-
GRF(general regulatory factor)蛋白质最先由MOORE等[1]在牛脑中发现,并根据淀粉凝胶电泳上的迁移特性命名。GRF蛋白质是一类高度保守的同源或异源的二聚体蛋白质,具有多种功能,广泛存在于真核生物中,如酵母Pichia guilliermondii、拟南芥Arabidopsis thaliana、水稻Oryza sativa、花生Arachis hypogaea等。已有研究[2]表明:GRF蛋白质家族通过与磷酸化的靶蛋白质相互作用参与植物信号传导、细胞定位、转录调控和应激反应等多种重要生命活动过程,在植物代谢调控和生物合成反应中发挥着重要作用,如拟南芥GRF蛋白质可以与感光系统中的蛋白质相互作用调节根系生长发育[3];葡萄Vitis vinifera GRF蛋白质参与冷热应激反应[4];木薯Manihot esculenta GRF蛋白质主要分布在细胞质中,作用于淀粉合成酶Ⅲ靶蛋白质,对淀粉的合成起到负调控作用[2];菊花Dendranthema morifolium GRF蛋白质参与开花和周期调控,盐、冷等胁迫响应过程[5];动物细胞中GRF蛋白质还可通过调节细胞周期,影响细胞凋亡,参与多种信号通路等方式来调控肿瘤进程[6]。GRF活化后可以使G2/M期阻滞从而起到负调控细胞周期,发挥抑制癌基因的作用[7]。在动物中GRF蛋白质的过表达可能转化为一种致癌因子,促进肿瘤的发生[8],还可能与肿瘤细胞耐药性有关[9]。毛竹Phyllostachys edulis用途广泛,笋和叶具有食用、药用价值;竹材多用于建筑制造、工艺品制作。毛竹林是一种重要的经济林,具有重要生态价值,其固碳作用机制在不同的生长阶段有所差异[10]。毛竹基因组草图已公布,且大量转录组数据也可以从公共数据库中获取[11]。目前根据毛竹全基因组数据进行基因家族分析已取得了一定的成果,如ZF-HD基因家族[12]、B3基因家族[13]、APX基因家族[14]等,也分析了毛竹快速生长期的基因表达[15-16]。但对于毛竹GRF基因家族的全基因组数据分析尚未有相关报道。本研究通过毛竹公开的相关测序结果,利用生物信息学的方法,从基因组及转录组数据入手,对毛竹GRF基因进行全基因组的鉴定与表达分析,拟为进一步明确GRF基因家族在毛竹重要生长发育过程中的功能解析提供依据。
-
毛竹基因组序列、编码序列(CDS)、蛋白质序列和基因组GFF注释文件均从以下站点ftp://parrot.genomics.cn/gigadb/pub/10.5524/100001_101000/100498/[12]下载。从Pfam数据库[17]中下载隐马可夫模型(HMM) PF00244.17的结构域数据,并以此结构域数据为种子模型,用HMMER[18]检索本地毛竹蛋白质数据库。在Excel 2018中,将E-value设置为≤1E−20,对检索结果排序整理,去除重复,获得候选基因。进一步从毛竹全基因组数据库中提取得到GRF家族成员的基因、CDS、蛋白质序列以及基因结构和位置信息;利用在线工具ProtParam(https://web.expasy.org/protparam/)、ProtScale(https://web.expasy.org/protscale/)[19]以及SignalP 4.1[20]在线分析GRF家族各成员理化性质等。
-
依据毛竹、拟南芥、水稻GRF家族成员蛋白质序列,分别通过ClustalW多重比对,用MEGA 7.0软件邻位连接(neighbor-Joining, NJ)法构建种内和种间系统进化树,自检值取1 000次抽样[21]。
-
根据毛竹全基因组的GFF注释文件基因位置信息,分析毛竹GRF家族的基因结构并绘制基因结构图;利用在线网站NCBI Conserve Domain(https://www.ncbi.nlm.nih.gov/cdd/)和MEME(https://www.ncbi.nlm.nih.gov/cdd/)对GRF家族成员的保守结构域(domain)和基序(motif)进行预测[22],并通过TBtools[23]将结果可视化。
-
提取毛竹GRF基因上游1 500 bp序列作为启动子序列信息,通过在线预测软件PlantCare[24]预测毛竹GRF基因的顺式作用元件,并整理预测结果,富集顺式作用元件,利用TBtools上的Simple Biosequence viewer功能进行可视化分析。
-
利用MCScanX[25]获取GRF家族种内、种间共线性关系,并用TBtools软件Amazing Super Circos[26]和Multipe Synteny Plot分别对种内和种间的结果可视化。
-
选取NCBI SRA数据库中毛竹不同组织器官:根(登录号为ERR105075、ERR105076),花序(登录号为ERR105069、ERR105070、ERR105071),叶(登录号为ERR105067、ERR105068、ERR105075),鞭(登录号为ERR105073、ERR105074)和笋不同生长高度:0.2 m(登录号为SRR6131114、SRR131113、SRR6131115),0.5 m(登录号为SRR131117、SRR6131118、SRR5710699)和1.0 m(登录号为SRR5710701、SRR5710702、SRR5710697)的转录组数据,分别计算毛竹GRF基因的TPM(transcripts per million reads)值表示基因的表达丰度。为方便统计,对每个表达数值取以2为底的对数(log2),使用TBtools Amazing Heatmap绘制基因表达热图,用对数转换预处理数据,再用正态标准化的方法处理数据。
-
利用SWISSMODEL(https://www.swissmodel.expasy.org/)在线软件[27]预测GRF蛋白质的3D结构。模建结果使用SAVES v5.0(https://servicesn.mbi.ucla.edu/SAVES/)[19]进行评估。
-
根据植物GRF隐马可夫模型(PF00244.17)搜索毛竹相关基因组数据,获得相关GRF家族成员,然后通过E-value(≤1E−20)筛选、保守结构域、基序特征分析,去除相同转录本重复,最终筛选得到13个GRF家族成员(表1)。将获得13个GRF家族成员按照其在scaffold的分布先后顺序命名为PeGRF01~PeGRF13。进一步对PeGRF作蛋白质特性分析,13个GRF蛋白质中长度最短的为PeGRF10(256个氨基酸),最长的为PeGRF09(293个氨基酸),平均长度266.8个氨基酸;各GRF蛋白质等电点最小的为4.70(PeGRF02),最大的为5.29(PeGRF01),平均等电点为4.82;各GRF蛋白质分子量最小的为PeGRF04(28.65 kD),最大的为PeGRF09(32.41 kD),平均分子量为29.79 kD。
表 1 毛竹GRF基因及其蛋白质理化特性
Table 1. Characteristics of PeGRF family genes and their deduced proteins
基因登录号 基因名称 等电点(pI) 平均分子量/kD 内含子数量/个 氨基酸数量/个 PH02Gene26029.t1 PeGRF01 5.29 32.20 5 286 PH02Gene21972.t1 PeGRF02 4.70 29.68 4 262 PH02Gene06378.t1 PeGRF03 4.79 29.14 4 263 PH02Gene19868.t1 PeGRF04 4.82 28.65 3 261 PH02Gene15394.t1 PeGRF05 4.76 31.08 4 274 PH02Gene31988.t1 PeGRF06 4.73 29.94 6 270 PH02Gene44376.t1 PeGRF07 4.79 29.15 4 263 PH02Gene09923.t1 PeGRF08 4.86 29.28 4 261 PH02Gene25395.t2 PeGRF09 4.72 32.41 5 293 PH02Gene13806.t1 PeGRF10 4.76 29.02 4 256 PH02Gene13908.t1 PeGRF11 4.82 29.15 4 260 PH02Gene26176.t1 PeGRF12 4.84 28.76 3 263 PH02Gene15240.t1 PeGRF13 4.75 28.77 4 256 -
利用MEGA 7.0对13个毛竹GRF、14个拟南芥GRF和8个水稻GRF的氨基酸序列比对后,采用NJ法进行系统聚类分析(图1),绝大部分毛竹基因家族成员和水稻处于同一分支,表明毛竹与水稻的进化关系较近。
-
对毛竹GRF基因结构分析发现:内含子数量存在差异,非ε组成员都包含4个外显子和3个内含子,它们在位置上高度保守。ε组成员都具有不同于非ε组的内含子-外显子结构,具有2个额外的N-末端内含子[21]。利用NCBI-CDD对毛竹GRF基因进行保守结构域分析,PeGRF蛋白质均包含14/3/3结构域,毛竹GRF基因家族14/3/3结构域存在一定的保守性,但该结构域的分布位置有一定分化。利用MEME在线工具对该基因家族的保守基序预测,基数设置为10,结果显示(图2):Motif1~6在每个家族成员中均出现,属于高度保守结构,其余基序在家族成员中出现的频率及所在位置均存在一定的差异。
-
如图3所示:筛选出的部分典型的顺式调控元件,除核心启动子TATA-box(5个)和CAAT-box(16个)外,还有与激素相关的顺式调控元件,包括与赤霉素相关的GARE-motif(5个)、P-box(3个),与生长素有关的AuxRR-core(3个)、TGA-element(6个),与脱落酸有关的ABRE(42个),与水杨酸有关的TCA-element(5个);与外部条件有关的顺式调控元件,包括参与低温响应的LTR(2个)和光响应的G-box(48个)。推测毛竹GRF蛋白质家族可能参与激素和非生物胁迫响应,家族基因表达模式可能有所不同。
-
利用毛竹基因组GFF注释文件提取PeGRF在scaffold上的分布特征,结果显示:毛竹GRF基因在scaffold上分布不均匀,不同的scaffold基因分布密度不同,scaffold7、14、16、18和21仅包含1个PeGRF,scaffold3、13、15和22上分别包含2个。
利用TBtools工具,将毛竹GRF基因种内和种间的共线性关系进行了可视化分析。从图4A中可以看出:除PeGRF02、PeGRF03和PeGRF07不存在种内共线性关系外,其余家族基因成员间均有显著的共线性关系,说明GRF基因家族存在基因复制现象,推测在进化过程中GFR基因可能通过复制进行家族成员数量的扩张。但PeGRF不存在串联重复基因。物种间的共线性关系是反映不同物种来源于同一个祖先的现象。从图4B可以看出:毛竹与水稻的共线性关系要明显多于拟南芥,这可能与水稻和毛竹同属于禾本科Gramineae,进化关系较近有关。
-
本研究基于毛竹RNA-Seq转录组数据,对毛竹不同组织(叶、花序、鞭及根)以及不同生长高度(0.2、0.5、1.0 m)的毛竹笋中的GRF表达量绘制热图。由图5可以看出:除PeGRF10,PeGRF09在不同组织和生长高度保持较低的表达量外,其他成员均有较高的表达量。在毛竹不同组织中,根和花序的表达量相对于叶和鞭要稍高;非ε组的GRF基因均有较高的表达。在竹笋的不同生长阶段,非ε组的GRF基因保持较高的表达水平;ε组不同的基因表达量有增有减,如PeGRF05在竹笋生长各个阶段均有较高的表达量,且随生长进程表达量不断增高;PeGRF06表达量随生长进程呈下降趋势。推测不同家族成员在参与组织器官发育的过程中发挥不同的作用,但其中的内在分子机制还值得进一步研究。
-
由图6所示:毛竹GRF蛋白质由2个单体连接而成,每个单体由反向平行的9个α螺旋组成,每个单体都存在与配体(FSC3、FEC4)相互作用的结合位点,2个FSC配体均与壳梭孢素有关,单体间构成同源或异源二聚体,总体呈“W”型[28-29]。
-
物种基因组全序列的测定推动了生物信息学的迅速发展,在海量数据的基础上,利用生物信息学手段,对物种基因家族进行高效的统计分类和分析,预测基因家族的结构、功能及作用机制,将极大地推动相关功能基因的挖掘和农艺性状遗传的改良进程[30]。随着2018年第2版毛竹基因组数据的公布以及大量毛竹转录组数据的共享,毛竹GRF基因家族的生物信息学分析成为可能[11]。本研究通过全基因组数据分析发现:毛竹GRF家族成员共13个,数量多于水稻,可能的原因是毛竹染色体经过加倍,基因组数据远大于水稻;另外,共线性分析进一步证实:正是通过基因复制扩增,毛竹GRF在数量上有优势。毛竹GRF基因家族各成员间的理化性质存在一定的差异,但均含有14/3/3蛋白质结构域,其中有6种基序在每个成员中均出现。根据基因结构将PeGRF分为ε组和非ε组,其中ε组可能保留了祖先的蛋白质功能,这与PIOTROWSKI等[31]和WANG等[32]的研究结果相似。
大量研究表明GRF蛋白质参与激素信号的转导。如在拟南芥的研究中发现:GRF参与油菜素类激素(BR)调控细胞核发育的途径[33];在烟草Nicotiana tabacum中,GRF参与赤霉素(GA)生物合成调控[34];在水稻中,GRF表达同脱落酸(ABA)密切相关[35]。本研究发现:毛竹GRF顺式作用元件存在许多激素相关元件。由此可以推测毛竹GRF蛋白质可能介导激素信号的转导过程。但毛竹GRF同其他激素的相互关系还需进一步验证。
GRF蛋白质参与了植物的生长发育,特别是在花器官的发育中具有重要作用。PERTL等[36]证实随着百合Lilium brownii var. viridulum花粉管的生长,GRF蛋白质的表达量也明显增加。李兵娟[37]也证实雷竹Phyllostachys violascens GRF基因参与开花调控机制。本研究通过转录组数据分析发现:GRF蛋白质在花序组织中高表达,且表达量明显高于竹叶和竹鞭,这表明毛竹GRF基因可能参与花序的发育和调控。除此之外,在研究毛竹GRF顺式作用元件时还发现其启动子区域存在许多光响应元件,结合光周期对植物开花的作用机制以及在模式植物水稻上的研究[38],GRF基因可能是通过光响应元件接受外界环境信号从而触发其高表达,最终影响毛竹花的发育。由于受毛竹花发育相关材料的限制,该假设将在后续实验验证。
毛竹GRF蛋白质是以一个螺旋结构为主的同源二聚体,二聚体界面内包着多个疏水残基和多个极性残基,外周则由盐桥连接,三级结构呈“W”型,每个单体分别含有2个凹槽,可能用于结合配体靶蛋白质。毛竹GRF蛋白质序列在进化谱系中高度保守,并且与配体结合的氨基酸残基极端保守,这同SEHNKE等[28]发现的结果相似。另外,虽然毛竹GRF蛋白质的N端和C端同源性较低,但可能通过碱性簇维持空间构象的稳定[28]。PAUL等[39]在研究拟南芥GRF蛋白质时发现,GRF蛋白质还可以通过结合磷酸化的蛋白质,参与重力反应等生理过程。GRF蛋白质在进化上高度保守,毛竹PeGRF可能也具有相似的分子作用机制。但毛竹GRF蛋白质生物学功能与上述空间结构之间的关系还需进一步的探索。
Genome identification and expression analysis of GRF gene family in Phyllostachys edulis
-
摘要:
目的 探究毛竹Phyllostachys edulis GRF基因家族的性质、结构特点以及在不同组织中的表达水平,为进一步研究GRF在毛竹生长发育中的分子作用机制奠定基础。 方法 采用生物信息学方法,对毛竹全基因组和转录组信息进行分析,筛选出13个毛竹GRF基因家族成员,并对GRF基因家族的理化性质、进化、基因结构、保守结构域、启动子、基因家族表达模式及三级结构进行分析。 结果 毛竹GRF基因家族成员按照其在scaffold上分布的位置,分别被命名为PeGRF01~PeGRF13;将含有3个内含子的PeGRF04和PeGRF12归为非ε组,其余为ε组。毛竹各GRF基因家族成员理化性质存在一定的差异,但是其结构域相对保守,均含有14/3/3结构域。毛竹GRF家族启动子区含有大量与光响应、低温响应、激素调控等相关的顺式作用元件。毛竹GRF存在基因复制扩增的现象,与水稻Oryza sativa的共线性关系明显高于拟南芥Arabidopsis thaliana。毛竹GRF在不同组织器官中均有表达,各家族成员的表达量存在差异;在毛竹花和根组织中的表达量略高于叶和鞭,同时家族成员间的表达量也存在一定差异。GRF蛋白质由2个单体构成,每个单体由9个α-螺旋构成,整体结构呈“W”型。 结论 毛竹GRF基因家族具有典型的14/3/3结构域,可能参与根、鞭、叶、花序及笋芽的生长发育过程。图6表1参39 Abstract:Objective This study aims to explore the nature and structural features of general regulatory factor(GRF) gene family in moso bamboo(Phyllostachys edulis) and its expression levels in different tissues, so as to lay the foundation for further study on the molecular mechanism of GRF in growth and development of Ph.edulis. Method Bioinformatics approach was used to analyze the whole genome and transcriptome information of Ph. edulis, and 13 members of GRF gene family were selected and analyzed for their physicochemical properties, evolution, gene structure, conserved domains, promoters, gene family expression patterns, and tertiary structure. Result Members of the GRF gene family in Ph. edulis were named PeGRF01~PeGRF13 according to their distribution on the scaffold. PeGRF04 and PeGRF12 with 3 introns were classified as non-ε group, and the rest were ε group. The physicochemical properties of the members of each GRF gene family differed, but their domains were relatively conservative, all containing 14/3/3 domains. The promoter region of GRF family in Ph. edulis contained a large number of cis-acting elements related to light response, low temperature response, and hormone regulation. The gene duplication and amplification in PeGRF was significantly higher in collinearity with Oryza sativa than with Arabidopsis thaliana. PeGRFs were expressed in different tissues and organs, and the expression levels of each family member were different. The expression levels in panicle and root tissues of Ph. edulis were slightly higher than those in leaf and rhizome, and there were some differences among family members. The GRF protein was composed of 2 monomers, each of which was composed of 9 α-helices, and the overall structure was W-shaped. Conclusion The GRF gene family of Ph. edulis has a typical 14/3/3 domain, which may be involved in the development of roots, rhizomes, leaves, panicles and shoots. [Ch, 6 fig. 1 tab. 39 ref.] -
Key words:
- Phyllostachys edulis /
- GRF gene family /
- phylogenetics /
- collinearity /
- gene expression level
-
牡丹Paeonia suffruticosa是芍药科Paeoniaceae芍药属Paeonia的多年生落叶灌木,是中国特有的植物资源[1-2]。牡丹作为中国的传统名花,花可供观赏,根可作为丹皮入药,牡丹籽油是一种新型木本植物油,具有极高的生态、经济和社会价值[3-4]。油用牡丹‘凤丹’Paeonia ostii ‘Feng Dan’具有结籽多、出油高、适应范围广、易于管理等优点[5-6]。其籽粒富含不饱和脂肪酸,多项指标均优于现有食用油,具有改善心血管、调节免疫、消炎、抗肿瘤等多种医疗保健功能[7-9]。矿质元素是植物体的重要组成成分,对维持正常的生命活动、调节生理功能具有重要作用[10-11]。矿质元素是植物生长的物质基础,对作物的产量与品质具有重要影响[12-13]。梁芳等[14]研究发现:氮、磷、钾、铜、铁对文冠果Xan-thoceras sorbifolia新梢发育具有重要影响。何国庆等[15]研究表明:氮、钾是山核桃Carya cathayensis果实发育过程中最重要的矿质营养,其中种仁氮、钾与脂肪酸组分的相关性最高。目前,对油用牡丹产量的研究主要集中在栽培方式、施肥方法、根际微生物[16-21]等方面。此外,对不同肥料元素的施用水平和配比进行科学平衡施肥,提高‘凤丹’种子产量和品质的研究也已取得了一定的进展[22-24]。张阁[18]发现:宁夏地区‘凤丹’增产的首要影响因子是氮肥,其次为钾肥和磷肥。朱丹等[25]建立了‘凤丹’产量与养分施用量的回归方程,获得了氮、磷、钾的最佳施肥量。而关于‘凤丹’生育期内营养器官和生殖器官对矿质元素的吸收及转运规律,尤其是微量元素的研究鲜有报道。了解植株矿质营养元素动态变化及营养水平是合理施肥的基础。本研究对油用牡丹‘凤丹’矿质营养元素及变化进行了动态分析,全面了解油用牡丹‘凤丹’对矿质元素的吸收、利用状况以及营养元素间的平衡关系,以期为油用牡丹合理施肥及高产栽培提供理论依据。
1. 材料与方法
1.1 材料
于2016年在河南科技大学农场牡丹种植试验基地,选择长势健壮、一致、芽饱满、无病虫害的8年生油用牡丹‘凤丹’植株为材料。施肥和生产上与牡丹正常管理保持一致,2015年11月底施入有机肥(2.25×104 kg·hm−2)作为冬储肥,当年3月初施600 kg·hm−2,质量比为20∶20∶10的氮肥[主要成分为氮(N)]-磷肥[主要成分为五氧化二磷(P2O5)]-钾肥[主要成分为氧化钾(K2O)]的复合肥作为促花肥;5月中旬施375 kg·hm−2氮肥-磷肥-钾肥(质量比为15∶15∶10)的复合肥,施肥时均匀撒施,施完肥浇水。株距×行距分别为60 cm×75 cm,密度约2.25×104株·hm−2。
1.2 试验设计
2016年2月下旬至8月上旬分别取油用牡丹的根、茎、叶、果荚、种子。每次取样3个重复。取样时间:2月26日(展叶期)、3月12日(现蕾期)、3月27日(立蕾期)、4月11日(盛花期)、4月28日、5月12日、6月1日、6月29日、7月18日(4月28日至7月18日为结实期)、8月4日(果熟期)。样品带回实验室后,先用自来水冲洗干净,再用蒸馏水浸洗,滤纸吸干水分后将样品置于烘箱内105 ℃杀青30 min,然后在80 ℃下烘干至恒量,不锈钢粉碎机粉碎样品,储存于带塞的玻璃瓶内备用。
1.3 研究方法
采用ZDDN-Ⅱ自动型凯氏定氮仪(托普仪器,浙江),用半微量蒸馏法测定样品全氮质量分数,具体参照温云杰等[26]的方法。采用Agilent 5100 ICP-OES电感耦合等离子质谱仪(Agilent公司,美国),测定样品中磷、钾、镁、铁、锰、锌、铜、硼质量分数,具体参照贺春玲等[27]的方法。
1.4 数据处理
利用Excel 2010和SPSS 20.0对数据进行处理和相关性分析。
2. 结果与分析
2.1 油用牡丹‘凤丹’不同生育期营养器官矿质元素质量分数的变化
2.1.1 根矿物质元素质量分数
‘凤丹’根中矿质元素的测定发现:氮质量分数为9.76~14.08 mg·g−1,展叶期(2月26日)至结实期前期(5月12日)氮逐渐下降,展叶期氮的质量分数高于其他时期。磷质量分数为6.95~9.81 mg·g−1,在展叶期到结实期(7月18日)逐渐下降,果熟期上升。钾质量分数为2.68~5.02 mg·g−1,呈先下降后上升的趋势,结实期后期(6月29日至8月4日)出现下降趋势。镁质量分数为1.04~1.85 mg·g−1,呈先升高后降低,在立蕾期(3月27日)达最大值。微量元素铁质量分数最高,铜最低。锰、铁、锌和硼元素的质量分数均呈先升高后降低的趋势。铁、硼在立蕾期(3月27日)达到峰值,分别为167.5和64.5 mg·kg−1,锰在盛花期(4月11日)达到峰值,为61.4 mg·kg−1,锌在结实期(4月28日)达到峰值,为63.5 mg·kg−1。铜的变化趋势不明显(表1)。
表 1 不同生育期油用牡丹‘凤丹’根矿质元素变化Table 1 Elements change of P. ostii ‘Feng Dan’ roots in different growth stages日期(月-日) 氮/(mg·g−1) 磷/(mg·g−1) 钾/(mg·g−1) 镁/(mg·g−1) 铁/(mg·kg−1) 锰/(mg·kg−1) 锌/(mg·kg−1) 铜/(mg·kg−1) 硼/(mg·kg−1) 02-26 14.08 9.81 4.99 1.10 122.81 25.46 19.16 14.99 42.45 03-12 12.79 9.54 3.90 1.47 145.62 46.52 26.21 12.12 56.94 03-27 12.43 9.32 2.68 1.85 167.46 56.52 34.76 11.65 64.47 04-11 11.22 8.89 3.28 1.65 145.65 61.40 47.54 8.65 56.47 04-28 10.36 8.72 3.33 1.36 138.61 52.76 63.47 7.79 34.98 05-12 9.76 8.58 3.92 1.24 113.77 43.00 52.18 9.50 25.43 06-01 10.21 8.26 4.15 1.22 99.21 36.81 32.05 8.45 21.91 06-29 10.25 7.85 5.02 1.23 82.99 30.55 34.67 8.97 23.67 07-18 10.14 6.95 4.97 1.20 75.44 31.80 37.08 10.72 28.33 08-04 10.25 7.78 4.63 1.04 69.96 21.01 39.26 11.50 36.77 2.1.2 茎矿物质元素质量分数
‘凤丹’茎中矿质元素分析发现:氮质量分数为8.34~10.94 mg·g−1,生育期内呈先降低后升高的变化趋势。磷质量分数为4.06~7.72 mg·g−1,不同生育期持续下降。钾质量分数为8.32~13.58 mg·g−1,不同生育期持续下降,7月18日达最低值,果熟期(8月4日)上升。镁质量分数为1.04~1.42 mg·g−1,生育期内变化趋势不明显。微量元素中铁质量分数最高,呈先升高后降低,在盛花期(4月11日)达到峰值,为176.5 mg·kg−1。锌随着‘凤丹’的生长发育持续上升。硼呈先升高后降低的趋势,4月28日达最大值,为32.9 mg·kg−1。生育期内锰和铜含量无显著变化(表2)。
表 2 不同生育期油用牡丹‘凤丹’茎矿质元素变化Table 2 Elements change of P. ostii ‘Feng Dan’ stems in different growth stages日期(月-日) 氮/(mg·g−1) 磷/(mg·g−1) 钾/(mg·g−1) 镁/(mg·g−1) 铁/(mg·kg−1) 锰/(mg·kg−1) 锌/(mg·kg−1) 铜/(mg·kg−1) 硼/(mg·kg−1) 02-26 9.95 7.72 13.58 1.14 125.92 18.31 17.48 13.74 25.80 03-12 8.44 7.11 13.27 1.09 138.05 17.93 19.59 9.62 26.70 03-27 8.75 6.83 11.98 1.13 156.47 16.40 25.47 10.24 28.81 04-11 8.76 6.35 11.62 1.04 176.47 16.40 29.49 9.24 31.81 04-28 8.34 6.24 10.52 1.05 172.30 14.78 31.58 9.78 32.90 05-12 8.75 6.08 9.25 1.37 166.78 17.20 46.23 10.38 23.76 06-01 8.72 5.56 9.01 1.42 164.68 13.57 41.98 7.58 23.57 06-29 9.01 4.86 8.66 1.39 148.32 12.60 45.72 8.01 21.08 07-18 10.23 4.06 8.37 1.29 142.84 10.11 52.22 9.76 20.16 08-04 10.94 5.74 8.32 1.18 182.32 15.15 50.40 12.10 20.20 2.1.3 叶片矿物质元素质量分数
‘凤丹’叶片矿质元素测定发现:氮质量分数为14.67~35.84 mg·g−1,生育期内持续下降,在现蕾期(3月12日)到结实期前期(5月12日)急剧下降。磷质量分数为6.05~8.75 mg·g−1,生育期内持续下降。钾质量分数为8.63~10.17 mg·g−1,从现蕾期(3月12日)到结实期前期(4月11日)持续下降,花谢后出现急剧上升的趋势,而在结实期(4月28日至8月4日)持续下降。镁质量分数为2.24~5.51 mg·g−1,在不同生育期持续升高。微量元素中铁最高。铁、锰、锌呈先升高后降低趋势,分别在5月12日、4月11日和4月28日达最大值。铜无显著变化,硼呈先升高后降低再升高的趋势(表3)。
表 3 不同生育期油用牡丹‘凤丹’叶片矿质元素变化Table 3 Elements change of P. ostii ‘Feng Dan’ leaves in different growth stages日期(月-日) 氮/(mg·g−1) 磷/(mg·g−1) 钾/(mg·g−1) 镁/(mg·g−1) 铁/((mg·kg−1) 锰/(mg·kg−1) 锌/(mg·kg−1) 铜/(mg·kg−1) 硼/(mg·kg−1) 03-12 35.84 8.75 9.94 2.24 117.80 12.50 36.80 3.80 23.60 03-27 31.45 8.24 9.03 2.50 125.20 17.00 39.20 14.10 32.50 04-11 24.52 7.52 8.63 3.24 134.91 25.02 47.05 9.96 40.03 04-28 21.59 6.82 10.17 3.50 148.73 20.17 56.08 10.09 32.91 05-12 18.29 6.46 9.81 4.46 159.42 19.61 53.48 9.81 31.93 06-01 17.59 6.38 9.62 3.78 142.57 16.65 48.24 8.26 41.40 06-29 15.93 6.12 9.47 3.92 135.43 9.64 43.94 7.21 44.58 07-18 14.96 6.05 9.16 4.69 132.85 10.03 41.48 10.03 48.44 08-04 14.67 6.35 9.02 5.51 147.02 10.01 45.01 10.01 55.04 2.1.4 根、茎、叶中矿质元素间的相关性分析
从表4可见:根中氮与磷、铜,磷和铁、硼,铁和硼,镁和锰、铁、硼,锰和铁均呈极显著正相关(P<0.01);钾和镁、锰、铁均呈极显著负相关(P<0.01);氮与硼,磷和硼呈显著正相关(P<0.05);氮与锌,锌和铜呈显著负相关(P<0.05)。茎中磷和钾、锰,钾和锰,镁和锌均呈极显著正相关(P<0.01);磷和锌,钾和镁、锌,镁和硼,锰和锌,锌和硼呈极显著负相关(P<0.01);氮与硼呈显著负相关(P<0.05)。在叶片中磷和镁,磷和铁、硼均呈极显著负相关(P<0.01);镁和铁、硼,铁和锌均呈显著正相关(P<0.05)。
表 4 油用牡丹‘凤丹’根、茎、叶中9种元素的相关性Table 4 Correlation among 9 elements of P. ostii ‘Feng Dan’ roots, stems and leaves元素 氮根 磷根 钾根 镁根 锰根 铁根 锌根 铜根 硼根 氮根 1 磷根 0.810** 1 钾根 −0.090 −0.467 1 镁根 0.281 0.443 −0.860** 1 锰根 0.075 0.419 −0.910** 0.888** 1 铁根 0.570 0.824** −0.831** 0.831** 0.833** 1 锌根 −0.651* −0.249 −0.456 0.145 0.471 0.096 1 铜根 0.796** 0.434 0.310 −0.145 −0.416 0.081 −0.745* 1 硼根 0.686* 0.662* −0.625 0.772** 0.580 0.786** −0.184 0.394 1 元素 氮茎 磷茎 钾茎 镁茎 锰茎 铁茎 锌茎 铜茎 硼茎 氮茎 1 磷茎 −0.278 1 钾茎 −0.335 0.887** 1 镁茎 0.097 −0.607 −0.683* 1 锰茎 −0.267 0.943** 0.766** −0.499 1 铁茎 −0.051 −0.207 −0.478 −0.065 −0.075 1 锌茎 0.421 −0.887** −0.983** 0.680* −0.735* 0.422 1 铜茎 0.587 0.526 0.386 −0.407 0.505 −0.232 −0.303 1 硼茎 −0.652* 0.588 0.625 −0.739* 0.482 0.199 −0.694* −0.027 1 元素 氮叶 磷叶 钾叶 镁叶 锰叶 铁叶 锌叶 铜叶 硼叶 氮叶 1 磷叶 −0.331 1 钾叶 −0.803 0.003 1 镁叶 −0.265 −0.858** −0.176 1 锰叶 0.081 0.276 −0.046 −0.359 1 铁叶 −0.658 −0.682* 0.231 0.674* 0.270 1 锌叶 0.574 −0.497 0.371 0.349 0.547 0.885** 1 铜叶 −0.700 −0.112 −0.471 0.160 0.325 0.250 0.202 1 硼叶 0.433 −0.730* −0.556 0.811** −0.430 0.271 0.016 0.233 1 说明:*表示在0.05水平上显著相关,**表示在0.01水平上极显著相关 2.2 油用牡丹‘凤丹’不同生育期生殖器官矿质元素的变化
2.2.1 果荚矿质元素
对果荚中矿质元素的分析发现:大量元素氮、磷、钾和镁元素在结实期初期均下降,在5月12日达最低值,分别为12.71、7.40、9.91和2.26 mg·g−1。氮和钾在结实期持续上升,在8月4日和7月18日分别达最大值,为30.44和8.75 mg·g−1,钾在果熟期下降。磷和镁在5月12日下降到最低值,在结实期无明显变化。锌和锰先上升后下降,结实期后期(7月18日)骤然下降,铜和铁呈先下降后上升的趋势,硼持续上升(表5)。
表 5 不同生育期油用牡丹‘凤丹’果荚矿质元素变化Table 5 Elements change of P. ostii ‘Feng Dan’ pods in different growth stages日期(月-日) 氮/(mg·g−1) 磷/(mg·g−1) 钾/(mg·g−1) 镁/(mg·g−1) 铁/(mg·kg−1) 锰/(mg·kg−1) 锌/(mg·kg−1) 铜/(mg·kg−1) 硼/(mg·kg−1) 04-28 14.81 9.12 13.12 2.53 46.86 14.67 39.13 13.01 26.05 05-12 12.71 7.40 9.91 2.26 15.85 9.66 38.93 9.66 19.30 06-01 16.66 8.73 13.75 2.08 17.07 4.95 12.32 12.32 27.17 06-29 20.70 8.65 17.57 2.72 8.89 26.76 33.47 10.05 33.53 07-18 28.36 8.55 24.24 2.62 13.71 33.79 33.92 6.78 30.43 08-04 30.44 8.08 21.09 3.63 23.70 10.30 15.46 10.30 41.22 2.2.2 种子矿质元素
对种子中的矿质元素分析发现:氮在结实期不断升高。钾在结实期持续下降,结实期前期明显降低,在结实期后期(6月1日后)下降较为平缓。磷在结实期前期下降,结实后期持续上升,在6月29日后维持在较高水平。镁没有明显变化。微量元素铁在结实期呈先升高后降低的趋势,其他元素均表现出先降低后升高的趋势,锰在7月18日达最大值,之后骤然下降(表6)。
表 6 不同生育期油用牡丹‘凤丹’种子矿质元素变化Table 6 Elements change of P. ostii ‘Feng Dan’ seeds in different growth stages日期(月-日) 氮/(mg·g−1) 磷/(mg·g−1) 钾/(mg·g−1) 镁/(mg·g−1) 铁/(mg·kg−1) 锰/(mg·kg−1) 锌/(mg·kg−1) 铜/(mg·kg−1) 硼/(mg·kg−1) 04-28 25.97 23.60 20.23 1.93 20.46 30.09 34.03 28.87 21.02 05-12 27.87 14.95 12.23 1.46 30.85 14.44 19.60 22.44 9.66 06-01 30.63 15.11 9.25 1.40 29.37 12.78 25.70 17.97 10.25 06-29 31.95 18.61 8.31 1.50 17.78 26.73 29.16 17.01 12.15 07-18 33.97 18.70 8.01 1.55 22.43 40.71 40.74 16.27 11.38 08-04 38.37 16.83 7.56 1.63 10.46 19.01 38.02 19.01 28.52 2.2.3 不同器官间矿质元素的相关性
对同种矿质元素在不同器官中的相关性分析表明(表7):营养器官(根、茎、叶)与生殖器官(果荚、种子)相同元素之间存在一定的相关性。其中,磷、钾、铁在根与种子间存在显著的相关性(P<0.05);锰在根与果荚间存在显著的相关性(P<0.05);氮、钾、锰、硼在叶片与果荚之间有显著的相关关系(P<0.05);氮、钾、锰、锌、硼在叶片与种子间有显著的相关关系(P<0.05);氮在茎与果荚间有显著相关性(P<0.05);氮、钾、镁在茎与种子间存在显著的相关性(P<0.05)。
表 7 油用牡丹‘凤丹’不同器官间矿质元素的相关性Table 7 Correlation of elements in different organs of P. ostii ‘Feng Dan’器官 根氮 茎氮 叶氮 果荚氮 种子氮 器官 根锰 茎锰 叶锰 果荚锰 种子锰 根氮 1 根锰 1 茎氮 −0.029 1 茎锰 0.287 1 叶氮 0.952** −0.579 1 叶锰 0.826** 0.493 1 果荚氮 0.331 0.951** −0.821* 1 果荚锰 −0.878* −0.657 −0.898* 1 种子氮 0.197 0.942** −0.907* 0.931** 1 种子锰 −0.622 −0.851* −0.861* 0.843* 1 器官 根磷 茎磷 叶磷 果荚磷 种子磷 器官 根锌 茎锌 叶锌 果荚锌 种子锌 根磷 1 根锌 1 茎磷 0.971** 1 茎锌 0.324 1 叶磷 0.876** 0.845** 1 叶锌 0.869** 0.267 1 果荚磷 −0.053 −0.190 0.162 1 果荚锌 −0.403 0.052 −0.211 1 种子磷 −0.845* −0.701 −0.755 −0.002 1 种子锌 −0.773 0.815* −0.871* −0.180 1 器官 根钾 茎钾 叶钾 果荚钾 种子钾 器官 根铜 茎铜 叶铜 果荚铜 种子铜 根钾 1 根铜 1 茎钾 −0.362 1 茎铜 0.792** 1 叶钾 0.023 0.078 1 叶铜 −0.037 0.361 1 果荚钾 0.769 −0.691 −0.838* 1 果荚铜 −0.706 −0.235 −0.171 1 种子钾 −0.888* 0.981** 0.888* −0.585 1 种子铜 −0.541 0.237 0.464 0.617 1 器官 根镁 茎镁 叶镁 果荚镁 种子镁 器官 根硼 茎硼 叶硼 果荚硼 种子硼 根镁 1 根硼 1 茎镁 −0.480 1 茎硼 0.598 1 叶镁 −0.828** 0.459 1 叶硼 −0.449 −0.612 1 果荚镁 −0.721 −0.459 0.746 1 果荚硼 0.142 −0.841* 0.944** 1 种子镁 0.384 −0.963** −0.182 0.297 1 种子硼 0.415 −0.656 0.874* 0.943** 1 器官 根铁 茎铁 叶铁 果荚铁 种子铁 根铁 1 茎铁 −0.060 1 叶铁 −0.375 0.672* 1 果荚铁 0.177 0.750 0.247 1 种子铁 0.862* −0.122 0.403 −0.303 1 说明:*表示在0.05水平上显著相关,**表示在0.01水平上极显著相关 3. 结论与讨论
本研究中,‘凤丹’在展叶期(2月26日)营养器官(根、茎、叶)中氮、磷、钾3种大量元素质量分数均维持在较高水平,且从展叶期到立蕾期(3月27日)3种大量元素质量分数均明显下降,说明展叶期到花蕾形成这段时间,‘凤丹’植株初叶舒展、花芽萌发,正处于开花前的准备阶段,根、茎中积累的氮、磷、钾营养元素迅速通过叶片向花中转移,以保证花的发育过程中对氮、磷、钾养分的需求。从立蕾期(3月27日)到结实初期(4月28日),‘凤丹’经历花蕾形成、圆桃透色期、初花期、盛花期、末花期及结实初期,该阶段是‘凤丹’生殖生长的关键时期,为‘凤丹’后续籽粒物质积累与产量形成奠定基础;此时,‘凤丹’根与叶中氮元素质量分数急剧下降,磷元素缓慢降低,钾元素临近结实期持续增加;茎中氮元素与钾元素持续下降,磷元素变化幅度较小。由此说明,此阶段‘凤丹’根、茎、叶将积累的氮、磷元素源源不断地输送到生殖器官;同时‘凤丹’植株在生殖器官发育过程中对钾元素需求量较大,促使根系不断从土壤中吸收钾元素,通过茎、叶转运至生殖器官。
从结实初期(4月28日)到果熟期(8月4日),‘凤丹’植株根与果荚中氮元素质量分数呈先上升后下降的趋势,均在5月12日出现转折点;植株茎与种子中的氮元素均呈持续上升趋势;植株叶片中氮元素呈下降趋势,说明种子在发育过程中对氮元素的需求较高,结实初期根系、叶片与果荚中积累的氮元素不断向种子转移,导致此时期叶片与果荚氮下降;随着植株根系从土壤中大量吸收氮元素并通过茎不断向上输送,叶片作为生理代谢重要器官,不断将根、茎输送的氮元素转移至果荚,其转移量大于积累量,致使种子发育过程中,叶片中氮元素不断下降,从而确保果荚及种子中氮元素持续上升、不断积累,为籽粒膨大及内含物充实提供物质基础。从结实初期(4月28日)到果熟期(8月4日),‘凤丹’植株根与茎中磷元素呈先下降后上升的趋势,均在结实末期(7月18日)出现最低值;叶片中磷元素呈缓慢下降趋势,果荚与种子中磷元素呈现不规则动态变化,说明‘凤丹’果实在发育过程中对磷元素需求量受具体发育阶段的影响,结实末期(7月18日)之前对磷元素需求较大,根、茎、叶中的磷元素持续向果实转移,从结实末期(7月18日)至果熟期(8月4日)对磷元素需求量减小,根与茎中磷元素开始积累。从结实初期(4月28日)到果熟期(8月4日),‘凤丹’植株根中钾元素先上升后下降,在结实末期(7月18日)出现峰值;植株茎、叶与种子中钾元素均不断下降,果荚中钾元素呈先下降、再上升、又下降的趋势,说明‘凤丹’籽粒发育过程需要大量钾元素,营养器官吸收与积累的钾元素不断转运至果实,为种子膨大、产量形成提供物质基础。张阁[18]研究发现:‘凤丹’萌芽期和花期需要大量氮和磷,果实发育期需要大量氮、磷和钾,这与本研究的结果一致。本研究发现:‘凤丹’种子发育过程中氮在果荚和种子中持续上升,与牡丹‘小胡红’Paeonia suffruticosa ‘Hu Hong’种子中的变化规律一致[28]。结实期前期(4月28日至5月12日)果荚和种子磷、钾和镁质量分数均下降,磷和钾元素下降幅度非常明显,而同期茎和叶片中磷和钾同样下降,这与香榧Torreya grandis ‘Merrillii’种子发育前期矿质元素变化一致[29],说明‘凤丹’种子处于发育前期。本研究表明:‘凤丹’结实期需氮、磷、钾量大,是氮素、磷素和钾素营养的最大效率时期,应在花谢后种子发育前追施氮磷钾肥。
植物微量元素也直接影响果实的产量和品质[30-31]。本研究中,‘凤丹’根、茎、叶中铁质量分数远高于锰、锌、铜、硼,与‘小胡红’[28]、北京景山栽培牡丹和‘洛阳红’Paeonia suffruticosa ‘Luoyang Red’ [32-33]结果一致,并且铁呈先升高后降低的趋势,表明‘凤丹’生长发育过程中需要大量的铁。本研究中铁质量分数大于硼,与张阁[18]在宁夏地区所测的‘凤丹’硼质量分数高于铁的结果不一致,推测其主要原因可能是取样地理环境的差异所致。‘凤丹’根中微量元素呈先升高后降低的趋势,与茎和叶中微量元素变化规律不相同,但整体上也表现为先升高后降低的趋势,并且在盛花期(4月11日)前达到最大值,说明随着花朵开放、叶片展开,植株的光合能力不断增强,叶片中高水平的矿质元素有利于光合作用合成更多的有机物以及光合产物的运输。在花期之后到果熟期(8月4日),‘凤丹’根、茎、叶中微量元素整体表现出不同程度降低,说明‘凤丹’结实期是各种微量元素的高需求期,可在结实前期对其进行微肥的补充。硼和锌元素在种子发育过程中表现出先下降后升高的趋势,尤其是在种子成熟期(7月18日至8月4日)急剧上升,与魏双雨等[11]对‘凤丹’施加硼锌肥,显著增大了光合产物积累的结果一致。推测‘凤丹’种子成熟期是植株体内有机物剧烈变化期,同时也伴随着微量元素的大量积累。‘凤丹’生育期内铁远高于其他微量元素,在种子发育后期硼和锌大幅上升,可在种子发育过程中增施铁、硼和锌,以满足‘凤丹’种子微量元素的积累。
植物不同生育期对矿质元素的需求量不同,矿质元素吸收转运相互影响,植物体内矿质元素呈现一定的消长规律,矿质元素在不同器官的动态分布规律也存在一定的相关性[34-35]。本研究测定的不同元素间具有一定的相关性,有些达到极显著水平,不同器官的不同矿质元素之间的变化规律相关性并不相同,表明不同生育期‘凤丹’器官对不同矿质元素的需求规律存在差异。氮、磷、钾、铁、锰与其他元素间表现出更加密切的相关性,说明它们可能调节‘凤丹’生育期内不同元素的吸收转运。不同元素在营养器官(根、茎、叶)和生殖器官(果荚、种子)间均存在相关性,如本研究发现:在发育过程中,果荚锌呈先升高后下降的趋势,而种子锌则呈先下降后升高的趋势。氮在叶与果荚、种子间,磷在叶与果荚间,硼在叶与果荚间呈显著负相关。‘凤丹’种子可能与果荚及邻近的营养器官间存在同化物分配的源库关系[36]。种子发育初期果荚或营养器官积累大量的营养元素,当种子发育进入中后期,干物质大量积累,营养元素由果荚或营养器官转运到果实,表明‘凤丹’种子成熟过程中,矿质元素在植物体内存在着从营养器官到生殖器官的分配和积累规律。
综上所述,油用牡丹‘凤丹’花期需补充大量的氮、磷养分,种子发育过程中对氮、磷、钾需求量较大,开花前(3月中旬)宜追施氮、磷肥,花后结实期之前(5月上旬)追施氮、磷、钾肥。现蕾期(3月27日)到花期(4月)铁快速积累,之后迅速下降,种子发育后期对硼、锌需求量增加,可在5−7月种子发育期追施铁、硼、锌等微肥。
-
表 1 毛竹GRF基因及其蛋白质理化特性
Table 1. Characteristics of PeGRF family genes and their deduced proteins
基因登录号 基因名称 等电点(pI) 平均分子量/kD 内含子数量/个 氨基酸数量/个 PH02Gene26029.t1 PeGRF01 5.29 32.20 5 286 PH02Gene21972.t1 PeGRF02 4.70 29.68 4 262 PH02Gene06378.t1 PeGRF03 4.79 29.14 4 263 PH02Gene19868.t1 PeGRF04 4.82 28.65 3 261 PH02Gene15394.t1 PeGRF05 4.76 31.08 4 274 PH02Gene31988.t1 PeGRF06 4.73 29.94 6 270 PH02Gene44376.t1 PeGRF07 4.79 29.15 4 263 PH02Gene09923.t1 PeGRF08 4.86 29.28 4 261 PH02Gene25395.t2 PeGRF09 4.72 32.41 5 293 PH02Gene13806.t1 PeGRF10 4.76 29.02 4 256 PH02Gene13908.t1 PeGRF11 4.82 29.15 4 260 PH02Gene26176.t1 PeGRF12 4.84 28.76 3 263 PH02Gene15240.t1 PeGRF13 4.75 28.77 4 256 -
[1] MOORE B W, PEREZ V J. Specific acidic proteins of the nervous system[M]//CARLSON F D. Physiological and Biochemical Aspects of Nervous Integration. Englewood Cliffs: Prentice-Hall, 1968: 343−359. [2] 潘冉冉, 秦于玲, 乔景娟, 等. 14-3-3蛋白结构与功能预测及其在木薯成熟期的表达分析[J]. 中国农学通报, 2018, 34(36): 49 − 57. PAN Ranran, QIN Yuling, QIAO Jingjuan, et al. The structure, function prediction of 14-3-3 protein and its expression at maturity stage of cassava [J]. Chin Agric Sci Bull, 2018, 34(36): 49 − 57. [3] MAYFIELD J D, PAUL A L, FERL R J, et al. The 14-3-3 proteins of Arabidopsis regulate root growth and chloroplast development as components of the photosensory system [J]. J Exp Bot, 2012, 63(8): 3061 − 3070. [4] CHENG Cheng, WANG Yi, CHAI Fengmei, et al. Genome-wide identification and characterization of the 14-3-3 family in Vitis vinifera L. during berry development and cold- and heat-stress response[J]. BMC Genomics, 2018, 19(1): 579. doi: 10.1186/s12864-018-4955-8. [5] 曹沛沛, 毛雅超, 刘涛, 等. 菊花Cm14-3-3υ基因的克隆及表达分析[J]. 南京农业大学学报, 2017, 40(5): 820 − 826. CAO Peipei, MAO Yachao, LIU Tao, et al. Cloning and expression analysis of Cm14-3-3υ gene in chrysanthemum [J]. J Nanjing Agric Univ, 2017, 40(5): 820 − 826. [6] 李易桐, 付琰, 张雅婷, 等. 14-3-3蛋白在胃癌中的作用及机制研究进展[J]. 解放军医学杂志, 2020, 45(1): 97 − 101. LI Yitong, FU Yan, ZHANG Yating, et al. Progress of effects of 14-3-3 protein on gastric cancer and its mechanism [J]. Med J Chin People ’s Lib Army, 2020, 45(1): 97 − 101. [7] HYNES N E, SMIRNOVA T. The 14-3-3σ tumor suppressor has multiple functions in ErbB2-induced breast cancer [J]. Cancer Discov, 2012, 2(1): 19 − 22. [8] YOO J O, KWAK S Y, AN H J, et al. miR-181b-3p promotes epithelial–mesenchymal transition in breast cancer cells through Snail stabilization by directly targeting YWHAG [J]. Biochim Biophys Acta Mol Cell Res, 2016, 1863(7): 1601 − 1611. [9] TSENG C W, YANG J C, CHEN C N, et al. Identification of 14-3-3β in human gastric cancer cells and its potency as a diagnostic and prognostic biomarker [J]. Proteomics, 2011, 11(12): 2423 − 2439. [10] 周国模, 姜培坤. 毛竹林的碳密度和碳贮量及其空间分布[J]. 林业科学, 2004, 40(6): 20 − 24. ZHOU Guomo, JIANG Peikun. Density, storage and spatial distribution of carbon in Phyllostachy pubescens forest [J]. Sci Silv Sin, 2004, 40(6): 20 − 24. [11] 黎帮勇, 胡尚连, 曹颖, 等. 毛竹NAC转录因子家族生物信息学分析[J]. 基因组学与应用生物学, 2015, 34(8): 1769 − 1777. LI Bangyong, HU Shanglian, CAO Ying, et al. Bioinformatics analysis of NAC gene family in moso bamboo [J]. Genomics Appl Biol, 2015, 34(8): 1769 − 1777. [12] 马瑞芳, 陈家璐, 刘笑雨, 等. 毛竹锌指同源结构域基因家族全基因组鉴定及表达分析[J]. 农业生物技术学报, 2020, 28(4): 645 − 657. MA Ruifang, CHEN Jialu, LIU Xiaoyu, et al. Genome-wide identification and expression analysis of zinc finger homologous domain gene family in Phyllostachys edulis [J]. J Agric Biotechnol, 2020, 28(4): 645 − 657. [13] 吴佳军, 俞率成, 刘志刚, 等. 毛竹B3家族全基因组鉴定及表达模式分析[J]. 农业生物技术学报, 2019, 27(1): 43 − 54. WU Jiajun, YU Shuaicheng, LIU Zhigang, et al. Genome identification and expression pattern analysis of Phyllostachys edulis B3 family [J]. J Agric Biotechnol, 2019, 27(1): 43 − 54. [14] 宋笑龙, 孔波, 高志民, 等. 毛竹APX家族基因鉴定和表达分析[J]. 热带亚热带植物学报, 2020, 28(3): 255 − 264. SONG Xiaolong, KONG Bo, GAO Zhimin, et al. Identification and expression analysis of the APX gene family in Phyllostachys edulis [J]. J Trop Subtrop Bot, 2020, 28(3): 255 − 264. [15] 卜柯丽, 傅卢成, 王灵杰, 等. 毛竹茎秆快速生长期PeATG1/PeATG4基因表达分析[J]. 浙江农林大学学报, 2020, 37(1): 43 − 50. BU Keli, FU Lucheng, WANG Lingjie, et al. Analysis of PeATG1/PeATG4 gene expression in Phyllostachys edulis during rapid growth [J]. J Zhejiang A&F Univ, 2020, 37(1): 43 − 50. [16] 栗青丽, 王灵杰, 高培军, 等. 竹茎秆快速生长期淀粉分解相关酶基因表达的分析[J]. 浙江农林大学学报, 2020, 37(6): 1128 − 1135. LI Qingli, WANG Lingjie, GAO Peijun, et al. Gene expression of starch decomposing enzymes in Phyllostachys edulis stems during the rapid growth period [J]. J Zhejiang A&F Univ, 2020, 37(6): 1128 − 1135. [17] FINN R D, COGGILL P, EBERHARDT R Y, et al. The Pfam protein families database: towards a more sustainable future [J]. Nucleic Acids Res, 2016, 44(D1): 279 − 285. [18] FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching [J]. Nucleic Acids Res, 2011, 39(S1): W29 − W37. [19] 陈家璐, 张智俊, 刘笑雨, 等. 毛竹Dirigent基因家族的全基因组鉴定与分析[J]. 植物生理学报, 2019, 55(9): 1406 − 1417. CHEN Jialu, ZHANG Zhijun, LIU Xiaoyu, et al. Genome-wide identification and analysis of Dirigent gene family in moso bamboo (Phyllostachys edulis) [J]. Plant Physiol J, 2019, 55(9): 1406 − 1417. [20] PETERSEN T N, BRUNAK S, VON HEIJNE G, et al. SignalP 4.0: discriminating signal peptides from transmembrane regions [J]. Nat Methods, 2011, 8(10): 785 − 786. [21] KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol Biol Evol, 2016, 33(7): 1870 − 1874. [22] BAILEY T L, BODEN M, BUSKE F A, et al. MEME SUITE: tools for motif discovery and searching [J]. Nucleic Acids Res, 2009, 37(S2): W202 − W208. [23] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194 − 1202. [24] LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences [J]. Nucleic Acids Res, 2002, 30(1): 325 − 327. [25] WANG Yupeng, TANG Haibao, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7): e49. doi: 10.1093/nar/gkr1293. [26] KRZYWINSKI M, SCHEIN J, BIROL I, et al. Circos: an information aesthetic for comparative genomics [J]. Genome Res, 2009, 19(9): 1639 − 1645. [27] WATERHOUSE A, BERTONI M, BIENERT S, et al. SWISS-MODEL: homology modelling of protein structures and complexes [J]. Nucleic Acids Res, 2018, 46(W1): W296 − W303. [28] SEHNKE P C, DELILLE J M, FERL R J. Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity [J]. Plant Cell, 2002, 14(suppl 1): S339 − S354. [29] MANAK M S, FERL R J. Divalent cation effects on interactions between multiple Arabidopsis 14-3-3 isoforms and phosphopeptide targets [J]. Biochemistry, 2007, 46(4): 1055 − 1063. [30] 张长青, 王进, 李广平, 等. 园艺植物分子育种相关生物信息资源及其应用[J]. 植物学通报, 2005, 22(4): 494 − 501. ZHANG Changqing, WANG Jin, LI Guangping, et al. Bioinformatics resources for molecular breeding of horticultural plants [J]. Chin Bull Bot, 2005, 22(4): 494 − 501. [31] PIOTROWSKI M, OECKING C. Five new 14-3-3 isoforms from Nicotiana tabacum L.: implications for the phylogeny of plant 14-3-3 proteins [J]. Planta, 1998, 204(1): 127 − 130. [32] WANG Wenfu, SHAKES D C. Molecular evolution of the 14-3-3 protein family [J]. J Mol Evol, 1996, 43(4): 384 − 398. [33] CHANG I F, CURRAN A, WOOLSEY R, et al. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana [J]. Proteomics, 2009, 9(11): 2967 − 2985. [34] ISHIDA S, FUKAZAWA J, YUASA T, et al. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins [J]. Plant Cell, 2004, 16(10): 2641 − 2651. [35] CHEN Yixing, ZHOU Xiaojin, CHANG Shu, et al. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice [J]. Biochem Biophys Res Commun, 2017, 493(4): 1450 − 1456. [36] PERTL H, HIMLY M, GEHWOLF R, et al. Molecular and physiological characterisation of a 14-3-3 protein from lily pollen grains regulating the activity of the plasma membrane H+ ATPase during pollen grain germination and tube growth [J]. Planta, 2001, 213(1): 132 − 141. [37] 李兵娟. 雷竹14-3-3基因家族克隆和功能分析[D]. 杭州: 浙江农林大学, 2014. LI Bingjuan. Molecular Cloning and Functional Analysis of 14-3-3 Genes in Phyllostachys violascens[D]. Hangzhou: Zhejiang A&F University, 2014. [38] 袁玺垒, 王振山, 贾小平, 等. 光周期调控植物开花分子机制以及CCT基因家族研究进展[J]. 浙江农业学报, 2020, 32(6): 1133 − 1140. YUAN Xilei, WANG Zhenshan, JIA Xiaoping, et al. Research advances on molecular mechanisms of photoperiod-regulation plant flowering and CCT gene family [J]. Acta Agric Zhejiang, 2020, 32(6): 1133 − 1140. [39] PAUL A L, DENISON F C, SCHULTZ E R, et al. 14-3-3 phosphoprotein interaction networks-does isoform diversity present functional interaction specification?[J]. Front Plant Sci, 2012, 3: 190. doi: 10.3389/fpls.2012.00190. 期刊类型引用(5)
1. 李子健,朱洁薇,于水燕,胡永红. ‘凤丹’牡丹栽培及产业发展综述. 北方园艺. 2024(07): 126-132 . 百度学术
2. 刘兴巧,马晓蕾,马慧丽,张楠楠,魏硕,宋程威,杨迪,侯小改. 氮肥喷施时间对‘凤丹’牡丹小枝生物量分配及养分利用的影响. 林业科学. 2024(12): 47-57 . 百度学术
3. 姜利,洪娟,陈法志,王素萍,杜雷,张贵友,黄翔,李春萍,张利红,陈钢. 油用牡丹‘凤丹’不同生育期养分吸收和积累规律. 经济林研究. 2022(01): 112-122 . 百度学术
4. 强承魁,曹丹,赵虎,张明,丁永辉,关滢,张光琴,沈文妍,秦越华. 土壤-油用牡丹系统重金属含量及生态健康风险分析. 生态环境学报. 2021(06): 1286-1292 . 百度学术
5. 梁颖,王昊,卫乐,张嘉欣,李锦馨. 食用玫瑰“冷香”二次生殖生长期养分累积规律研究. 宁夏农林科技. 2021(10): 9-13 . 百度学术
其他类型引用(4)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200544