留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄槽毛竹叶绿体基因组及毛竹种下分类群的叶绿体基因组序列比较

刘萱 邹龙海 周明兵

简永旗, 吴家森, 盛卫星, 等. 间伐和林分类型对森林凋落物储量和土壤持水性能的影响[J]. 浙江农林大学学报, 2021, 38(2): 320-328. DOI: 10.11833/j.issn.2095-0756.20200355
引用本文: 刘萱, 邹龙海, 周明兵. 黄槽毛竹叶绿体基因组及毛竹种下分类群的叶绿体基因组序列比较[J]. 浙江农林大学学报, 2024, 41(5): 1037-1046. DOI: 10.11833/j.issn.2095-0756.20240110
JIAN Yongqi, WU Jiasen, SHENG Weixing, et al. Effects of thinning and stand types on litter stock and soil water-holding capacity[J]. Journal of Zhejiang A&F University, 2021, 38(2): 320-328. DOI: 10.11833/j.issn.2095-0756.20200355
Citation: LIU Xuan, ZOU Longhai, ZHOU Mingbing. Chloroplast genome of Phyllostachys edulis f. luteosulcata and comparison of chloroplast genome sequence of subspecies of Ph. edulis[J]. Journal of Zhejiang A&F University, 2024, 41(5): 1037-1046. DOI: 10.11833/j.issn.2095-0756.20240110

黄槽毛竹叶绿体基因组及毛竹种下分类群的叶绿体基因组序列比较

DOI: 10.11833/j.issn.2095-0756.20240110
基金项目: 国家自然科学基金资助项目(31870656);浙江省自然科学基金重点项目(LZ19C160002)
详细信息
    作者简介: 刘萱 (ORCID: 0000-0003-4546-9331),从事毛竹生长发育研究。E-mail: liuxuan@stu.zafu.edu.cn
    通信作者: 周明兵 (ORCID: 0000-0001-5674-4410 ),教授,博士,从事毛竹生长发育研究。E-mail: zhoumingbing@zafu.edu.cn
  • 中图分类号: Q753;S795.7

Chloroplast genome of Phyllostachys edulis f. luteosulcata and comparison of chloroplast genome sequence of subspecies of Ph. edulis

  • 摘要:   目的  对黄槽毛竹Phyllostachys edulis f. luteosulcata叶绿体基因组进行组装、注释和分析,并与其他毛竹Ph. edulis种下分类群比较叶绿体遗传信息差异和系统进化关系。  方法  利用高通量二代测序数据组装了黄槽毛竹的叶绿体基因组序列并进行了基因结构注释,通过生物信息学分析软件进行其组成、密码子偏好性、重复序列等分析。通过序列比对和系统进化分析,比较不同毛竹种下分类群的系统进化关系和基因组序列差异。  结果  黄槽毛竹的叶绿体基因组是长度为139 678 bp,包含132个基因的双环DNA;包含蛋白质编码基因85个、核糖体RNA (rRNA) 8个和转运RNA (tRNA) 39个。该基因组的最优密码子偏好使用以A/U碱基结尾,包含49个重复序列、55个简单重复序列(SSR)位点,其中简单重复序列最多的类型为A/T。利用叶绿体基因组序列构建的系统发育分析显示:黄槽毛竹与其他毛竹种下分类群共同组成单系分支,且与毛竹原变种Ph. edulis var. pubescens亲缘关系最近。基于7个毛竹种下分类群的叶绿体基因组序列和编码基因特征分析显示:毛竹种下分类群之间存在着编码基因数量和结构差异,编码区和非编码区存在较低程度序列变异。  结论  首次对毛竹种下分类群的叶绿体基因组进行比较分析,并揭示了这些种下分类群存在着一定程度的序列差异。这些变异资料可以用于毛竹种下分类群的鉴定比较。图5表2参27
  • 滇杨Populus yunnanensis为杨柳科Salicaceae杨属Populus青杨派树种,主要分布于云南中北部和南部、贵州西部及四川西南部等地区[1]。因速生性强、易无性繁殖和适应性强等优良特性[2],滇杨在中国西南地区具有重要的经济、生态和社会效益[3]。但传统的滇杨遗传育种面临易感染黑斑病以及易遭蛀干虫害等问题[1]。相比之下,转基因育种能够将所需基因引入植物基因组培育新品种以及创制新种质[4]。然而,有效遗传转化体系的缺乏严重制约了滇杨转基因育种和功能基因组研究。

    目前,有关滇杨再生体系的建立鲜有报道,仅有张春霞等[5]、辛培尧等[6]以滇杨叶片、叶柄和茎段为外植体进行不定芽的诱导,但均难以形成愈伤组织,不利于滇杨的高效再生和遗传转化研究。而关于滇杨遗传转化的研究尚未开展。据此,本研究以滇杨叶片为外植体,探讨植物生长调节剂对叶片愈伤组织、不定芽及生根的影响,从而建立高效的滇杨再生体系。在此基础上,利用农杆菌Agrobacterium tumefaciens介导法对滇杨进行遗传转化研究,进而解析影响滇杨转化效率的各种因素,以期为滇杨的快速繁殖、定向育种及种质资源保存提供科学依据。

    1.1.1   植物材料

    以西南林业大学苗木基地栽培的10年生滇杨优株为母株,采集1年生枝条,剪切为45 cm长度的枝段,于室温条件下水培,取嫩叶作为试验材料。

    1.1.2   载体菌株

    根癌农杆菌为GV3101,含β-D-葡萄糖苷酸酶(GUS)报告基因及卡那霉素(Kan)筛选标记的质粒载体pBI121 (pBI121-GUS),菌株和质粒均由实验室保存。

    1.2.1   外植体消毒

    以嫩叶作为外植体,将叶片冲洗干净后置于体积分数为2%的次氯酸钠(NaClO)消毒150 s,用体积分数为75%的乙醇浸泡10 s,无菌水清洗3次,用无菌滤纸吸干叶片表面水分。将叶片剪切成1.0 cm2小方块(叶盘),叶背向下接种于分化培养基上。

    1.2.2   愈伤组织及不定芽诱导

    将叶盘接种于含有噻苯隆(TDZ,质量浓度分别为0.001、0.002、0.005 mg·L−1)、萘乙酸(NAA,质量浓度分别为0.010和0.050 mg·L−1)的MS和1/2 MS培养基上进行诱导分化。每瓶接种4个外植体,每个处理接种10瓶,置于暗条件下培养,30 d后统计愈伤组织诱导率。

    将获得的愈伤组织继续接种于上述培养基中进行不定芽诱导,置于光条件下培养, 30 d后统计不定芽诱导率。

    1.2.3   生根培养基筛选

    以1/2 MS为基本培养基,添加不同质量浓度组合的NAA (0、0.010、0.050、0.100 mg·L−1)和吲哚乙酸(IBA,0、0.010、0.050、0.100 mg·L−1)。待不定芽生长至2~3 cm时转接于生根培养基中,每瓶接种3个不定芽,每个处理接种10瓶,置于光条件下培养,30 d后统计生根率和单株生根数。

    以上培养基均添加20.0 g·L−1蔗糖和4.5 g·L−1琼脂,在光照强度为2 000~2 500 lx、光照时间为12 h(光)/12 h(暗)、温度为(25±2) ℃条件下培养。

    1.2.4   抑菌剂头孢霉素(Cef)质量浓度的确定

    采用液氮速冻法将pBI121-GUS质粒转化至农杆菌中,加入LB培养液,置于28 ℃恒温振荡培养箱(200 r·min−1)培养,待菌液吸光度D(600)达0.6~0.8时,吸取菌液,涂布于添加不同质量浓度头孢霉素(0、100、200、300和400 mg·L−1)的LB固体培养基上,28 ℃倒置培养48 h,观察农杆菌生长情况。同时,将叶盘接种于添加不同质量浓度头孢霉素(0、100、200、300和400 mg·L−1)的分化培养基上进行筛选,每瓶接种3个叶盘,每个处理接种10瓶。30 d后统计分化率。

    1.2.5   筛选剂卡那霉素(Kan)质量浓度的确定

    将叶盘接种于添加不同质量浓度卡那霉素(0、10、20、30和40 mg·L−1)的分化培养基中进行筛选。每瓶接种3个叶盘,每个处理接种10瓶,置于暗条件下培养,30 d后观察统计不定芽生长情况。

    1.2.6   菌液吸光度、侵染时间、共培养时间的筛选

    取1.2.3获得的滇杨组培苗,将叶片剪切为1.0 cm2叶盘,采用吸光度D(600)为0.2、0.6和1.0的农杆菌菌液对其侵染,每种浓度侵染时间分别为5、10和15 min,侵染后分别进行共培养0、2和4 d。将共培养后的叶盘接种于含有头孢霉素和卡那霉素筛选培养基进行筛选。40 d后统计产生抗性芽的叶盘数,并统计转化率,转化率=产生抗性芽的叶盘数/叶盘总数×100%。当抗性芽高度达2~3 cm时,接种至生根培养基中培养约20 d。

    1.2.7   阳性植株检测

    取1.2.6中的抗性植株及野生型再生苗的叶片置入GUS染色液(体积比为X-Gluc Solution∶GUS Buffer=1∶50)中,抽真空30 min,37 ℃保育24 h,体积分数为75%的乙醇脱色3 h,观察叶片着色情况。进一步将GUS染色为蓝色的植株提取基因组DNA,以野生型再生苗为阴性对照,PCR扩增GUS基因,引物序列为GUS-F:5′-TCTCAGAAGACCAAAGGGCAA-3′;GUS-R:5′-TGCGCCAGGAGAGTTGTTG-3′,片段大小为2 239 bp。PCR扩增体系:12.5 µL Taq PCR Master Mix,1.0 µL DNA模板,GUS-F和GUS-R (10.0 µmol·L−1)各1.0 µL,ddH2O补足至20.0 µL。扩增条件:94 ℃预变性5 min;94 ℃变性30 s,55 ℃退火30 s,72 ℃延伸1 min,30个循环;72 ℃延伸10 min。

    所有数据采用Excel 2016进行记录处理,利用SPSS 26.0进行单因素方差分析(ANOVA),采用Duncan’s法进行差异显著性分析。

    将滇杨叶盘接种于含TDZ和NAA的MS和1/2 MS培养基上,20 d后叶盘切口处形成淡绿色瘤状组织且出现芽点。接种于MS培养基的叶盘在30 d后仅于切口处长出少量愈伤组织(图1A),而接种于1/2 MS培养基的叶盘均分化出紧密的淡绿色愈伤组织(图1B)。因此,选取1/2 MS作为基本培养基进行愈伤组织和不定芽的诱导。

    图 1  滇杨叶片愈伤组织的诱导
    Figure 1  Induction of callus in leaves of P. yunnanensis

    此外,将叶盘(图2A)置于含有TDZ和NAA不同质量浓度组合的1/2MS培养基上,30 d后统计愈伤组织诱导率及生长情况。结果表明(表1):组合0.005 mg·L−1TDZ和0.010 mg·L−1 NAA培养基中的诱导效果最好,愈伤组织紧实,呈浅绿色(图2B),且诱导率达91.70%。

    图 2  滇杨不定芽诱导
    Figure 2  Induction of adventitious buds in P. yunnanensis
    表 1  TDZ和NAA对愈伤组织诱导的影响
    Table 1  Effects of TDZ and NAA on callus induction
    植物生长调节剂组合愈伤组织
    诱导率/%
    愈伤组织状况
    TDZ/
    (mg·L−1)
    NAA/
    (mg·L−1)
    0.0010.01036.00±12.73 e浅黄色,疏松,长势较差
    0.0010.05055.60±12.72 d浅黄色,疏松,长势较差
    0.0020.01063.90±9.64 cd浅绿色,疏松,长势一般
    0.0020.05083.30±8.35 abc浅绿色,紧实,长势一般
    0.0050.01091.70±8.35 ab浅绿色,紧实,长势较好
    0.0050.05077.80±4.79 bc浅绿色,紧实,长势一般
      说明:数据为平均值±标准差。同列不同小写字母表示不同组合间差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    将上述愈伤组织转接入含有TDZ和NAA不同质量浓度组合的分化培养基中,30 d后统计不定芽诱导率及芽生长状况。由表2可知:在分化培养基中,组合0.002 mg·L−1TDZ 和0.010 mg·L−1NAA培养基诱导不定芽的效果最佳,诱导率达75.00%,与其余组合的差异均达到显著水平(P<0.05),且不定芽健壮、生长旺盛(图2C)。

    表 2  TDZ和NAA对不定芽诱导的影响
    Table 2  Effects of TDZ and NAA on adventitious bud induction
    植物生长调节剂组合不定芽
    诱导率/%
    不定芽生长状况
    TDZ/
    (mg·L−1)
    NAA/
    (mg·L−1)
    0.0010.0108.30±14.43 cd苗矮小,生长较差
    0.0010.0505.50±4.79 cd苗矮小,生长较差
    0.0020.01075.00±14.43 a苗健壮,生长旺盛
    0.0020.05019.50±4.79 bc苗细弱,生长一般
    0.0050.01027.80±12.73 b苗细弱,生长一般
    0.0050.05016.60±14.43 bcd苗细弱,生长一般
      说明:数据为平均值±标准差。同列不同小写字母表示不同组合间差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    表3可见:在组合为0.010 mg·L−1NAA和0.100 mg·L−1IBA的培养基中,植株生长旺盛(图3A),生根率高达96.70%,平均生根数为2.57条,均有较多的侧根及根毛(图3B);其次为组合0.010 mg·L−1NAA和0.050 mg·L−1IBA培养基,苗木长势较好,生根率为83.30%,平均生根数为1.93条。此外,当NAA为0.010 mg·L−1时,随着IBA质量浓度的增加,生根率逐渐升高,平均生根数也逐渐增多,同时不定根和组培苗的长势逐渐增强。而IBA为0.010 mg·L−1时,随着NAA质量浓度的增加,生根率逐渐降低,平均生根数逐渐减少,不定根和组培苗的长势减弱。因此,组合1/2 MS、0.010 mg·L−1NAA、0.100 mg·L−1 IBA培养基适合不定芽的生根诱导。

    表 3  NAA和IBA对不定芽生根的影响
    Table 3  Effects of NAA and IBA on the rooting of adventitious bud
    植物生长调节剂组合生根率/%平均生根数/条生长状态
    NAA/(mg·L−1)IBA/(mg·L−1)
    0.000 0.000 63.30±5.77 bc 1.33±0.49 bc 主根细长、无侧根苗长势较好
    0.010 0.000 56.70±15.28 c 0.97±0.51 c 主根短少、侧根少、苗长势一般
    0.010 0.100 96.70±5.77 a 2.57±0.25 a 主根粗壮、侧根发达、苗健壮
    0.010 0.050 83.30±5.77 ab 1.93±0.57 ab 主根较粗、侧根较多、苗长势较好
    0.010 0.010 66.70±15.28 bc 1.10±0.44 c 主根粗壮、侧根较少、苗长势一般
    0.000 0.010 70.00±10.00 bc 1.23±0.30 bc 主根短少、侧根少、苗长势一般
    0.050 0.010 63.30±5.77 bc 0.77±0.15 c 茎部有短根、苗长势一般
    0.100 0.010 60.00±26.46 bc 0.70±0.40 c 主根短少、侧根少、苗长势一般
      说明:数据为平均值±标准差。同列不同小写字母表示不同组合间差异显著(P0.05)。
    下载: 导出CSV 
    | 显示表格
    图 3  滇杨不定芽生根诱导
    Figure 3  Induction of adventitious rooting in P. yunnanensis

    图4可见:当头孢霉素质量浓度为0时,农杆菌生长迅速,但随着头孢霉素质量浓度的增加,农杆菌的数量逐渐减少,当头孢霉素质量浓度≥200 mg·L−1时,可较好地抑制农杆菌的生长,此时,农杆菌数量为0 (图4)。此外,将叶盘接种至含有不同质量浓度头孢霉素(0、100、200、300和400 mg·L−1)培养基中进行培养,结果表明头孢霉素质量浓度为0时,叶盘分化率为97.20%,随着头孢霉素质量浓度的增加,叶盘的分化率无显著差异(表4)。因此,选取200 mg·L−1头孢霉素作为后续抑制农杆菌生长的最佳质量浓度。

    图 4  不同质量浓度头孢霉素对农杆菌的抑制
    Figure 4  Inhibition of different concentration of cefotaxime on A. tumefaciens
    表 4  头孢霉素对滇杨不定芽分化的影响
    Table 4  Effect of cefotaxime on regeneration of the adventitious buds of P. yunnanensis
    头孢霉素质量
    浓度/(mg·L−1)
    诱导率/%生长状况
    097.20±4.79 a不定芽多,生长正常 
    10088.90±12.73 a不定芽较多,生长正常
    20083.30±8.35 a不定芽较多,生长正常
    30083.30±8.35 a不定芽较多,生长正常
    40083.30±8.35 a不定芽较多,生长正常
      说明:数据为平均值±标准差。同列不同小写字母表示不同组合间差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    表5可知:当卡那霉素质量浓度为0时,叶盘分化率为88.90%。随着卡那霉素质量浓度的增加,叶盘分化率急剧下降。当卡那霉素质量浓度≥20 mg·L−1时,叶盘生长速度缓慢,叶盘开始变黄甚至褐化,且分化率均为0。因此,选取20 mg·L−1卡那霉素对滇杨转化植株进行抗性筛选。

    表 5  不同质量浓度卡那霉素对叶盘分化的影响
    Table 5  Effects of different concentrations of kanamycin on leaf disc differentiation
    卡那霉素质量
    浓度/(mg·L−1)
    诱导率/%生长状况
    0 88.90±12.73 a 产生大量不定芽
    10 38.90±12.73 b 产生少量不定芽
    20 0.00±0.00 c 生长速度缓慢,无不定芽的形成
    30 0.00±0.00 c 叶盘变黄
    40 0.00±0.00 c 叶盘变黑死亡
      说明:数据为平均值±标准差。同列不同小写字母表示不同组合间差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    图5可知:菌液D(600)=0.2时的转化率显著高于0.6和1.0时 (P<0.05),此时转化率最高(50%),随着D(600)的增加,转化率明显降低,可能由于较高的D(600)对叶盘产生了毒害作用(图5A);侵染时间为5 min时,转化率显著高于10和15 min,随着侵染时间的增加,转化率呈下降趋势(图5B);共培养2 d时,转化率最高,而较短的共培养时间和较长的共培养时间均导致转化效率降低,这是由于时间较短不利于基因与外植体整合,而时间较长会对叶盘造成伤害(图5C)。因此,菌液D(600)为0.2,侵染时间为5 min,共培养时间为2 d时,转化效率最高。

    图 5  不同因素对滇杨转化率的影响
    Figure 5  Effects of different factors in the transformation efficiency of P. yunnanensis

    通过农杆菌转化共获得44株抗性植株,分别取抗性植株叶片和茎段进行GUS染色。图6表明:有20株的叶片和茎段均显蓝色,说明GUS基因已成功转入滇杨并且能顺利表达。进一步提取经GUS染色鉴定的基因组DNA,进行GUS基因(预期2 239 bp)的PCR扩增,结果显示:经染色鉴定为阳性的植株均可扩增出清晰的GUS基因条带(图7)。最终获得阳性植株20株,阳性率为45.45%。

    图 6  再生植株GUS染色结果
    Figure 6  GUS staining results of regenerated plants
    图 7  GUS基因PCR检测
    Figure 7  PCR analysis of GUS gene

    杨树Populus作为乔木树种的模式植物,一些种的再生体系已得到广泛研究,其中辽宁杨P.×liaoningensis和河北杨P. hopeiensis在以叶片为外植体进行愈伤组织诱导和不定芽分化时,均以MS为最佳培养基[78],而大青杨P. ussuriensis和毛果杨P. trichocarpa则以WPM培养基较为适宜[910]。本研究采用MS为基本培养基时,滇杨叶片外植体褐化较严重,而1/2 MS基本培养基中的外植体呈嫩绿色,说明1/2 MS培养基适合滇杨叶片外植体的培养,该结果也与张春霞等[5]的研究结果一致。表明不同杨树种的外植体愈伤组织和不定芽生长所需要的无机元素和营养物质具有差异性[1113]

    植物生长调节剂的种类和质量浓度对植物愈伤组织和不定芽的诱导至关重要[1415]。本研究选取了不同质量浓度的TDZ和NAA进行组合添加至愈伤组织及不定芽诱导培养基中,发现TDZ质量浓度为0.005 mg·L−1时,叶盘的愈伤组织诱导率较高,而当TDZ质量浓度为0.001 mg·L−1时,愈伤组织诱导率较低。同时,适宜质量浓度的NAA (0.010 mg·L−1)与低质量浓度的TDZ (0.002 mg·L−1)对不定芽的诱导有明显的促进作用。该结果与乌日罕等[8]对河北杨的研究结果一致。此外,杨树不定芽的生根是其再生的关键步骤[16],青海青杨P. cathayana var. qinghai、胡杨P. euphratica和金叶杨P. nigra ‘Jinye’的最佳生根培养基为1/2 MS + IBA,生根率可达90%以上[1719],而彭言劼等[20]筛选出大叶杨P. lasiocarpa的最适生根培养基为1/2 MS + NAA。辛培尧等[21]研究发现:滇杨不定芽在1/2 MS + 0.020 mg·L−1NAA生根培养基中进行培养,10 d开始生根。本研究在1/2 MS + 0.010 mg·L−1 NAA + 0.100 mg·L−1 IBA培养基中,不定芽提前至5 d开始生根,且根系粗壮,须根多,生根率高达96.7%。说明采用IBA与NAA的组合更有利于滇杨不定芽的生根诱导。

    在卡那霉素抗性筛选中,发现当卡那霉素质量浓度为20 mg·L−1时,滇杨叶盘的生长受到严重抑制,而李春利等[22]研究表明:当卡那霉素质量浓度为30 mg·L−1时,毛白杨P. tomentosa愈伤组织不能分化形成不定芽。说明不同树种的不同受体材料对筛选剂的敏感度不同,因此选择合适的筛选剂质量浓度对获得转化植株至关重要[23]。此外,LI等[24]选用250 mg·L−1头孢霉素作为毛果杨的抑菌浓度。而本研究发现:200 mg·L−1头孢霉素就能完全抑制农杆菌生长,且对滇杨不定芽的生长影响较小。农杆菌质量浓度、侵染时间及共培养时间对植物的遗传转化效率起到重要作用[2527]。本研究对这3个因素分析发现:当菌液吸光度为0.2,侵染时间为5 min,共培养为2 d时,最有利于滇杨的遗传转化,这与LI等[24]在毛果杨中的研究结果相似。

    本研究以滇杨叶片为外植体,探讨了植物生长调节剂对叶片愈伤组织、不定芽诱导及其生根的影响,成功建立了滇杨离体叶片再生体系,并在此基础上,通过卡那霉素抗性筛选,利用农杆菌介导法从菌液吸光度、侵染时间和共培养时间开展了较为系统的研究,构建了滇杨的遗传转化体系。

  • 图  1  黄槽毛竹叶绿体基因组图谱

    Figure  1  Genome map of the chloroplast of Ph. edulis f. luteosulcata

    图  2  黄槽毛竹叶绿体基因组的重复分析

    Figure  2  Repeat analysis of chloroplast genomes of Ph. edulis f. luteosulcata

    图  3  黄槽毛竹与其他毛竹变型的叶绿体基因组序列变异比较

    Figure  3  Comparison of chloroplast genome sequence variation between Ph. edulis f. luteosulcata and other subspecies in moso bamboo

    图  4  黄槽毛竹与其他毛竹变型的顺式剪切基因比较和叶绿体基因组核苷酸多样性(Pi)分析

    Figure  4  Comparison of the cis-splicing genes and analysis of nucleotide diversity (Pi) of cp genomes between Ph. edulis f. luteosulcata and other subspecies in moso bamboo

    图  5  基于叶绿体全基因组序列重建的黄槽毛竹在刚竹属中的系统进化关系

    Figure  5  Phylogenetic relationship of Ph. edulis f. luteosulcata based on whole-chloroplast genome sequences

    表  1  黄槽毛竹叶绿体基因组的基因列表

    Table  1.   Gene of the Ph. edulis f. luteosulcata chloroplast genome

    基因类别基因分组基因列表
    光合作用基因ATP合酶亚基atpAatpBatpEatpF*、atpHatpI
    依赖ATP的Clp蛋白酶蛋白水解亚基clpP
    光合系统Ⅱ亚基psbApsbBpsbCpsbDpsbEpsbFpsbHpsbIpsbJpsbKpsbLpsbMpsbNpsbTpsbZ
    NADH脱氢酶亚基ndhA*、ndhB*、ndhB*、ndhCndhDndhEndhFndhGndhHndhIndhJndhK
    细胞色b/f 复合物亚基petApetB*、petD*、petGpetLpetN
    光合系统Ⅰ亚基psaApsaBpsaCpsaIpsaJ
    光合系统Ⅰ组件ycf2、 pafI (ycf3)** 、ycf2
    光合系统Ⅱ组件pafⅡ (ycf4)
    二磷酸核酮糖羧化酶亚基rbcL
    表达相关基因核糖体大亚基rpl14、rpl16*、rpl20、rpl22、rpl23、rpl23rpl32 、rpl33 、rpl36、rpl2*、rpl2*
    依赖DNA的RNA 聚合酶rpoArpoBrpoC1 、rpoC2*
    核糖体小亚基rps2、rps3、rps4、rps7、rps7rps8、rps11、rps12 、rps12rps14、rps15、rps15rps16*、rps18、rps19、rps19
    rRNA基因rrn16Srrn23Srrn4.5Srrn5Srrn5Srrn4.5Srrn23Srrn16S
    tRNA基因trnA-UGC*、trnA-UGC*、trnC-GCAtrnD-GUCtrnE-UUCtrnF-GAAtrnG-GCCtrnH-GUGtrnH-GUGtrnI-CAUtrnI-CAUtrnI-GAU*、trnI-GAU*、trnK-UUU*、trnL-CAAtrnL-CAAtrnL-UAA*、trnL-UAGtrnM-CAUtrnM-CAUtrnM-CAUtrnN-GUUtrnN-GUUtrnP-UGGtrnQ-UUGtrnR-ACGtrnR-ACGtrnR-UCUtrnS-CGA*、trnS-GCUtrnS-GGAtrnS-UGAtrnT-GGUtrnT-UGUtrnV-GACtrnV-GACtrnV-UAC*、trnW-CCAtrnY-GUA
    其他基因C型细胞色素合成基因ccsA
    胞膜蛋白cemA
    成熟酶matK
    翻译起始因子infA
      说明:加粗代表多拷贝的基因;*表示带1个内含子的基因;**表示带2个内含子的基因。
    下载: 导出CSV

    表  2  黄槽毛竹和绿槽毛竹、毛竹原变种的叶绿体基因差异

    Table  2.   Chloroplast gene differences among Ph. edulis f. luteosulcata, Ph. edulis f. bicolor, and Ph. edulis var. pubescens

    项目黄槽毛竹毛竹绿槽毛竹
    蛋白编码基因数量858483
    转运RNA数量
    核糖体RNA数量
    蛋白质编码基因差异rps12 (2)、ycf2 (2)rps12、ycf68(2) rps12、ycf68
    转运RNA差异trnG-GCCtrnS-CGAtrnG-UCCtrnG-UCCtrnG-GCCtrnG-UCC
      说明:(2)代表拷贝数为2;−表示未检测到。
    下载: 导出CSV
  • [1] ZHAO Hansheng, SUN Shuai, DING Yulong, et al. Analysis of 427 genomes reveals moso bamboo population structure and genetic basis of property traits [J/OL]. Nature Communications, 2021, 12(1): 5466[2024-01-01]. doi: 10.1038/s41467-021-25795-x.
    [2] ZHAO Hansheng, WANG Jian, MENG Yufei, et al. Bamboo and rattan: nature-based solutions for sustainable development [J]. The Innovation, 2022, 3(6): 37 − 38.
    [3] 郑钧, 吴仁武, 史琰, 等. 竹类植物的主要环境效应研究进展[J]. 浙江农林大学学报, 2017, 34(2): 374 − 380.

    ZHENG Jun, WU Renwu, SHI Yan, et al. Research progress on environmental effects of bamboo: a review [J]. Journal of Zhejiang A&F University, 2017, 34(2): 374 − 380.
    [4] 史军义, 周德群, 马丽莎, 等. 中国竹类多样性及其重要价值[J]. 世界竹藤通讯, 2020, 18(3): 55 − 65, 72.

    SHI Junyi, ZHOU Dequn, MA Lisha, et al. Diversity and important value of bamboos in China [J]. World Bamboo and Rattan, 2020, 18(3): 55 − 65, 72.
    [5] MAHAPATRA K, BANERJEE S, DE S, et al. An insight into the mechanism of plant organelle genome maintenance and implications of organelle genome in crop improvement: an update [J/OL]. Frontiers in Cell and Developmental Biology, 2021, 9: 671698[2024-01-01]. doi: 10.3389/fcell.2021.671698.
    [6] HOLLINGSWORTH P M. Refining the DNA barcode for land plants [J]. Proceedings of the National Academy of Sciences, 2011, 108(49): 19451 − 19452.
    [7] HUANG Yuying, LI Jing, YANG Zerui, et al. Comprehensive analysis of complete chloroplast genome and phylogenetic aspects of ten Ficus species [J/OL]. BMC Plant Biology, 2022, 22(1): 253[2024-01-01]. doi: 10.1186/s12870-022-03643-4.
    [8] ZHANG Wujun, ZHANG Zhaolei, LIU Baocai, et al. Comparative analysis of 17 complete chloroplast genomes reveals intraspecific variation and relationships among Pseudostellaria heterophylla (Miq. ) Pax populations [J/OL]. Frontiers in Plant Science, 2023, 14: 1163325[2024-01-01]. doi: 10.3389/fpls.2023.1163325.
    [9] JING Wenxuan, HU Bo, WAN Rou, et al. A complete chloroplast genome of bamboo cultivar Phyllostachys edulis f. bicolor (Poaceae: Bambusoideae) [J]. Mitochondrial DNA Part B, 2023, 8(4): 532 − 535.
    [10] HUANG Nianjun, LI Jiangping, YANG Guangyao, et al. Two plastomes of Phyllostachys and reconstruction of phylogenic relationship amongst selected Phyllostachys species using genome skimming [J]. Mitochondrial DNA Part B, 2020, 5(1): 69 − 70.
    [11] GAO Liqin, LI Yonglong, ZHANG Wengen, et al. The complete chloroplast genome of Phyllostachys edulis f. curviculmis (Bambusoideae): a newly ornamental bamboo endemic to China [J]. Mitochondrial DNA Part B, 2021, 6(3): 941 − 942.
    [12] LIU Xinmiao, LIU Lei, LI Lubin, et al. The complete chloroplast genome of Phyllostachys edulis f. tubiformis (Bambusoideae): a highly appreciated type of ornamental bamboo in China [J]. Mitochondrial DNA Part B, 2022, 7(1): 185 − 187.
    [13] 方伟. 中国经济竹类 [M]. 北京: 科学出版社, 2015.

    FANG Wei. Chinese Economic Bamboo [M]. Beijing: Science Press, 2015.
    [14] CHEN Shifu, ZHOU Yanqing, CHEN Yaru, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor [J]. Bioinformatics, 2018, 34(17): i884 − i890.
    [15] JIN Jianjun, YU Wenbin, YANG Junbo, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes [J/OL]. Genome Biology, 2020, 21(1): 241[2024-01-01]. doi: 10.1101/256479.
    [16] BEIER S, THIEL T, MÜNCH T, et al. MISA-web: a web server for microsatellite prediction [J]. Bioinformatics, 2017, 33(16): 2583 − 2585.
    [17] NAKAMURA T, YAMADA K D, TOMII K, et al. Parallelization of MAFFT for large-scale multiple sequence alignments [J]. Bioinformatics, 2018, 34(14): 2490 − 2492.
    [18] MINH B Q, SCHMIDT H A, CHERNOMOR O, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era [J]. Molecular Biology and Evolution, 2020, 37(5): 1530 − 1534.
    [19] ZHANG Yunjie, MA Pengfei, LI Dezhu. High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae) [J/OL]. PLoS One, 2011, 6(5): e20596[2024-01-01]. doi: 10.1371/journal.pone.0020596.
    [20] 张韵洁, 李德铢. 叶绿体系统发育基因组学的研究进展 [J]. 植物分类与资源学报, 2011, 33(4): 365 − 375.

    ZHANG Yunjie, LI Dezhu, Advances in Phylogenomics based on complete chloroplast genomes [J]. Plant Diversity and Resources, 2011, 33(4): 365 − 375.
    [21] DOBROGOJSKI J, ADAMIEC M, LUCIŃSKI R. The chloroplast genome: a review [J/OL]. Acta Physiologiae Plantarum, 2020, 42(6): 98[2024-01-01]. doi: 10.1007/s11738-020-03089-x.
    [22] MA Pengfei, ZHANG Yuxiao, GUO Zhenhua, et al. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus [J/OL]. Scientific Reports, 2015, 5(1): 11608[2024-01-01]. doi: 10.1038/srep11608.
    [23] GUISINGER M M, KUEHL J V, BOORE J L, et al. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage [J]. Molecular Biology and Evolution, 2010, 28(1): 583 − 600.
    [24] WYSOCKI W P, CLARK L G, ATTIGALA L, et al. Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis [J/OL]. BMC Evolutionary Biology, 2015, 15(1): 50[2024-01-01]. doi: 10.1186/s12862-015-0321-5.
    [25] VIEIRA L D N, DOS ANJOS K G, FAORO H, et al. Phylogenetic inference and SSR characterization of tropical woody bamboos tribe Bambuseae (Poaceae: Bambusoideae) based on complete plastid genome sequences [J]. Current Genetics, 2016, 62(2): 443 − 453.
    [26] PEI Jialong, WANG Yong, ZHUO Juan, et al. Complete chloroplast genome features of Dendrocalamus farinosus and its comparison and evolutionary analysis with other Bambusoideae species [J/OL]. Genes, 2022, 13(9): 1519[2024-01-01]. doi: 10.3390/genes13091519.
    [27] 王国峥. 朴树叶绿体全基因组开发及三种生境类型下的朴树群体遗传学研究 [D]. 南京: 南京大学, 2020.

    WAN Guozheng. Development of Complete Chloroplast Genome Sequence of Celtis sinensis (Cannabaceae) and Its Genetics Research under Three Habitats [D]. Nanjing: Nanjing University, 2020.
  • [1] 江转转, 陈红, 鲍红艳, 代雨童.  狼尾草属叶绿体基因组特征与分子标记开发 . 浙江农林大学学报, 2025, 42(2): 365-372. doi: 10.11833/j.issn.2095-0756.20240371
    [2] 朱梦飞, 胡迎峰, 师雪芹.  濒危植物新绒苔叶绿体基因组特征及系统发育位置分析 . 浙江农林大学学报, 2025, 42(1): 55-63. doi: 10.11833/j.issn.2095-0756.20240356
    [3] 段春燕, 王晓凌.  重瓣榆叶梅全叶绿体基因组遗传特征分析 . 浙江农林大学学报, 2024, 41(3): 577-585. doi: 10.11833/j.issn.2095-0756.20230489
    [4] 李妍, 舒金平, 华克达, 张亚波, 应玥, 张威.  暗影饰皮夜蛾线粒体基因组全序列测定与分析 . 浙江农林大学学报, 2024, 41(4): 724-734. doi: 10.11833/j.issn.2095-0756.20240138
    [5] 杨勇, 张俊红, 韩潇, 张毓婷, 杨琪, 童再康.  闽楠bZIP基因家族鉴定和脱落酸处理下的表达分析 . 浙江农林大学学报, 2024, 41(2): 275-285. doi: 10.11833/j.issn.2095-0756.20230342
    [6] 吴民华, 叶晓霞, 谭靖怡, 梁秋婷, 吴子健, 黄琼林.  了哥王叶绿体基因组分析 . 浙江农林大学学报, 2024, 41(2): 297-305. doi: 10.11833/j.issn.2095-0756.20230412
    [7] 洪森荣, 张牧彤, 徐子林, 张钦荣, 罗雨欣, 田文慧, 王心雨.  ‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析 . 浙江农林大学学报, 2024, 41(1): 92-103. doi: 10.11833/j.issn.2095-0756.20230169
    [8] 魏亚楠, 龚明贵, 白娜, 苏佳杰, 姜霞.  梁山慈竹叶绿体基因组密码子偏好性分析 . 浙江农林大学学报, 2024, 41(4): 696-705. doi: 10.11833/j.issn.2095-0756.20230498
    [9] 王杰, 贺文闯, 向坤莉, 武志强, 顾翠花.  基因组时代的植物系统发育研究进展 . 浙江农林大学学报, 2023, 40(1): 227-236. doi: 10.11833/j.issn.2095-0756.20220313
    [10] 周佩娜, 党静洁, 邵永芳, 石遵睿, 张琳, 刘潺潺, 吴啟南.  荆芥HD-Zip基因家族的全基因组鉴定及分析 . 浙江农林大学学报, 2023, 40(1): 12-21. doi: 10.11833/j.issn.2095-0756.20220390
    [11] 刘俊, 李龙, 陈玉龙, 刘燕, 吴耀松, 任闪闪.  杜仲CONSTANS-like全基因组鉴定、系统进化及表达模式分析 . 浙江农林大学学报, 2022, 39(3): 475-485. doi: 10.11833/j.issn.2095-0756.20210385
    [12] 王倩清, 张毓婷, 张俊红, 刘慧, 童再康.  闽楠PLR基因家族鉴定及响应激素的表达分析 . 浙江农林大学学报, 2022, 39(6): 1173-1182. doi: 10.11833/j.issn.2095-0756.20220351
    [13] 陈娅欣, 周明兵.  毛竹长末端重复序列反转录转座子的全基因组特征及进化分析 . 浙江农林大学学报, 2021, 38(3): 455-463. doi: 10.11833/j.issn.2095-0756.20200458
    [14] 黄元城, 郭文磊, 王正加.  薄壳山核桃全基因组LBD基因家族的生物信息学分析 . 浙江农林大学学报, 2021, 38(3): 464-475. doi: 10.11833/j.issn.2095-0756.20200454
    [15] 阮诗雨, 张智俊, 陈家璐, 马瑞芳, 朱丰晓, 刘笑雨.  毛竹GRF基因家族全基因组鉴定与表达分析 . 浙江农林大学学报, 2021, 38(4): 792-801. doi: 10.11833/j.issn.2095-0756.20200544
    [16] 盛琰翔, 刘春菊, 王清华, 迟田英, 马洪超, 王志亮, 吴晓东, 包静月.  2013-2017年中国小反刍兽疫病毒P基因遗传演化特征 . 浙江农林大学学报, 2020, 37(6): 1136-1142. doi: 10.11833/j.issn.2095-0756.20190742
    [17] 李思巧, 韦伊, 刘洪妤, 张志东, 张野, 王丽华, 刘玉林.  花椒cpSSR标记开发及在种间、种内的通用性分析 . 浙江农林大学学报, 2019, 36(6): 1241-1246. doi: 10.11833/j.issn.2095-0756.2019.06.023
    [18] 黄笑宇, 许在恩, 郭小勤.  基于全基因组的毛竹同义密码子使用偏好性分析 . 浙江农林大学学报, 2017, 34(1): 120-128. doi: 10.11833/j.issn.2095-0756.2017.01.017
    [19] 王策, 秦静静, 甘红豪1, 李红, 罗志斌.  毛果杨全基因组磷酸根转运蛋白家族成员序列分析 . 浙江农林大学学报, 2012, 29(4): 516-526. doi: 10.11833/j.issn.2095-0756.2012.04.006
    [20] 管雨, 杨洋, 张智俊, 罗淑萍, 汤定钦.  毛竹大片段双元细菌人工染色体基因组文库的构建 . 浙江农林大学学报, 2011, 28(4): 527-532. doi: 10.11833/j.issn.2095-0756.2011.04.001
  • 期刊类型引用(0)

    其他类型引用(3)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240110

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/5/1037

图(5) / 表(2)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  66
  • PDF下载量:  17
  • 被引次数: 3
出版历程
  • 收稿日期:  2024-01-06
  • 修回日期:  2024-05-08
  • 录用日期:  2024-05-29
  • 网络出版日期:  2024-09-25
  • 刊出日期:  2024-09-25

黄槽毛竹叶绿体基因组及毛竹种下分类群的叶绿体基因组序列比较

doi: 10.11833/j.issn.2095-0756.20240110
    基金项目:  国家自然科学基金资助项目(31870656);浙江省自然科学基金重点项目(LZ19C160002)
    作者简介:

    刘萱 (ORCID: 0000-0003-4546-9331),从事毛竹生长发育研究。E-mail: liuxuan@stu.zafu.edu.cn

    通信作者: 周明兵 (ORCID: 0000-0001-5674-4410 ),教授,博士,从事毛竹生长发育研究。E-mail: zhoumingbing@zafu.edu.cn
  • 中图分类号: Q753;S795.7

摘要:   目的  对黄槽毛竹Phyllostachys edulis f. luteosulcata叶绿体基因组进行组装、注释和分析,并与其他毛竹Ph. edulis种下分类群比较叶绿体遗传信息差异和系统进化关系。  方法  利用高通量二代测序数据组装了黄槽毛竹的叶绿体基因组序列并进行了基因结构注释,通过生物信息学分析软件进行其组成、密码子偏好性、重复序列等分析。通过序列比对和系统进化分析,比较不同毛竹种下分类群的系统进化关系和基因组序列差异。  结果  黄槽毛竹的叶绿体基因组是长度为139 678 bp,包含132个基因的双环DNA;包含蛋白质编码基因85个、核糖体RNA (rRNA) 8个和转运RNA (tRNA) 39个。该基因组的最优密码子偏好使用以A/U碱基结尾,包含49个重复序列、55个简单重复序列(SSR)位点,其中简单重复序列最多的类型为A/T。利用叶绿体基因组序列构建的系统发育分析显示:黄槽毛竹与其他毛竹种下分类群共同组成单系分支,且与毛竹原变种Ph. edulis var. pubescens亲缘关系最近。基于7个毛竹种下分类群的叶绿体基因组序列和编码基因特征分析显示:毛竹种下分类群之间存在着编码基因数量和结构差异,编码区和非编码区存在较低程度序列变异。  结论  首次对毛竹种下分类群的叶绿体基因组进行比较分析,并揭示了这些种下分类群存在着一定程度的序列差异。这些变异资料可以用于毛竹种下分类群的鉴定比较。图5表2参27

English Abstract

简永旗, 吴家森, 盛卫星, 等. 间伐和林分类型对森林凋落物储量和土壤持水性能的影响[J]. 浙江农林大学学报, 2021, 38(2): 320-328. DOI: 10.11833/j.issn.2095-0756.20200355
引用本文: 刘萱, 邹龙海, 周明兵. 黄槽毛竹叶绿体基因组及毛竹种下分类群的叶绿体基因组序列比较[J]. 浙江农林大学学报, 2024, 41(5): 1037-1046. DOI: 10.11833/j.issn.2095-0756.20240110
JIAN Yongqi, WU Jiasen, SHENG Weixing, et al. Effects of thinning and stand types on litter stock and soil water-holding capacity[J]. Journal of Zhejiang A&F University, 2021, 38(2): 320-328. DOI: 10.11833/j.issn.2095-0756.20200355
Citation: LIU Xuan, ZOU Longhai, ZHOU Mingbing. Chloroplast genome of Phyllostachys edulis f. luteosulcata and comparison of chloroplast genome sequence of subspecies of Ph. edulis[J]. Journal of Zhejiang A&F University, 2024, 41(5): 1037-1046. DOI: 10.11833/j.issn.2095-0756.20240110
  • 毛竹Phyllostachys edulis为竹亚科Bambusoideae刚竹属Phyllostachys的散生竹种,广泛分布于东亚和东南亚,其种植面积高达460多万hm2[1]。由于生长速度快并且富含纤维素和半纤维素,毛竹是中国重要的固碳植物和工业原料来源[23]。毛竹的种下分类群具有丰富的变型和栽培变型,主要表现在秆型和秆色等方面的变异[4]。毛竹的秆色变异栽培种是优良的园林观赏竹类资源,主要包括花毛竹Ph. edulis f. taokiang、黄皮毛竹Ph. edulis f. holochrysa、绿槽毛竹Ph. edulis f. bicolor、黄槽毛竹Ph. edulis f. luteosulcata和绿槽龟甲竹Ph. edulis f. lücaoguijiazhu等。

    高等植物的叶绿体是半自主的细胞器,具有相对保守的遗传体系[5]。叶绿体基因组为母系遗传物质,结构保守,进化速率均衡,分别可以应用于目级、科级、属级、种级的系统发育关系重建[6]。HUANG等[7]通过叶绿体基因组系统进化分析,将11个榕属Ficus物种根据不同亚属进一步划分为3个支系,同时发现榕属与桑属Morus植物的属间亲缘关系。ZHANG等[8]通过对17个孩儿参Pseudostellaria heterophylla品种的完整叶绿体基因组序列分析,发现中国种群被聚类为单系群,其中不开花的品种形成了独立的亚支系,并且揭示了孩儿参的种内变异,进一步支持了叶绿体基因组可以阐明近缘物种之间亲缘关系的观点。迄今为止,绿槽毛竹[9]、厚壁毛竹Ph. edulis f. pachyloen[10]、青龙竹Ph. edulis f. curviculmis[11]和龟甲竹Ph. edulis f. tubiformis[12]的叶绿体基因组已发布;这些毛竹种下分类群的叶绿体基因组大小均为139 678 bp,包含126~132个基因,其中包括84~85个蛋白质编码基因、8个rRNA和34~39个tRNA。黄槽毛竹是毛竹中秆色变异类型的重要栽培类型,表现为茎秆节间槽部失绿而秆壁绿色,具有较好的观赏价值[13]。黄槽毛竹的叶绿体基因组资料未见报道,并且毛竹种下分类群的叶绿体基因组之间的比较缺乏研究。本研究将对黄槽毛竹的叶绿体基因组进行组装注释,分析其基因组特征,并比较与其他毛竹种下分类群之间的叶绿体遗传信息差异和系统进化关系。

    • 黄槽毛竹新鲜竹青采集于浙江农林大学东湖校区翠竹园(30°26′N, 119°72′E)。黄槽毛竹取植物枝条标本(编号LIUX202301),保存在浙江农林大学林业与生物技术学院植物标本室。

    • 取2 g新鲜竹青进行液氮研磨,随后转移到离心管,配合天根Plant Genomic DNA Kit (Cat.#DP305-03)试剂盒和其建议的操作流程进行基因组DNA提取。对检验合格后的DNA样品进行二代测序文库构建。在Illumina HiSeq 4000平台测序DNA测序,测序深度为60×。原始数据可经国家基因库生命大数据平台(CNGBdb)的样本编号CNS0314191获取。

    • 利用fastp[14]对二代测序数据进行过滤,去除接头和切除低质量的数据,具体参数设置为“-w 16 -5 25 -3 25 --length_required 50 --average_qual 25 -z 9”;通过GetOrganelle[15]对清洗后的数据进行叶绿体基因组进行组装;参数设置为“-F embplant_pt -o output -R 10 -t 10 -k 21,45,85,105”。原始数据上传至美国国家生物技术信息中心(NCBI) GenBank (https://www.ncbi.nlm.nih.gov),登录号为OR597504。使用CPGAVAS2对叶绿体基因组进行注释。使用CHLOROPLOT在线软件(https://irscope.shinyapps.io/Chloroplot/)绘制基因组图谱。

    • 利用MISA[16]在线软件检测简单重复序列,相应参数设置为:单核苷酸重复≥10,二核苷酸≥5,三核苷酸重复≥4,四、五和六核苷酸重复≥3。采用REPuter在线软件(https://bibiserv.cebitec.uni-bielefeld.de/reputer)验证黄槽毛竹的重复序列,包括正向重复序列(F)、反向重复序列(R)、互补重复序列(C)以及回文重复序列(P),设置参数为“Minimal repeat size = 15 bp,Edit distance ≥ 3 bp”。

    • 边界收缩与扩张分析使用Genepioneer平台(http://cloud.genepioneer.com:9929/)的CPJSdraw-边界图绘制-v1.0.0功能进行绘制。利用mVISTA进行多序列变异分析,比对运算模式设置为Shuffle-LAGAN,可视化参数设置为Y轴起始坐标为0。核苷酸多样性分析使用JSHYCloud平台(http://cloud.genepioneer.com:9929)进行分析绘制。

    • 序列比对使用软件Mafft v7.490[17],参数设置为默认条件。系统发育进化关系重建分别采用了贝叶斯推理法和最大似然法。贝叶斯推理法所采用的软件为MrBayes v3.2.7 (https://mybiosoftware.com/mrbayes-3-1-2-bayesian-inference-phylogeny.html),参数设置为“ngen=1 000 000, samplefreq=100, nchains = 4, temp = 0.1, burnin=2 500”。最大似然法采用了IQ-TREE v2.0.7[18]进行运算,最佳进化模型为程序自动选择。构建系统发育树所用分类群及其序列数据登录号:毛竹原变种Phyllostachys edulis f. pubescens (HQ337796)、黄槽毛竹(OR597504)、花毛竹(SRR6705383)、青龙竹(MW007169)、绿槽毛竹(OM084949)、黄皮毛竹(SRR6705382)、厚壁毛竹(MN537809)、淡竹Ph. nigra var. henonis (HQ154129)、筇竹Ph. glauca (MT657329)、红壳雷竹Ph. incarnata (OL457160)、桂竹Ph. reticulata (MN537808)、麻竹Dendrocalamus latifloru (FJ970916)、瓜多竹Guadua amplexifolia (KM365071)、巴西玉米竺Raddia brasiliensis (KJ870998)和莪莉竹Olyra latifolia (KF515509)。花毛竹和黄皮毛竹的基因组序列分别由NCBI获取的原始测序数据经GetOrganelle组装得到。

    • 黄槽毛竹绿色组织的二代测序获得42.78 Gb的原始数据,包含了285 198 507对读段。原始数据被清洗后,获得283 052 833对长度大于50 bp且平均碱基质量值大于25的读段。经GetOrganelle组装获得黄槽毛竹叶绿体基因组序列大小为139 678 bp。该叶绿体基因组具有典型的环状四分体结构,由大单拷贝区域(LSR)、小单拷贝区域(SSR)、2个反向互补重复区域(IRs)等4个部分组成,其中LSR长度为83 212 bp,SSR长度为12 870 bp,2个IRs (IRA和IRB)长度为43 596 bp (图1)。整个叶绿体基因组中GC含量为38.88%,LSC、SSC和IRs区域GC含量分别为36.97%、33.17%和44.22%,其中IRs区域GC含量明显高于2个单拷贝区域。

      图  1  黄槽毛竹叶绿体基因组图谱

      Figure 1.  Genome map of the chloroplast of Ph. edulis f. luteosulcata

    • 黄槽毛竹叶绿体基因组总共包含132个基因,包括85个蛋白质编码基因、39个tRNA、8个rRNA (表1)。根据生物学功能可以将85个蛋白质编码基因分为以下三大类:与光合作用相关基因共50个;与表达相关基因共31个;其他基因共4个。该基因组中共12个基因具有内含子结构[ndhAndhB(2)、petBpetDatpFrpl16、rpl2(2)、ycf3、rps16和rpoC2],1个蛋白质编码基因含有反式剪接基因(rps12)。由于绿槽毛竹具有绿色的节间秆槽和黄色的节间秆壁,与黄槽毛竹的秆色表型相反,本研究比较了黄槽毛竹、绿槽毛竹和毛竹原变种的叶绿体基因组信息,发现黄槽毛竹叶绿体基因组的蛋白质编码基因、tRNA与毛竹原变种有所差异(表2),相较于绿槽毛竹及毛竹原变种,黄槽毛竹的蛋白质编码基因缺少2个ycf68。黄槽毛竹叶绿体基因组的蛋白质编码基因数量也同毛竹原变种有所不同,前者比后者多1个编码基因rps12。

      表 1  黄槽毛竹叶绿体基因组的基因列表

      Table 1.  Gene of the Ph. edulis f. luteosulcata chloroplast genome

      基因类别基因分组基因列表
      光合作用基因ATP合酶亚基atpAatpBatpEatpF*、atpHatpI
      依赖ATP的Clp蛋白酶蛋白水解亚基clpP
      光合系统Ⅱ亚基psbApsbBpsbCpsbDpsbEpsbFpsbHpsbIpsbJpsbKpsbLpsbMpsbNpsbTpsbZ
      NADH脱氢酶亚基ndhA*、ndhB*、ndhB*、ndhCndhDndhEndhFndhGndhHndhIndhJndhK
      细胞色b/f 复合物亚基petApetB*、petD*、petGpetLpetN
      光合系统Ⅰ亚基psaApsaBpsaCpsaIpsaJ
      光合系统Ⅰ组件ycf2、 pafI (ycf3)** 、ycf2
      光合系统Ⅱ组件pafⅡ (ycf4)
      二磷酸核酮糖羧化酶亚基rbcL
      表达相关基因核糖体大亚基rpl14、rpl16*、rpl20、rpl22、rpl23、rpl23rpl32 、rpl33 、rpl36、rpl2*、rpl2*
      依赖DNA的RNA 聚合酶rpoArpoBrpoC1 、rpoC2*
      核糖体小亚基rps2、rps3、rps4、rps7、rps7rps8、rps11、rps12 、rps12rps14、rps15、rps15rps16*、rps18、rps19、rps19
      rRNA基因rrn16Srrn23Srrn4.5Srrn5Srrn5Srrn4.5Srrn23Srrn16S
      tRNA基因trnA-UGC*、trnA-UGC*、trnC-GCAtrnD-GUCtrnE-UUCtrnF-GAAtrnG-GCCtrnH-GUGtrnH-GUGtrnI-CAUtrnI-CAUtrnI-GAU*、trnI-GAU*、trnK-UUU*、trnL-CAAtrnL-CAAtrnL-UAA*、trnL-UAGtrnM-CAUtrnM-CAUtrnM-CAUtrnN-GUUtrnN-GUUtrnP-UGGtrnQ-UUGtrnR-ACGtrnR-ACGtrnR-UCUtrnS-CGA*、trnS-GCUtrnS-GGAtrnS-UGAtrnT-GGUtrnT-UGUtrnV-GACtrnV-GACtrnV-UAC*、trnW-CCAtrnY-GUA
      其他基因C型细胞色素合成基因ccsA
      胞膜蛋白cemA
      成熟酶matK
      翻译起始因子infA
        说明:加粗代表多拷贝的基因;*表示带1个内含子的基因;**表示带2个内含子的基因。

      表 2  黄槽毛竹和绿槽毛竹、毛竹原变种的叶绿体基因差异

      Table 2.  Chloroplast gene differences among Ph. edulis f. luteosulcata, Ph. edulis f. bicolor, and Ph. edulis var. pubescens

      项目黄槽毛竹毛竹绿槽毛竹
      蛋白编码基因数量858483
      转运RNA数量
      核糖体RNA数量
      蛋白质编码基因差异rps12 (2)、ycf2 (2)rps12、ycf68(2) rps12、ycf68
      转运RNA差异trnG-GCCtrnS-CGAtrnG-UCCtrnG-UCCtrnG-GCCtrnG-UCC
        说明:(2)代表拷贝数为2;−表示未检测到。
    • 根据黄槽毛竹叶绿体基因组RSCU(图2A)显示:共有64种密码子编码20种氨基酸,密码子中UUA的RSCU为最高值(1.97),CUG为最低值(0.33)。RSCU>1的有32个,其中以A/U结尾的密码子有30个,提示密码子偏好使用以A/U结尾的密码子。重复序列按照不同的排列方式可分为正向重复序列、反向重复序列、回文重复序列和互补重复序列4种类型。黄槽毛竹叶绿体基因组中共检测出49个重复序列,其中40个为正向重复序列,9个为回文重复序列,未发现反向和互补重复序列。所有重复序列长度为30~100 bp,其中序列长度在30~60 bp的重复序列占比较高,为85.7%。此外,在基因组中共检测出55个SSR位点(图2B),包括34个单核苷酸重复序列、4个二核苷酸重复序列、3个三核苷酸重复序列、13个四核苷酸重复序列和1个五核苷酸重复序列,其中简单重复序列最多的类型为A/T,共23个。

      图  2  黄槽毛竹叶绿体基因组的重复分析

      Figure 2.  Repeat analysis of chloroplast genomes of Ph. edulis f. luteosulcata

    • 高等植物的叶绿体通常为典型的四分体结构,但是常常发生SSC和LSC的扩张和收缩,导致四分体的边界发生变化。对黄槽毛竹与其他毛竹变型等7个种下分类群的叶绿体基因组四分体边界进行了分析(图3A)显示:黄槽毛竹叶绿体基因组四分体边界的扩张和收缩与其他分类群的高度一致,并且前者边界基因也与其他的高度统一。然而,黄槽毛竹、青龙竹和黄皮毛竹与其他毛竹种下分类群之间存在着边界编码基因编码长度不一致的情况,如前三者的rps19编码长度为216 bp,其他毛竹种下分类群的该基因编码282 bp。mVISTA分析显示(图3B):对比毛竹原变种,黄槽毛竹以及其他毛竹种下分类群的叶绿体基因组变异程度较低,仅在psbC、ycf3基因编码区与非编码区之间(psbA附近)具有一定程度的序列差异。此外,基于CPGview鉴定黄槽毛竹、毛竹原变种和绿槽毛竹之间的顺式剪切基因,黄槽毛竹有12个,后两者有11个。其中黄槽毛竹较后两者多获得rpoC2的顺式剪切形式(图4A)。将核苷酸多样性(Pi)截断点设定为Pi≥0.04,在7个毛竹种下分类群的基因组序列比对中发现了3个高变异区域(图4B)。这些高变异区均位于蛋白编码基因ndhF附近,主要表现在叶绿体基因组ndhFrpl32之间的SSC区。这些变异区域将可以用于毛竹种下分类群的分子鉴定依据。上述序列数据表明:毛竹种下分类群之间的序列变异较低,但不同分类群之间仍具有一些共有和特异的变异特征。

      图  3  黄槽毛竹与其他毛竹变型的叶绿体基因组序列变异比较

      Figure 3.  Comparison of chloroplast genome sequence variation between Ph. edulis f. luteosulcata and other subspecies in moso bamboo

      图  4  黄槽毛竹与其他毛竹变型的顺式剪切基因比较和叶绿体基因组核苷酸多样性(Pi)分析

      Figure 4.  Comparison of the cis-splicing genes and analysis of nucleotide diversity (Pi) of cp genomes between Ph. edulis f. luteosulcata and other subspecies in moso bamboo

    • 为了进一步了解黄槽毛竹在竹子分类群内进化关系,利用毛竹种下分类群(毛竹原变种、绿槽毛竹、厚壁毛竹、青龙竹、黄皮毛竹、花毛竹和黄槽毛竹),4个刚竹属物种(淡竹、筇竹、红壳雷竹和桂竹),麻竹、瓜多竹、外类群草本竹巴西玉米竺和莪莉竹的叶绿体全基因组进行系统进化树的重建。贝叶斯推理法重建的系统进化树(图5)显示:毛竹种下分类群为单系且毛竹分类群与淡竹为姐妹。毛竹分类群之中,黄槽毛竹与毛竹原变种为姐妹关系,两者与花毛竹和青龙竹组成的分支为姐妹关系。秆色变异表型与黄槽毛竹呈“反转”状态的绿槽毛竹和黄槽毛竹以及毛竹原变种之间,并没有组成一支,而是与黄皮毛竹组成姐妹类群。厚壁毛竹与本研究分析的其他6个毛竹种下分类群的为姐妹关系。

      图  5  基于叶绿体全基因组序列重建的黄槽毛竹在刚竹属中的系统进化关系

      Figure 5.  Phylogenetic relationship of Ph. edulis f. luteosulcata based on whole-chloroplast genome sequences

    • 植物叶绿体基因组已被广泛应用于植物分类、分子进化以及系统发育等相关研究。竹亚科作为禾本科中唯一木质化结构的类群,其种群数量较多、分布较广且有性繁殖周期长,因此在系统分类学上造成分类困难[19]。在分子水平上,黄槽毛竹所属的木本竹进化相对缓慢,较低的分子进化速度可能会使系统发育研究复杂化,因此对于这些较低阶元分类群,叶绿体系统发育基因组学是较好的解决方案[20]。叶绿体作为来源于蓝藻菌的独立细胞器[21],具有较为保守的特性,叶绿体基因组在包含大量遗传信息的同时相对于核基因组和线粒体基因组序列大小适中,便于测序;其次,核酸取代率相对较慢,进化速率保守,为深层研究植物系统发育和物种鉴定提供基础[22]

      高等植物的叶绿体基因组通常为闭合的环形四分体结构,长度为108~165 kb,约包含80个编码基因[23]。本研究测序结果显示:黄槽毛竹的叶绿体基因组核苷酸序列为139 678 bp,为典型的四分体结构;这与竹子叶绿体基因组的长度接近且结构形式一致[9, 24]。黄槽毛竹叶绿体基因组共注释132个基因,包含85个蛋白质编码基因。这与系统发育分析所显示关系最近的毛竹原变种的编码基因数量差异较小,后者84个[19]。但最近报道的绿槽毛竹叶绿体基因组包含了85个蛋白编码基因[9]。本研究对黄槽毛竹、毛竹原变种和绿槽毛竹的叶绿体蛋白编码基因的结构分析发现:三者之间的rpoC2存在顺式剪切结构的差异;并且三者之间的tRNA和蛋白质编码基因类型也有所差异。虽然毛竹种下分类群的叶绿体基因组的四分体边界保持一致,但是边界的蛋白编码基因rps19的编码长度分为216和282 bp两大类。此外,叶绿体基因组的mVISTA分析也支持毛竹种下分类群之间也存在序列变异的区域,并且核苷酸多样性分析显示高变异区均位于叶绿体基因组SSC区的ndhFrpl32之间。综合上述序列比较的信息,rpoC2的顺式剪切、rps19编码区长度以及高核酸多样性的ndhFndhF-rpl32区间等,可以用于毛竹种下分类群鉴定的潜在DNA片段。这些结果显示毛竹种下分类群的叶绿体基因组序列特征具有多样性。

      重复序列广泛分布于叶绿体基因组中,能够通过特异结合蛋白质促使核酸形成复杂结构[7, 21]。本研究黄槽毛竹叶绿体基因组中的SSR分析显示:相对于二、三、四、五和六核苷酸重复相比,单核苷酸重复出现的频次更高,AT/TA以及TC是最常见的二核苷酸重复基序,而GC/CG较少或并不存在。这与VIEIRA等[25]研究的20种热带木本竹结果相同。密码子在叶绿体基因组中也起着关键作用,本研究相对同义密码子使用频率显示:RSCU值>1的有32个,其中以A/U结尾的密码子有30个,提示密码子偏好使用以A/U结尾的密码子,这与其他竹类叶绿体基因组的分析一致[26]

      叶绿体全基因组能够较好地鉴定种间及以上分类群,但偶见利用于种内群体的鉴定,如朴树Celtis sinensis [27]。本研究利用全基因组序列重建了7个毛竹种下分类群的系统发育关系。结果显示:毛竹种下分类群为单系(100/90,后验概率/最大似然法自展值)。然而,JING等[9]研究显示:毛竹种下分类群与淡竹、筇竹和桂竹形成并系。本研究的系统发育分析显示:这3个物种并不与毛竹分类群形成并系。这可能是由于采样类群不一致甚至序列比对的结果差异所导致。因此,毛竹种下分类群具争议性的系统发育关系仍待更为全面和深入的研究。本研究重建的系统发育关系表明:黄槽毛竹与毛竹原变种亲缘关系最近,暗示两者有共同的起源;与黄槽毛竹表型相反的绿槽毛竹与黄皮毛竹为姐妹关系,表明两者有共同的最近祖先。目前,通过叶绿体全基因组序列重建的进化树在毛竹种下分类群之间的系统发育关系鉴定分辨率较低,仅能有效鉴定厚壁毛竹(厚壁毛竹+6个分类群)和黄皮毛竹(黄皮毛竹+绿槽毛竹)的分支。

    • 黄槽毛竹的叶绿体基因组是长度为139 678 bp的双环DNA,包含132个基因。这些基因包括85个蛋白质编码基因、8个核糖体RNA(rRNA)以及39个转运RNA(tRNA)。该基因组偏好使用以A/U碱基结尾的密码子,且简单重复序列最多的类型为A/T。在系统发育分析方面,黄槽毛竹与其他毛竹种下分类群共同构成了单系分支,且与毛竹原变种具有最近的亲缘关系。种下分类群的叶绿体基因组比较分析发现毛竹种下分类群之间存在序列差异。

参考文献 (27)

目录

/

返回文章
返回