.1 m·s−1时,得到较大的液滴质量。

    图 6  不同撞针速度下液滴质量、液滴速度、出口压力变化线图
    Figure 6  Droplet mass, droplet velocity and outlet pressure change line chart under different impact needle velocities
    2.1.4   供胶压力对微滴喷射的影响

    图7A显示:供胶压力与液滴质量呈正相关,主液滴速度则随着供胶压力升高呈现先降低后升高的趋势。由图7BC可得,供胶压力的主要作用阶段为下降阶段。随着供胶压力增高,下降阶段自喷嘴流出的液滴质量增加。关阀阶段,撞针惯性力成为液滴断裂和喷射的主要驱动力。当供胶压力较高时,在喷嘴处形成的液滴体积增加,相较于低供胶气压组,液滴断裂时间延后,导致主液滴速度产生非规律性变化。

    图 7  不同供胶压力下液滴质量、液滴速度、出口压力变化线图
    Figure 7  Droplet mass, droplet velocity and outlet pressure change line chart under different glue supply pressure

    图8可得:阀体锥角较小时,液滴下落过程会产生破碎,不适合UV胶材料的微滴喷射。较小的撞针速度无法驱动UV胶液柱断裂形成稳定液滴,随着撞针速度增加,UV胶黏度减小,流动性增强,因此获得较高的液滴速度。当供胶压力和喷嘴直径过高时,过量液滴在关阀阶段前自喷嘴出口流出,使液滴获得较大的成形体积。根据单因素结论和仿真相图分析,能够实现单液滴喷射的参数范围为:撞针速度0.3~0.9 m·s−1,喷嘴直径0.10~0.20 mm,供胶压力0.1~0.3 MPa,阀座锥角120°~130°。因阀座锥角加工困难,且在范围内液滴质量和主液滴速度变化极小,以最小液滴质量为原则,确定阀座锥角为130°。选取撞针速度、喷嘴直径和供胶压力作为自变量进行正交试验。

    图 8  不同喷射参数的液滴相图
    Figure 8  Droplet phase diagram of different injection parameters
    2.2.1   极差结果分析

    表3所示:以液滴质量为评测标准,3因素的排序为A>B>C;以主液滴速度为评价标准,3因素的排序为C>A>B。液滴质量的最优标准为A1B3C1,液滴速度的最优标准为A1B2C1。考虑在微滴喷射过程中,液滴质量为主要结果参数,因此按照一定的系数比对极差结果进行折算,得到液滴的最优参数组为A1B3C1。即撞针直径为0.10 mm,撞针速度为0.9 m·s−1,供胶压力为0.1 MPa。

    表 3  正交试验极差表
    Table 3  Orthogonal experiment range table
    项目液滴质量项目主液滴速度
    ABCABC
    K11.16410.7254.845K12.2333.4201.550
    K26.5656.2967.554K23.0232.4203.257
    K314.6795.38710.010K33.7903.2074.240
    R13.5165.3395.165R1.5571.0002.690
    下载: 导出CSV 
    | 显示表格
    2.2.2   方差结果分析

    表4所示:建立了喷射参数关于液滴质量和液滴速度的一次线性回归模型,液滴速度=3.016−0.782A1+0.008A2+0.774A3+0.404B1−0.596B2+0.190B3−1.466C1+0.241C2+1.224C3。液滴质量=7.469−6.306A1+0.904A2+7.210A3+3.256B1−1.173B2−2.083B3−2.625C1+0.084C2+2.540C3。对于液滴质量,各喷头参数的F由大到小分别为A、B、C,可以验证极差的结论,且喷嘴直径是影响液滴质量的显著因素(P<0.05)。撞针速度和供胶压力对微滴喷射参数影响较小。对于液滴速度,各喷头参数的F由大到小分别为C、A、B,供胶压力是影响液滴速度的显著因素(P<0.05)。因此在能完成喷射的前提下,减少喷嘴直径和供胶压力,可以得到更小的液滴质量和速度。

    表 4  正交试验方差表
    Table 4  Orthogonal experiment variance table
    方差来源液滴质量液滴速度
    dfSSMSFPdfSSMSFP
    A 2 277.694 138.847 51.72 0.019 2 3.6351 1.8175 6.75 0.129
    B 2 48.948 24.474 9.12 0.099 2 1.6644 0.8322 3.09 0.245
    C 2 40.050 20.025 7.46 0.118 2 11.1158 5.5579 20.63 0.046
    误差 2 5.369 2.685 2 0.5388 0.2694
    合计 8 372.061 8 16.954 0
    R2=98.56% $ {R}_{\mathrm{a}\mathrm{d}\mathrm{j}}^{2}=98.56\% $ R2=96.82% $ {R}_{\mathrm{a}\mathrm{d}\mathrm{j}}^{2}=87.29\% $
      说明:df. 自由度;SS. 离差平方和;MS. 均方值。
    下载: 导出CSV 
    | 显示表格

    根据以上分析,获得最优的喷射参数:喷嘴直径为0.10 mm,撞针速度为0.9 m·s−1,供胶压力为0.1 MPa、阀座锥角为130°。经过仿真结果分析,得到液滴质量为0.437 μg,液滴速度为0.96 m·s−1。对比最小数据,液滴速度增加了6%,但是液滴质量缩小62%。综合速度和质量指标,可得到A1B3C1为最优参数组合。

    2.2.3   正交试验结果分析

    正交试验得到了液滴速度和液滴质量的一次回归模型,验证了喷嘴直径是影响液滴质量的显著因素,供胶压力是影响液滴速度的显著因素,根据极差和方差分析,得到了最优的喷射参数:喷嘴直径为0.10 mm,撞针速度为0.9 m·s−1,供胶压力为0.1 MPa,阀座锥角为130°。

    木塑复合材料 3DP 设备利用撞针式阀体驱动UV胶喷射到塑粉床,将UV胶这种黏结剂喷射与紫外光固化成型结合后,可以大大提高设备打印成型效率。木塑复合材料3DP是一种节能环保的成型技术,在木塑复合材料增材制造方面有很大的应用前景 [4, 16]。本研究针对目前设备存在的喷射稳定度低、喷胶量不易控制等问题,研究了撞针式阀体结构和工艺参数对液滴形成过程及液滴质量的影响,阐释了喷嘴直径、阀体锥角、供胶压力和撞针速度等参数对液滴成形参数的作用机制[17]。仿真试验中选择喷嘴直径0.10 mm、撞针速度0.9 m·s−1、供胶压力0.1 MPa的打印组合,得到0.437 μg液滴质量。相较于喷嘴直径为0.15与0.20 mm试验组,液滴质量得到明显改善。在实际试验中,换用0.10 mm喷嘴直径得到的液滴质量明显降低,且需要保持一定的撞针速度和供胶压力以实现喷射。在打印过程中喷嘴直径减小将增大喷射过程的黏滞力,形成较小的喷胶量,且需要较大的惯性力和供胶压力实现喷射过程,这与仿真结论一致。仿真试验表明对液滴质量影响因素的排序为喷嘴直径>撞针速度>供胶压力。实际过程中对于液滴质量的影响因素分别为喷嘴直径>供胶压力>撞针速度。可能因为当供胶压力过大时,开阀阶段残余的液滴质量、气道的内部结构均对仿真结果产生了影响,这是仿真模型中未考虑的部分。未来优化仿真过程的结构参数和初始条件,建立包含微滴喷射连续过程的流体体积函数有限元模型,以期实现在更加复杂的工况下分析应用,获得更可靠的研究结论。

    本研究得到喷嘴直径是影响液滴质量的显著因素,供胶压力是影响液滴速度的显著因素。获得最优喷射参数组合:喷嘴直径为0.10 mm,撞针速度为0.9 m·s−1,供胶压力为0.1 MPa,阀座锥角为130°。本研究设计的木塑复合材料3DP微滴喷射流体体积函数模型可以实现对UV胶液滴参数的预测,实现对撞针运动过程中阀体参数对速度、体积和压力影响过程的分析,优化了木塑复合材料3DP的打印参数,为木塑复合材料3DP成型参数的研究提供数据基础。

  • 图  1  2000—2015年昆明市森林卫星火点分布示意图

    Figure  1  Distribution of forest satellite fire data in Kunming from 2000 to 2015

    图  2  昆明市林火预测模型ROC曲线拟合

    Figure  2  ROC curve of forest fire prediction model in Kunming City

    图  3  昆明市林火发生概率及火险区划示意图

    Figure  3  Probability and risk division of forest fire occurrence in Kunming City

    图  4  林火驱动因子与火点频次关系与火点频次的关系

    Figure  4  Relationships of forest fire driving factors and fire frequency

    表  1  多重共线性诊断结果

    Table  1.   Results of multicollinearity diagnosis

    序号变量名剔除变量
    前VIF值
    剔除变量
    后VIF值
    1 海拔 1.179 1.177
    2 坡度 1.113 1.109
    3 月均地表温度 23.899 1.933
    4 月均气压 1.930 1.823
    5 月均相对湿度 4.562 4.351
    6 月均风速 1.950 1.946
    7 月均气温 25.876
    8 月均日照时长 3.573 3.514
    9 归一化植被指数 2.213 2.173
    10 距河流距离 1.090 1.089
    11 距居民区距离 1.171 1.170
    12 距公路距离 1.216 1.210
    13 距铁路距离 1.243 1.236
    14 人均GDP 1.810 1.799
    15 人口密度 1.168 1.168
      说明:−表示月均气温被剔除
    下载: 导出CSV

    表  2  全样本数据逻辑斯特回归模型拟合结果

    Table  2.   Results of logistic regression model for all data

    变量系数标准误沃尔德显著性
    海拔(x1) −2.138 1.096 3.805 0.000
    距居民点距离(x2) 1.768 0.658 7.224 0.007
    距铁路距离(x3) −1.373 0.614 4.997 0.025
    归一化植被指数(x4) −3.159 0.769 16.875 0.000
    月均地表温度(x5) 2.110 0.641 3.298 0.000
    月均气压(x6) −1.654 0.552 6.665 0.010
    月均相对湿度(x7) −2.273 0.612 18.478 0.000
    月均风速(x8) 1.169 1.153 3.649 0.000
    人均GDP(x9) 6.638 1.162 33.169 0.000
    常量 2.061 0.796 6.699 0.010
    下载: 导出CSV

    表  3  模型评价

    Table  3.   Model evaluation

    样本AUC阈值训练样本预测
    准确率/%
    测试样本预测
    准确率/%
    样本组1 0.906 0.334 83.3 82.1
    样本组2 0.898 0.385 82.0 84.5
    样本组3 0.906 0.366 81.1 82.3
    样本组4 0.898 0.329 82.5 85.7
    样本组5 0.913 0.379 82.0 84.3
    全样本 0.905 0.342 81.7
    下载: 导出CSV
  • [1] YING Lingxiao, HAN Jie, DU Yongsheng, et al. Forest fire characteristics in China: spatial patterns and determinants with thresholds [J]. For Ecol Manage, 2018, 424: 345 − 354.
    [2] SU Zhangwen, TIGABU M, CAO Qiangqian, et al. Comparative analysis of spatial variation in forest fire drivers between boreal and subtropical ecosystems in China[J/OL]. For Ecol Manage, 2019, 454: 117669[2021-03-14]. doi: 10.1016/j.foreco.2019.117669.
    [3] 舒立福, 张小罗, 戴兴安, 等. 林火研究综述(Ⅱ)林火预测预报[J]. 世界林业研究, 2003(4): 34 − 37.

    SHU Lifu, ZHANG Xiaoluo, DAI Xing’an, et al. Forest fire research (Ⅱ) fire forecast [J]. World For Res, 2003(4): 34 − 37.
    [4] 杨夏捷, 苏漳文, 田超, 等. 基于ArcGIS的福建南部地区林火管理资源分布优化[J]. 生态学杂志, 2017, 36(4): 1142 − 1149.

    YANG Xiajie, SU Zhangwen, TIAN Chao, et al. Optimization of resource distribution of forest fire management in southern Fujian based on ArcGIS [J]. Chin J Ecol, 2017, 36(4): 1142 − 1149.
    [5] CHAS-AMIL M L, PRESTEMON J P, MCCLEAN C J, et al. Human-ignited wildfire patterns and responses to policy shifts [J]. Appl Geogr, 2015, 56: 164 − 176.
    [6] 谭三清, 林强, 张盛, 等. 基于可变模糊集方法的森林火险区划研究[J]. 中南林业科技大学学报, 2015, 35(9): 35 − 38.

    TAN Sanqing, LIN Qiang, ZHANG Sheng, et al. Study on forest fire danger division based on variable fuzzy sets method [J]. J Cent South Univ For Technol, 2015, 35(9): 35 − 38.
    [7] 苏立娟, 何友均, 陈绍志. 1950—2010年中国森林火灾时空特征及风险分析[J]. 林业科学, 2015, 51(1): 88 − 96.

    SU Lijuan, HE Youjun, CHEN Shaozhi. Temporal and spatial characteristics and risk analysis of forest fires in China from 1950 to 2010 [J]. Sci Silv Sin, 2015, 51(1): 88 − 96.
    [8] MODUGNO S, BALZTER H, COLE B, et al. Mapping regional patterns of large forest fires in wildland-urban interface areas in Europe [J]. J Environ Manage, 2016, 172: 112 − 126.
    [9] STRYDOM S, SAVAGE M J. A spatio-temporal analysis of fires in the Southern African Development Community region[J]. Nat Hazards, 2018, 92(3): 1617−1632.
    [10] 高超, 林红蕾, 胡海清, 等. 我国林火发生预测模型研究进展[J]. 应用生态学报, 2020, 31(9): 3227 − 3240.

    GAO Chao, LIN Honglei, HU Haiqing, et al. A review of models of forest fire occurrence prediction in China [J]. Chin J Appl Ecol, 2020, 31(9): 3227 − 3240.
    [11] 曾爱聪, 蔡奇均, 苏漳文, 等. 基于MODIS卫星火点的浙江省林火季节变化及驱动因子[J]. 应用生态学报, 2020, 31(2): 399 − 406.

    ZENG Aicong, CAI Qijun, SU Zhangwen, et al. Seasonal variation and driving factors of forest fire in Zhejiang Province, based on MODIS satellite hot spots [J]. Chin J Appl Ecol, 2020, 31(2): 399 − 406.
    [12] ALOSON-CANAS I, CHUVIECO E. Global burned area mapping from ENVISAT-MERIS and MODIS active fire data [J]. Remote Sensing Environ, 2015, 163: 140 − 152.
    [13] 蔡奇均, 曾爱聪, 苏漳文, 等. 基于Logistic回归模型的浙江省林火发生驱动因子分析[J]. 西北农林科技大学学报(自然科学版), 2020, 48(2): 102 − 109.

    CAI Qijun, ZENG Aicong, SU Zhangwen, et al. Driving factors of forest fire in Zhejiang Province based on Logistic regression model [J]. J Northwest A&F Univ Nat Sci Ed, 2020, 48(2): 102 − 109.
    [14] GUO Futao, WANG Guangyu, SU Zhangwen, et al. What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests [J]. Int J Wildl Fire, 2016, 25(5): 505 − 519.
    [15] PENCINA M J, D’AGOSTINO Sr R B, D’AGOSTINO Jr R B, et al. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond [J]. Stat Med, 2008, 27(2): 157 − 172.
    [16] FLUSS R, FARAGGI D, REISER B. Estimation of the Youden Index and its associated cutoff point [J]. Biom J Biom Zeitschrift, 2005, 47(4): 458 − 472.
    [17] 国家林业局调查规划设计院. 全国森林火险区划等级: LY/T 1063—2008[S]. 北京: 中国标准出版社, 2008.

    Survey and Design Institute of State Forestry Administration. Rank of the Regionalization on Nationwide Forest Fire Risk: LY/T 1063−2008[S]. Beijing: China Standards Press, 2008.
    [18] 马文苑, 冯仲科, 成竺欣, 等. 山西省林火驱动因子及分布格局研究[J]. 中南林业科技大学学报, 2020, 40(9): 57 − 69.

    MA Wenyuan, FENG Zhongke, CHENG Zhuxin, et al. Study on driving factors and distribution pattern of forest fires in Shanxi province [J]. J Cent South Univ For Technol, 2020, 40(9): 57 − 69.
    [19] GUO Futao, SU Zhangwen, WANG Guangyu, et al. Understanding fire drivers and relative impacts in different Chinese forest ecosystems [J]. Sci Total Environ, 2017, 605: 411 − 425.
    [20] 梁慧玲, 林玉蕊, 杨光, 等. 基于气象因子的随机森林算法在塔河地区林火预测中的应用[J]. 林业科学, 2016, 52(1): 89 − 98.

    LIANG Huiling, LIN Yurui, YANG Guang, et al. Application of random forest algorithm on the forest fire prediction in Tahe area based on meteorological factors [J]. Sci Silv Sin, 2016, 52(1): 89 − 98.
    [21] 王卫国, 潘竟虎, 冯娅娅, 等. 基于MODIS数据和GWLR的甘肃省火灾风险模型与区划[J]. 遥感技术与应用, 2017, 32(3): 514 − 523.

    WANG Weiguo, PAN Jinghu, FENG Yaya, et al. Model and zoning of fire risk in Gansu Province based on GWLR and MODIS imagery [J]. Remote Sensing Technol Appl, 2017, 32(3): 514 − 523.
    [22] 潘登, 郁培义, 吴强. 基于气象因子的随机森林算法在湘中丘陵区林火预测中的应用[J]. 西北林学院学报, 2018, 33(3): 169 − 177.

    PAN Deng, YU Peiyi, WU Qiang. Application of random forest algorithm on the forest fire prediction based on meteorological factors in the hilly area, central Hunan Province [J]. J Northwest For Univ, 2018, 33(3): 169 − 177.
  • [1] 兰梦瑶, 周德志, 关颖慧.  延安市归一化植被指数时空变化及其驱动因素 . 浙江农林大学学报, 2024, 41(6): 1293-1302. doi: 10.11833/j.issn.2095-0756.20230610
    [2] 李兰英, 高敏, 袁迪, 单新钰, 易凯源, 张喆.  昆明市游憩性绿地鸟类多样性对环境因子的响应 . 浙江农林大学学报, 2024, 41(5): 986-995. doi: 10.11833/j.issn.2095-0756.20230604
    [3] 王志超, 许宇星, 竹万宽, 杜阿朋.  雷州半岛尾叶桉人工林夜间耗水特征及驱动因素 . 浙江农林大学学报, 2020, 37(4): 646-653. doi: 10.11833/j.issn.2095-0756.20190531
    [4] 俞飞, 李智勇.  天目山林区景观格局时空变化及驱动因素分析 . 浙江农林大学学报, 2020, 37(3): 439-446. doi: 10.11833/j.issn.2095-0756.20190306
    [5] 赵勋刚, 胡雨村, 王文辉, 胡云卿.  乌海市生态环境评价及驱动因子分析 . 浙江农林大学学报, 2019, 36(5): 990-998. doi: 10.11833/j.issn.2095-0756.2019.05.019
    [6] 石晶晶, 张超, 余树全, 茅史亮, 李修鹏.  浙江省防火期内森林火险天气指标动态 . 浙江农林大学学报, 2014, 31(2): 231-237. doi: 10.11833/j.issn.2095-0756.2014.02.011
    [7] 马瑞升, 杨斌, 张利辉, 刘志平.  微型无人机林火监测系统的设计与实现 . 浙江农林大学学报, 2012, 29(5): 783-789. doi: 10.11833/j.issn.2095-0756.2012.05.023
    [8] 秦飞飞, 唐丽华.  基于数字高程模型的森林火灾远程视频同步跟踪算法 . 浙江农林大学学报, 2012, 29(6): 917-922. doi: 10.11833/j.issn.2095-0756.2012.06.017
    [9] 徐爱俊, 黄小银, 姜广宇, 邵建龙.  南方林区森林火险精准区划方法 . 浙江农林大学学报, 2012, 29(1): 65-71. doi: 10.11833/j.issn.2095-0756.2012.01.012
    [10] 信晓颖, 江洪, 周国模, 余树全, 王永和.  加拿大森林火险气候指数系统(FWI)的原理及应用 . 浙江农林大学学报, 2011, 28(2): 314-318. doi: 10.11833/j.issn.2095-0756.2011.02.023
    [11] 仇金宏, 沈明霞, 丛静华, 李龙国.  基于单目视觉的森林火点实时定位方法 . 浙江农林大学学报, 2010, 27(5): 651-658. doi: 10.11833/j.issn.2095-0756.2010.05.003
    [12] 夏其表, 李光辉, 尹建新.  渗透理论在森林火灾模拟系统中的仿真研究 . 浙江农林大学学报, 2009, 26(2): 233-238.
    [13] 陈培金, 徐爱俊, 邵香君, 刘爱君.  基于GIS的森林火灾灾后评估算法的设计与实现 . 浙江农林大学学报, 2008, 25(1): 72-77.
    [14] 黄初冬, 邵芸, 李静, 柳晶辉, 陈洁琼.  基于回归决策树和ASTER卫星影像的城市森林研究 . 浙江农林大学学报, 2008, 25(2): 240-244.
    [15] 宋丽艳, 周国模, 汤孟平, 余树全, 郑文达, 刘学松.  基于GIS 的林火蔓延模拟的实现 . 浙江农林大学学报, 2007, 24(5): 614-618.
    [16] 唐丽华, 方陆明, 郑文达, 陈培金.  基于多指标类型的区域森林火险等级适应性评价方法 . 浙江农林大学学报, 2007, 24(5): 608-613.
    [17] 谢大洋.  毛竹枯梢病灾区区划及预测模型 . 浙江农林大学学报, 2003, 20(4): 398-402.
    [18] 徐爱俊, 李清泉, 方陆明, 吴达胜.  基于GIS 的森林火灾预报预测模型的研究与探讨 . 浙江农林大学学报, 2003, 20(3): 285-288.
    [19] 鲁小珍, 叶镜中, 孙多.  带输入项的线性自回归模型在树木物候预测中的应用 . 浙江农林大学学报, 1998, 15(2): 201-206.
    [20] 葛宏立, 项小强, 何时珍, 顾金荣.  自回归模型的预测方差估计* . 浙江农林大学学报, 1997, 14(4): 382-387.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210339

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/2/380

图(4) / 表(3)
计量
  • 文章访问数:  903
  • HTML全文浏览量:  208
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 修回日期:  2021-10-21
  • 录用日期:  2021-11-16
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-03-25

昆明市林火驱动因子及火险区划研究

doi: 10.11833/j.issn.2095-0756.20210339
    基金项目:  国家自然科学基金资助项目(32160374);云南省应用基础研究计划项目(202101AT070045);云南省农业联合专项(2018FG001-097)
    作者简介:

    朱政(ORCID: 0000-0002-9204-9623),从事林业信息工程研究。E-mail: 774188964@qq.com。通信作者:

    赵璠(ORCID:0000-0002-6432-0412),副教授,从事林业信息工程研究。E-mail: fzhao@ swfu.edu.cn

  • 中图分类号: S762.2

摘要:   目的  对昆明市2000—2015年的火点数据进行分析,确定主要林火驱动因子,建立昆明市林火预报模型并进行火险区划,为昆明市林火预防提供参考。  方法  基于林火数据,选取气象、地形、植被、人为等17个林火驱动因子构建Logistic回归林火概率模型,并划分5个中间模型选取全样本的显著变量因子,用受试者工作特征曲线(ROC)进行模型检验与评价,基于全样本的模型结果分析昆明市主要林火驱动因子,并计算得到林火发生概率的最佳阈值,根据Logistic模型结果划分五级火险区。  结果  海拔、距居民点距离、距铁路距离、归一化植被指数(NDVI)值、月均地表温度、月均气压、月均相对湿度、月均风速、人均国内生产总值(GDP)等9个因子与昆明市林火发生概率存在显著关系;Logistic模型的预测准确率高达81.7%;ROC曲线下面积(AUC)的值为0.905;划分的最佳阈值为0.342;火险区划的五级火险区面积比率分别为48.82%、35.17%、11.26%、2.55%、2.20%。  结论  昆明市林火主要驱动因子是气象因子;昆明市高火险区集中分布在五华区、盘龙区、官渡区、呈贡区、西山区、安宁市等西南部地区。图4表3参22

English Abstract

刘子昕, 王琦, 闫承琳, 等. 木塑复合材料3DP设备微滴喷射过程仿真及关键参数研究[J]. 浙江农林大学学报, 2024, 41(3): 651-658. DOI: 10.11833/j.issn.2095-0756.20230511
引用本文: 朱政, 赵璠, 王秋华, 等. 昆明市林火驱动因子及火险区划研究[J]. 浙江农林大学学报, 2022, 39(2): 380-387. DOI: 10.11833/j.issn.2095-0756.20210339
LIU Zixin, WANG Qi, YAN Chenglin, et al. Simulation of micro-droplet injection process and key parameters based on 3DP equipment of wood-plastic composites[J]. Journal of Zhejiang A&F University, 2024, 41(3): 651-658. DOI: 10.11833/j.issn.2095-0756.20230511
Citation: ZHU Zheng, ZHAO Fan, WANG Qiuhua, et al. Driving factors of forest fire and fire risk zoning in Kunming City[J]. Journal of Zhejiang A&F University, 2022, 39(2): 380-387. DOI: 10.11833/j.issn.2095-0756.20210339
  • 森林火灾是一种失去人为控制肆意燃烧毁坏林地的森林燃烧现象,严重威胁着生物多样性、森林生态系统和人类生命财产安全[1-2]。森林火险区划是有效防止和减小森林火灾危害的手段,结合火环境将森林区域划分为不同的火险等级便于分级管理[3]。国内外许多学者研究表明,林火受多种驱动因子共同影响,因子可以分为气象、地形、植被和人为因素[4-5]。森林火险区划与林火驱动因子之间存在复杂联系,根据前人研究,其划分方法主要包括模糊聚类法、主成分分析法、模糊综合评判法等[6-8]。Logistic模型是林火研究常用的一种回归模型,因其模型的解释性好和预测准确率较高被广泛应用在林火研究之中。本研究应用Logistic回归模型结合气象、地形、植被、人为等因素建立林火预测模型,对昆明市林火驱动因子进行分析并划分等级,以期为昆明市林火预防和管理工作提供参考。

    • 昆明市行政管辖范围包括7个区6个县,代管安宁市。地处云贵高原中南部,24°23′~26°22′N,102°10′~103°40′E,行政面积为2 1473 km2。地势北高南低,地形以高原为主,多数地区海拔为1 500~2 800 m,垂直地域特征明显,物种多样性丰富。昆明属于亚热带高原季风气候,四季如春,日照长、霜期短,市区年平均气温为15.0 ℃,全年干湿季明显,干季在11月至次年4月,属于森林火灾高频期。现有森林面积110.69 万 hm2,森林覆盖率达52.62%,森林蓄积量达6 057 万 m3。主要树种有云南松Pinus yunnanensis、华山松P. armandii、栎类Quercus spp.、杉木Cunninghamia lanceolata、杨树Populus spp.等。卫星火点数据(图1)表明:昆明市2000—2015年共发生森林火灾321次,落在昆明防火期12月到次年5月的火点有280个,占总火点的80%以上。

      图  1  2000—2015年昆明市森林卫星火点分布示意图

      Figure 1.  Distribution of forest satellite fire data in Kunming from 2000 to 2015

    • 林火发生受多种驱动因子共同影响[9-10]。火点数据来自地理空间数据云平台(http://www.gscloud.cn/)提供的MOD14A2卫星火点数据。该数据为8 d合成数据,该产品被国内外学者用于林火的广泛研究[11-12]。用ArcGIS 10.7对下载的MOD14A2影像数据投影和裁剪获得昆明市范围的影像数据,利用重分类功能将firemask灰度属性值按照0~6和7~9划分为未过火和过火像元,将过火像元比对昆明市地物类型图,将所有落在类型为林地的火点提取作为本研究使用的林火数据。

    • 选取气象、地形、植被、人为活动等共17个因子。地形初始变量有海拔、坡度、坡向,数据来源于地理空间云(http://www.gscloud.cn/)的GDEMV2 30 m数字高程模型(DEM)数据。使用ArcGIS 10.7按掩膜提取昆明市DEM,采用“值提取到点”分别提取各火点对应的值。气象初始变量有月均地表温度、月均气压、月均相对湿度、月均风速、月均气温、月均日照时长,数据来源于中国气象数据共享网(http://cdc.cma.gov.cn/),气象数据采用月均值的方式计算,对各火点直接赋值。植被数据有植被类型和季度归一化植被指数(NDVI)。植被类型来源于全国地理信息资源目录系统下30 m全球地表覆盖数据Globeland 30,运用ArcGIS 10.7值提取至点,得到分类变量值。NDVI来源于中国科学院资源与环境科学与数据中心下中国季度1 km植被指数空间分布数据集,数值分为春夏秋冬4个季节,对火点年份和月份按照对应的季度NDVI进行分类和提取。人为活动因素有距河流距离、距居民区距离、距公路距离、距铁路距离、人均国内生产总值(GDP)、人口密度,数据来源于全国地理信息资源目录系统下1∶25万全国基础地理数据库和中国科学研究院资源与环境数据中心下分辨率1 km人口和GDP格网数据。导入基础设施矢量图后,利用ArcGIS 10.7的近邻分析工具得到火点距离各要素的最近距离,人口密度和人均GDP只有2000、2005、2010年的栅格数据,通过比对《云南省统计年鉴》测算各年人口密度和人均GDP增长率,用“值提取至点”功能得到各火点对应数据。各变量因子之间的量纲不同且存在数据级之间的巨大差别,为消除量纲,避免存在数据级引发的结果贡献问题,对数据采取归一化处理。

    • 二项Logistic回归模型可以有效进行二分类数据的判别,被国内外学者广泛运用于林火区划[8,13]。以林火发生概率作为二项Logistic回归模型的因变量,以y=1或0代表林火是否发生。设P为林火发生概率,则林火未发生概率为1−P,由此得公式:

      $$ P = \frac{e{\beta }_{0}+{\beta }_{1}{x}_{1}+{\beta }_{2}{x}_{2}+\dots +{\beta _jx_j}}{1+e{\beta }_{0}+{\beta }_{1}{x}_{1}+{\beta }_{2}{x}_{2}+\dots +{\beta _jx_j}}。 $$

      将上面公式做logit变换,得到公式为:

      $$ \mathrm{ln}\left(\frac{P}{1-P}\right)={\beta }_{0} + {\beta }_{1}{x}_{1}+{\beta }_{2}{x}_{2}+\dots +{\beta }_j{x}_{j} 。 $$

      其中:$ {\;\beta }_{0} $$ {\;\beta }_{1} $$ {\;\beta }_{2} 、\cdots 、 {\beta }_{j} $为各自变量因子的回归系数,$ {x}_{1}、{x}_{2} 、\cdots 、 {x}_{j} $为各自变量因子,$ e $为常量,j为自变量个数,P为林火发生概率,$ \mathrm{l}\mathrm{n}\left(\dfrac{P}{1-P}\right) $P的比数的对数。

      建立二项Logistic林火预测回归模型时,需要一些随机非火点与火点共同构成样本数据。基于前人的研究经验[14],将火点与非火点比例调整为1∶2,对非火点日期进行随机赋值,保证时间和空间上的双随机。将样本数据随机分成60%作为模型样本,40%进行独立检验,重复5次随机划分,避免样本分布对最终模型结果的影响。

    • 多重共线指变量因子之间存在相关关系使模型精度下降,利用多重共线性诊断可以有效剔除相关变量。使用方差膨胀因子(VIF)进行多重共线性检验,通常认为0<VIF<10时不存在多重共线性,当VIF≥10时,变量之间存在显著共线性,据此逐步剔除直至变量间不存在显著共线性。

    • 为减小随机选择自变量对建模结果的影响,提高模型的精确度,采用SPSS中系统默认的“强迫回归方法”进行自变量的筛选,逐步剔除变量使剩余变量VIF值均小于10。在上述5次划分的随机模型中选取至少出现3次的显著变量参与全样本数据的拟合。

    • 受试者工作特征曲线(receiver operator characteristic curve,ROC)常用于评价分类模型精度和计算最佳阈值。该曲线以特异性(正类误判为负类)为横坐标,以敏感性(正类判断为正类)为纵坐标,ROC曲线下面积(area under curve AUC)的值用来评价模型的精度,AUC的值越接近于1则表示该模型的精度越高,通常认为AUC>0.8时该模型拥有较好预测能力[15]。约登指数(Youden index,敏感性+1-特异性)是ROC曲线上最靠近左上角的一点,代表两分类模型预测准确度最佳阈值[16],用该阈值计算可以得到模型的预测准确率。

    • 依据全样本运算得到的Logistic回归方程式计算结果,使用ArcGIS的克里金插值法进行图层运算,获得昆明市的林火发生概率分布图。《全国森林火险区划等级》[17]将全国森林火险等级划分为3级,但该标准只适用于县级或林场的等级区划,对于大区域的宏观预测精度和指导意义远远不够。本研究按照前人的经验和国际惯例[18],依据概率等间距将昆明市划分为五级森林火险:0~0.2为一级火险区,0.2~0.4为二级火险区,0.4~0.6为三级火险区,0.6~0.8为四级火险区,0.8~1.0为五级火险区。

    • 共线性诊断适用于连续变量不适用于分类变量,因此,先对15个连续变量进行多重共线性诊断,再综合5个中间模型加上非连续性变量“植被类型”和“坡向”进行模型显著性检验,确定最终林火驱动因子。多重共线性诊断的结果如表1所示:在剔除月均气温之后,不存在多重共线性。将筛选的连续变量和分类变量采用“沃尔德(Wald)向前”原则对5个样本进行拟合,选择结果中出现3次及以上的显著变量作为全样本模型的自变量因子,全样本的拟合结果如表2所示。

      表 1  多重共线性诊断结果

      Table 1.  Results of multicollinearity diagnosis

      序号变量名剔除变量
      前VIF值
      剔除变量
      后VIF值
      1 海拔 1.179 1.177
      2 坡度 1.113 1.109
      3 月均地表温度 23.899 1.933
      4 月均气压 1.930 1.823
      5 月均相对湿度 4.562 4.351
      6 月均风速 1.950 1.946
      7 月均气温 25.876
      8 月均日照时长 3.573 3.514
      9 归一化植被指数 2.213 2.173
      10 距河流距离 1.090 1.089
      11 距居民区距离 1.171 1.170
      12 距公路距离 1.216 1.210
      13 距铁路距离 1.243 1.236
      14 人均GDP 1.810 1.799
      15 人口密度 1.168 1.168
        说明:−表示月均气温被剔除

      表 2  全样本数据逻辑斯特回归模型拟合结果

      Table 2.  Results of logistic regression model for all data

      变量系数标准误沃尔德显著性
      海拔(x1) −2.138 1.096 3.805 0.000
      距居民点距离(x2) 1.768 0.658 7.224 0.007
      距铁路距离(x3) −1.373 0.614 4.997 0.025
      归一化植被指数(x4) −3.159 0.769 16.875 0.000
      月均地表温度(x5) 2.110 0.641 3.298 0.000
      月均气压(x6) −1.654 0.552 6.665 0.010
      月均相对湿度(x7) −2.273 0.612 18.478 0.000
      月均风速(x8) 1.169 1.153 3.649 0.000
      人均GDP(x9) 6.638 1.162 33.169 0.000
      常量 2.061 0.796 6.699 0.010
    • 图2所示:用ROC曲线分别计算模型的AUC和约登指数并以此计算测试样本预测准确率。如表3所示:5个中间模型的样本的AUC值均大于0.890,对样本的预测准确率均高于80%,全样本AUC值为0.905,预测准确率为81.7%,说明Logistic回归模型对昆明市林火发生预测有较好的预测效果,适用于昆明市林火发生预测。根据全样本拟合结果建立昆明市Logistic回归概率模型为:

      图  2  昆明市林火预测模型ROC曲线拟合

      Figure 2.  ROC curve of forest fire prediction model in Kunming City

      表 3  模型评价

      Table 3.  Model evaluation

      样本AUC阈值训练样本预测
      准确率/%
      测试样本预测
      准确率/%
      样本组1 0.906 0.334 83.3 82.1
      样本组2 0.898 0.385 82.0 84.5
      样本组3 0.906 0.366 81.1 82.3
      样本组4 0.898 0.329 82.5 85.7
      样本组5 0.913 0.379 82.0 84.3
      全样本 0.905 0.342 81.7
      $$ \begin{split} &\mathrm{ln}\left(\frac{P}{1-P}\right)=-2.138{x}_{1}+1.768{x}_{2} -1.373 {x}_{3} -3.159 {x}_{4}+\\ &2.110 {x}_{5} -1.654 {x}_{6} -2.373 {x}_{7}+ 1.169 {x}_{8} +6.638 {x}_{9}+ 2.061。 \end{split} $$

      其中:P是林火发生概率,$ {x}_{1} $为海拔,$ {x}_{2} $为居民点,$ {x}_{3} $为离铁路距离,$ {x}_{4} $为NDVI,$ {x}_{5} $为月均地表温度,$ {x}_{6} $为月均气压,$ {x}_{7} $为月均相对湿度,$ {x}_{8} $为月均风速,$ {x}_{9} $为人均GDP。

    • 图3可见:5类森林火险等级分别占昆明市区面积的48.82%、35.17%、11.26%、2.55%、2.2%,高火险地区集中分布在五华区、盘龙区、官渡区、呈贡区、西山区、安宁市等,四级和五级火险区集中在一起。与实际火点进行比对,这片区域发生历史火灾集中且次数最多。总体来看,昆明市的重点火险区主要分布在昆明市西南部、嵩明县的中部地区、东川区的边界和石林彝族自治县的中部地区。

      图  3  昆明市林火发生概率及火险区划示意图

      Figure 3.  Probability and risk division of forest fire occurrence in Kunming City

    • 表3可以看出:对昆明市林火发生概率具有显著影响的林火驱动因子分别为海拔、距居民点距离、距铁路距离、NDVI值、月均地表温度、月均气压、月均相对湿度、月均风速、人均GDP。由图4可得:火点集中在距居民区1 500~2 500 m,这个区间属于人口密集区,人为活动频繁导致林火发生概率增大。火点集中分布在月均地表温度15~25 ℃区间,该温度对应昆明市春夏季,此时正是昆明市的防火期,降水稀少,日照时间长,可燃物含水率低,容易引发火灾发生。昆明市火点频次在月均风速2.0~4.0 m·s−1时呈下降趋势,到达4.5 m·s−1先上升后下降,该区间对应昆明市春夏季过渡到秋季,降水增多,植物含水率和温度较低,不易发生火灾。11月进入冬季,为昆明市防火期时段,从月均相对湿度来看,昆明市火点主要集中在40%~60%,在相对湿度高于60%之后的区间,月均相对湿度与火点频次呈负相关关系。

      图  4  林火驱动因子与火点频次关系与火点频次的关系

      Figure 4.  Relationships of forest fire driving factors and fire frequency

      火点频次与距铁路距离呈明显的负相关关系,火点主要分布在0~20 km的区域内,随距离增加,火点越来越少,距居民区的火点集中在0~2 000 m的区域内,2 000 m以后呈明显的负相关。人均GDP与火点频次呈明显的负相关,随人均GDP的增长火点减少,人均GDP较少的区域多处于农村、乡镇区域,森林面积大,火点占有可能性较高。NDVI代表植被覆盖率,其值与植被覆盖率呈正比关系,火点落入0.2~0.5最多,这一现象可能是因为植被茂密地区地表温度较低,地表蒸发量小,从而使可燃物含水率保持在较高的程度,不易发生火灾。

    • 林火驱动因子中,月均地表温度、月均气压、月均相对湿度、月均风速都属于气象因素,气象因素是影响昆明市林火发生的主要因素。气象因素影响火三角中可燃物与温度这2个因素,相对湿度影响可燃物含水率,抑制林火发生,与林火发生呈负相关[19]。地温和风速通过减小可燃物含水率影响林火发生,风速还可以加快空气流动,影响火灾蔓延的方向和速率,与林火发生呈正相关。气压随海拔升降发生变化,火点落入806~816 hPa为多,其中,火点主要分布在810 hPa。昆明市范围内的林火不仅受到气象因素的影响,还受到地形、可燃物、人为活动等因素的共同影响,气象因素决定大范围内林火发生的可能性,而地形、可燃物、人为活动等因素从更精细的空间角度预示着潜在的林火分布状况。

      进行二项Logistic多重线性诊断时,5个中间模型得到的林火驱动因子都不相同,海拔作为显著变量却成为中间模型剔除因素,林火驱动因子之间存在复杂关联,仅仅考虑自变量之间的相关性可能会剔除模型中存在重要影响的因子[20]。本研究选取了当前林火驱动因子所有时间段的数据,Logistic回归风险模型进行拟合,没有考虑可能存在气候差异明显的时间段,比如昆明市存在明显的干湿季,对于林火发生概率也会产生显著影响。在接下来的的研究中应考虑做多个不同时期的森林火险区划。除本次研究中使用的Logistic回归模型以外,预测林火的模型还有随机森林算法、地理加权回归模型等,国内已有相关学者用于林火预测的研究[21-22]。不同林火模型对于地区的适用性和解释性都不相同,可针对昆明市的林火分布特征找出最优解释模型。本研究所选的自变量没有包含日值气象数据,对于极端值情形研究不足,下一步将研究极端值情况对林火发生概率的影响。

参考文献 (22)

目录

/

返回文章
返回