-
种子萌发是高等植物生命周期新的开始,它始于吸水止于胚根突出,经历一系列复杂的生物学过程。一般情况,种子萌发可划分为3个发育阶段:3 h内种子迅速吸水膨胀(阶段Ⅰ),随后储藏物动员(阶段Ⅱ),最后胚根突出完成萌发(阶段Ⅲ)[1]。种子萌发完成后将进入幼苗发育阶段,其中胚根向下生长逐渐发育为植物的根,而胚轴和胚芽向上生长发育为植物的茎和叶。在深层土壤中,光很少参与种子萌发的调控。因此,研究黑暗条件下种子萌发的分子调控网络,不仅有助于揭示种子暗萌发的分子机制,而且对于指导作物播种也具有重要意义。
经过长期自然选择,高等植物已进化出多种光感受器,以适应复杂多变的自然环境。在拟南芥Arabidopsis thaliana中,至今已发现3类光受体,即红光/远红光受体光敏色素、蓝光受体隐花色素以及紫外光受体。在调节种子萌发方面,以光敏色素(PHY)研究较为深入。在黑暗中,PHY失活,其靶标蛋白光敏色素互作因子(PIF1)积累,抑制赤霉素(GA)信号和激发脱落酸(ABA)信号,从而抑制种子萌发;在红光或远红光下,光敏色素B (PHYB) 或光敏色素A (PHYA)被激活促进PIF1降解,减除 PIF1 对GA信号的抑制和ABA信号的激发,从而促进种子萌发[2−4]。
不同物种光调控种子萌发的机制存在一定差异。如光促进拟南芥种子萌发,而抑制番茄Solanum lycopersicum种子萌发。在拟南芥中,PHYA 和 PHYB 分别感知远红光和红光调控种子萌发[5−6],然而,在番茄中红光或远红光下PHYA均抑制种子萌发[7]。DONG等[8]对244份烟草Nicotiana tabacum种质资源进行研究,根据萌发对光的敏感性将烟草种子划分为浅光休眠种子和深度光休眠种子,浅光休眠种子在光下萌发率>90%,暗光下萌发率>50%;而深度光休眠种子在光下萌发率>90%,暗光下萌发率<20%。本研究以浅光休眠种子类群中暗萌发率较高的代表野生型烟草Y85为材料,对萌发前后的种子样本进行转录组和蛋白组测序,通过联合分析挖掘黑暗下浅光休眠种子萌发的调控网络。
-
结果(图1和图2)发现:胚根突出前后种子的差异表达mRNA与蛋白可划分为16个象限,包括5种类型。其中,转录和翻译两者同时无差异的蛋白(基因)最多;其次为仅在蛋白或者mRNA一种水平下差异表达的蛋白(基因);再次为同时下调的差异蛋白(基因),有24个;再次为同时上调的差异蛋白(基因),有15个;而表达趋势相反的差异蛋白(基因)最少,仅为3个。上述结果说明:黑暗条件在转录和翻译水平同时上调或者下调的蛋白(基因)数量相对较少,而更多的基因是在转录或者翻译单一水平表达参与调控胚根突出。
图 1 差异表达基因和差异表达蛋白象限图
Figure 1. Quadrant map of differentially expressed genes and differentially expressed proteins
图 2 共上调(下调)差异表达基因(蛋白)维恩分析示意图
Figure 2. Schematic diagram of Wien analysis of co-upregulated (co-downregulated) differentially expressed genes (proteins)
本研究重点关注了胚根突出后转录和翻译共同上调或者下调的蛋白(基因),共同上调表达的蛋白(基因)有β-葡糖苷酶(BoGH3B)、内甘露聚糖-1,4-β-甘露糖苷酶1 (MAN1)、甲基转移酶 PMT21 (ERD3)、MLP-like protein 31 (MLP31)、脂肪酸结合蛋白1 (FAP1)、非特异性脂质转移蛋白C、60伴侣蛋白2β亚基、叶绿体(CPN60B2)、线粒体解偶联蛋白1 (PUMP1)、豇豆球蛋白(CYSEP)、过氧化物酶24 (PER24)、B8网状内皮素蛋白(RTNLB8)等(图2和表1)。而共同下调表达的蛋白(基因)有坏死稳定素1 (NEC1)、母体植株开花时间调控蛋白(MFT)、胚胎晚期丰度蛋白63 (ECP63)、Peroxygenase (SOP1)、跨膜蛋白205 (TMEM205)、胚胎晚期丰度蛋白25 (LE25)、种子维生素内含蛋白(SBP65)、应激蛋白(At3g01520)、莨菪碱6-双加氧酶(H6H)、聚二磷酸腺苷核糖聚合酶3 (PARP3)等(图2和表1)。
表 1 差异表达基因和差异表达蛋白联合分析
Table 1. Combined analysis of differentially expressed genes and differentially expressed proteins
登录号 转录差异 翻译差异 基因名称 上下调基因/蛋白 倍数 P 倍数 P Nitab4.5_0000010g0130.1 3.325 5 0.001 7 3.853 8 0.000 4 BoGH3B 上调 Nitab4.5_0000023g0130.1 20.474 7 0.000 0 2.071 3 0.000 9 MAN1 上调 Nitab4.5_0000108g0440.1 2.120 7 0.001 4 2.171 9 0.014 5 ERD3 上调 Nitab4.5_0001238g0070.1 6.056 6 0.009 8 2.218 9 0.005 6 MLP31 上调 Nitab4.5_0001550g0100.1 3.766 1 0.000 0 2.421 4 0.000 4 FAP1 上调 Nitab4.5_0006538g0070.1 2.239 3 0.031 9 2.485 4 0.010 9 CPN60B2 上调 Nitab4.5_0008198g0010.1 2.110 4 0.001 6 2.014 6 0.034 4 PUMP1 上调 Nitab4.5_0010931g0010.1 20.901 6 0.000 0 2.461 1 0.001 5 CYSEP 上调 Nitab4.5_0014169g0010.1 6.893 3 0.016 7 2.187 9 0.003 1 PER24 上调 Nitab4.5_0014487g0010.1 3.953 8 0.000 0 2.362 0 0.011 5 RTNLB8 上调 Nitab4.5_0000541g0010.1 0.064 3 0.000 0 0.381 9 0.006 4 NEC1 下调 Nitab4.5_0000649g0080.1 0.095 6 0.046 2 0.459 1 0.018 2 MFT 下调 Nitab4.5_0000680g0110.1 0.196 4 0.000 0 0.450 5 0.031 1 ECP63 下调 Nitab4.5_0001051g0080.1 0.159 4 0.001 4 0.498 9 0.009 4 SOP1 下调 Nitab4.5_0001378g0010.1 0.155 3 0.000 0 0.460 8 0.026 6 TMEM205 下调 Nitab4.5_0001538g0010.1 0.107 0 0.009 4 0.151 8 0.014 4 LE25 下调 Nitab4.5_0002674g0020.1 0.149 6 0.000 1 0.430 3 0.007 4 SBP65 下调 Nitab4.5_0003715g0060.1 0.151 4 0.033 7 0.470 9 0.000 1 At3g01520 下调 Nitab4.5_0004232g0030.1 0.095 5 0.000 0 0.435 2 0.001 6 H6H 下调 Nitab4.5_0005388g0040.1 0.104 5 0.001 0 0.437 4 0.034 1 At3g06035 下调 Nitab4.5_0017202g0010.1 0.122 7 0.000 0 0.475 3 0.001 9 PARP3 下调 -
对同时上调或下调的蛋白(基因)进行GO和KEGG富集,富集到的信号通路主要包括果糖和甘露糖代谢、甘露聚糖分解、内甘露聚糖-1,4-β-甘露糖苷酶活性等,发生功能的细胞成分包括细胞外区域、线粒体、膜的组成部分和叶绿体等(图3)。说明在黑暗下种子萌发可能依赖于甘露聚糖分解代谢,而线粒体和叶绿体2个细胞器在种子暗萌发中可能均具有一定的作用。
-
对差异蛋白和差异mRNA/基因进行非监督层次聚类(图4)表明:转录组和蛋白组测序样品的重复性较好。同一处理样品可以通过聚类出现在同一个簇中,聚在同一个簇中的差异蛋白或基因可能具有相似的生物学功能。通过 RT-PCR进一步验证了转录组测序的准确性。由图4可知:第2天转录组测序结果与RT-PCR结果的皮尔逊相关系数为0.44,而第4天转录组测序结果与RT-PCR测序的皮尔逊相关系数为0.96,但随机挑选的10个基因RT-PCR验证结果与转录组测序结果表达趋势一致(图5),因此认为测序结果是可靠的。
Analysis of molecular networks for dark germination of shallow photodormant Nicotiana tabacum seeds based on transcriptomic and proteomic data
-
摘要:
目的 旨在挖掘浅光休眠烟草Nicotiana tabacum种子在黑暗下的调控基因和分子网络。 方法 以浅光休眠烟草Y85种子为实验材料,通过整合转录组和蛋白组数据,挖掘其暗萌发的分子网络。 结果 胚根突出前后蛋白和(或) mRNA表达差异存在5种差异类型,其中共同上调表达的蛋白(基因)有BoGH3B、MAN1、ERD3、MLP31、FAP1等,共同下调表达的蛋白(基因)有NEC1、MFT、ECP63、SOP1、LE25、SBP65等。上述差异蛋白(基因)富集的信号通路包括果糖和甘露糖代谢、甘露聚糖分解、内甘露聚糖-1,4-β-甘露糖苷酶活性;而发生功能的细胞成分包括线粒体、膜组成部分和叶绿体。 结论 通过整合转录组和蛋白组数据初步构建了浅光休眠烟草Y85种子的暗萌发调控网络。图5表1参24 Abstract:Objective This study aims to explore the regulatory genes and molecular network for shallow photodormant Nicotiana tabacum in the dark. Method Shallow photodormant N. tabacum Y85 seeds were used as experimental materials, and the molecular network of dark germination was studied by integrating transcriptome and proteome data. Result There were five types of differences in the expression of protein or mRNA expression before and after radicle protrusion, among which the jointly up-regulated proteins (genes) were BoGH3B, MAN1, ERD3, MLP31, FAP1, etc., and the jointly down-regulated proteins (genes) were NEC1, MFT, ECP63, SOP1, LE25, SBP65, and so on. The signal pathways enriched by the above proteins (genes) included fructose and mannose metabolism, mannan decomposition, endomannan-1,4-β-mannosidase activity. Functional cellular components included mitochondria, membrane components and chloroplasts. Conclusion By integrating transcriptomic and proteomic data, the dark germination regulatory network for shallow photodormant Y85 seeds was preliminarily constructed. [Ch, 5 fig. 1 tab. 24 ref.] -
Key words:
- Nicotiana tabacum /
- photodormant seed /
- dark germination /
- transcriptome /
- proteome /
- joint analysis
-
表 1 差异表达基因和差异表达蛋白联合分析
Table 1. Combined analysis of differentially expressed genes and differentially expressed proteins
登录号 转录差异 翻译差异 基因名称 上下调基因/蛋白 倍数 P 倍数 P Nitab4.5_0000010g0130.1 3.325 5 0.001 7 3.853 8 0.000 4 BoGH3B 上调 Nitab4.5_0000023g0130.1 20.474 7 0.000 0 2.071 3 0.000 9 MAN1 上调 Nitab4.5_0000108g0440.1 2.120 7 0.001 4 2.171 9 0.014 5 ERD3 上调 Nitab4.5_0001238g0070.1 6.056 6 0.009 8 2.218 9 0.005 6 MLP31 上调 Nitab4.5_0001550g0100.1 3.766 1 0.000 0 2.421 4 0.000 4 FAP1 上调 Nitab4.5_0006538g0070.1 2.239 3 0.031 9 2.485 4 0.010 9 CPN60B2 上调 Nitab4.5_0008198g0010.1 2.110 4 0.001 6 2.014 6 0.034 4 PUMP1 上调 Nitab4.5_0010931g0010.1 20.901 6 0.000 0 2.461 1 0.001 5 CYSEP 上调 Nitab4.5_0014169g0010.1 6.893 3 0.016 7 2.187 9 0.003 1 PER24 上调 Nitab4.5_0014487g0010.1 3.953 8 0.000 0 2.362 0 0.011 5 RTNLB8 上调 Nitab4.5_0000541g0010.1 0.064 3 0.000 0 0.381 9 0.006 4 NEC1 下调 Nitab4.5_0000649g0080.1 0.095 6 0.046 2 0.459 1 0.018 2 MFT 下调 Nitab4.5_0000680g0110.1 0.196 4 0.000 0 0.450 5 0.031 1 ECP63 下调 Nitab4.5_0001051g0080.1 0.159 4 0.001 4 0.498 9 0.009 4 SOP1 下调 Nitab4.5_0001378g0010.1 0.155 3 0.000 0 0.460 8 0.026 6 TMEM205 下调 Nitab4.5_0001538g0010.1 0.107 0 0.009 4 0.151 8 0.014 4 LE25 下调 Nitab4.5_0002674g0020.1 0.149 6 0.000 1 0.430 3 0.007 4 SBP65 下调 Nitab4.5_0003715g0060.1 0.151 4 0.033 7 0.470 9 0.000 1 At3g01520 下调 Nitab4.5_0004232g0030.1 0.095 5 0.000 0 0.435 2 0.001 6 H6H 下调 Nitab4.5_0005388g0040.1 0.104 5 0.001 0 0.437 4 0.034 1 At3g06035 下调 Nitab4.5_0017202g0010.1 0.122 7 0.000 0 0.475 3 0.001 9 PARP3 下调 -
[1] MAMZ B, MÜLLER K, KUCERA B, et al. Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging [J]. Plant Physiology, 2005, 138: 1538 − 1551. [2] OH E, KANG H, YAMAGUCHI S, et al. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis [J]. The Plant Cell, 2009, 21: 403 − 419. [3] OH E, YAMAGUCHI S, HU Jianhong, et al. PIL5, a phytochrome-interacting Bhlh protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds [J]. The Plant Cell, 2007, 19: 1192 − 1208. [4] PARK J, LEE N, KIM W, et al. ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds [J]. The Plant Cell, 2011, 23: 1404 − 1415. [5] SHINOMURA T, NAGATANI A, CHORY J, et al. The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A [J]. Plant Physiology, 1994, 104: 363 − 371. [6] SHINOMURA T, NAGATANI A, HANZAWA H, et al. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 8129 − 8133. [7] APPENROTH K J, LENK G, GOLDAU L, et al. Tomato seed germination: regulation of different response modes by phytochrome B2 and phytochrome A [J]. Plant Cell and Environment, 2006, 29: 701 − 709. [8] DONG Shuai, LIU Yiling, ZHANG Min, et al. Maternal light environment interacts with genotype in regulating seed photodormancy in tobacco[J/OL]. Environment and Experimental Botany, 2022, 194: 104745[2022-09-07]. doi: 10.1016/j.envexpbot.2021.104745. [9] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114 − 2120. [10] KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements [J/OL]. Nature Methods, 2015, 12(4)[2022-09-07]. doi: 10.1038/NMETH.3317. [11] TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation [J]. Nature Biotechnology, 2010, 28(5): 511 − 515. [12] ROBERTS A, TRAPNELL C, DONAGHEY J, et al. Improving RNA-Seq expression estimates by correcting for fragment bias [J/OL]. Genome Biology, 2011, 12(3): R22[2022-09-07]. http://genomebiology.com/2011/12/3/R22. [13] LOVE M I, SONESON C, PATRO R. Swimming downstream: statistical analysis of differential transcript usage following salmon quantification [J/OL]. F1000Research, 2018, 7: 952[2022-09-07]. https://f1000research.com/articles/7-952. [14] WIESE S, REIDEGELD K A, MEYER H E, et al. Protein labeling by ITRAQ: a new tool for quantitative mass spectrometry in proteome research [J]. Proteomics, 2007, 7(3): 340 − 350. [15] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method [J]. Methods, 2001, 25(4): 402 − 408. [16] 李振华, 徐如宏, 任明见, 等. 光敏色素感知光温信号调控种子休眠与萌发研究进展[J]. 植物生理学报, 2019, 55(5): 539 − 546. LI Zhenhua, XU Ruhong, REN Mingjian, et al. Advances in phytochrome regulating seed dormancy and germination by sensing light and temperature signals [J]. Plant Physiology Journal, 2019, 55(5): 539 − 546. [17] 宋碧清, 郑昀晔, 马文广, 等. 贮藏温度对烟草种子后熟的影响研究[J]. 种子, 2017, 36(4): 77 − 79. SONG Biqing, ZHENG Yunye, MA Wenguang, et al. Effects of storage temperature on after-ripening of tobacco seed [J]. Seeds, 2017, 36(4): 77 − 79. [18] LIU Qiyuan, LI Zhenhua, ZHANG Min, et al. Systematic analysis of photo/sko-regulated germination and post-germination development of shallow photodormant seeds in Nicotiana tabacum L. [J/OL]. Frontiers in Plant Science, 2022, 13: 1042981[2022-09-07]. doi: 10.3389/fpls.2022.1042981. [19] de WIT M, GALVÃO V C, FANKHAUSER C. Light-mediated hormonal regulation of plant growth and development [J]. Annual Review of Plant Biology, 2016, 67(1): 513 − 537. [20] 杨立文, 刘双荣, 林荣呈. 光信号与激素调控种子休眠和萌发研究进展[J]. 植物学报, 2019, 54(5): 569 − 581. YANG Liwen, LIU Shuangrong, LIN Rongcheng. Advances in light and hormones in regulating seed dormancy and germination [J]. Chinese Bulletin of Botany, 2019, 54(5): 569 − 581. [21] ALBAN C, JOB D, DOUCE R. Biotin metabolism in plants [J]. Annual Review of Plant Biology, 2000, 51: 17 − 47. [22] VAISTIJ F E, BARROS-GALVÃO T, COLE A F, et al. MOTHER-OF-FT-AND-TFL1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 8442 − 8447. [23] LEUBNER-METZGER G. Functions and regulation of β-1, 3-glucanase during seed germination, dormancy release and after-ripenning [J]. Seed Science Research, 2003, 13(1): 17 − 34. [24] NONOGAKI H, GEE O H, BRADFORD K J. A germination specific endomannanase gene is expressed in the micropylar endosperm cap of tomato seeds [J]. Plant Physiology, 2000, 123(4): 1235 − 1246. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220515