留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析

洪森荣 张牧彤 徐子林 张钦荣 罗雨欣 田文慧 王心雨

洪森荣, 张牧彤, 徐子林, 等. ‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析[J]. 浙江农林大学学报, 2024, 41(1): 92-103. DOI: 10.11833/j.issn.2095-0756.20230169
引用本文: 洪森荣, 张牧彤, 徐子林, 等. ‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析[J]. 浙江农林大学学报, 2024, 41(1): 92-103. DOI: 10.11833/j.issn.2095-0756.20230169
TAO Jiangyue, LIU Lijuan, PANG Yong, et al. Automatic identification of tree species based on airborne LiDAR and hyperspectral data[J]. Journal of Zhejiang A&F University, 2018, 35(2): 314-323. DOI: 10.11833/j.issn.2095-0756.2018.02.016
Citation: HONG Senrong, ZHANG Mutong, XU Zilin, et al. Chloroplast genome characteristics and codon usage preference of Solanum tuberosum var. cormosus ‘Huaiyushan’[J]. Journal of Zhejiang A&F University, 2024, 41(1): 92-103. DOI: 10.11833/j.issn.2095-0756.20230169

‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析

DOI: 10.11833/j.issn.2095-0756.20230169
基金项目: 国家自然科学基金资助项目(32060092,31960079);2022年上饶市科技专项项目(2022A008);江西省科技厅重点研发计划一般项目(20192BBF60006,20202BBF63001);江西省教育厅科学技术研究项目(GJJ201704,GJJ211729);江西省现代农业产业技术体系建设专项(JXARS-13-赣东站);上饶市科技局平台载体建设项目(2020I001,2020J001)
详细信息
    作者简介: 洪森荣(ORCID: 0000-0002-9219-8303),教授,从事植物生物技术研究。E-mail: hongsenrong@163.com
  • 中图分类号: S532

Chloroplast genome characteristics and codon usage preference of Solanum tuberosum var. cormosus ‘Huaiyushan’

  • 摘要:   目的  分析‘怀玉山’高山马铃薯Solanum tuberosum var. cormosus ‘Huaiyushan’叶绿体基因组特征及密码子使用偏好性,为开展‘怀玉山’高山马铃薯叶绿体基因组密码子优化、叶绿体基因组改造,探索物种进化和增加外源基因表达等研究提供参考依据和理论基础。  方法  采用高通量测序技术对‘怀玉山’高山马铃薯叶绿体基因组进行测序,并利用生物信息学分析软件对组装和注释后的叶绿体基因组进行结构、基因组成及密码子偏好性分析。  结果  ‘怀玉山’高山马铃薯叶绿体基因组大小为155 296 bp,为经典的4段式结构。大单拷贝区(LSC)、小单拷贝区(SSC)和反向重复区(IR)长度分别为85 737、18 373、25 593 bp,总鸟嘌呤和胞嘧啶所占的比例(GC比例)为37.88%,共注释出133个基因,包含87个编码区(CDS)基因、37个tRNA基因、8个rRNA基因和1个假基因。‘怀玉山’高山马铃薯叶绿体基因组中共检测到38个简单重复序列位点(SSR位点,36个单碱基重复和2个双碱基重复)和32个长重复序列(16个正向重复和16个回文重复)。‘怀玉山’高山马铃薯叶绿体基因组核苷酸多样性为0~0.139 27,高变区主要分布在大单拷贝区和小单拷贝区,大单拷贝区trnL-UAA-trnF-GAAcemArps12-exon1-clpP1、clpP1基因变异率最高,小单拷贝区rpl32-trnL-UAGycf1基因变异率最高。‘怀玉山’高山马铃薯叶绿体基因组87个CDS基因的平均有效密码子数(ENC)为47.29,ENC>45的基因有60个,密码子偏性较弱。‘怀玉山’高山马铃薯叶绿体基因组密码子偏好以A、U结尾,使用偏性很大程度上受自然选择的影响,而受突变压力的影响小。CGU、AAA、CUU、GUU、GGA、GUA、GGU、UCA、GCU、CCU为‘怀玉山’高山马铃薯叶绿体基因组的10个最优密码子。  结论  ‘怀玉山’高山马铃薯与马铃薯栽培种S. tuberosum‘Desiree’亲缘关系较近。图5表3参41
  • 喜树Camptotheca acuminata是中国特有树种,属于蓝果树科Nyssaceae喜树属Camptotheca植物,因叶片含有抗癌物质喜树碱(camptothecin),被认为是重要药用植物。施肥是高效培育喜树、增加叶片产量的重要措施之一[1]。氮素是植物生长和产量形成的首要因素,植物吸收氮素的形式主要有铵态氮(NH4+-N)和硝态氮(NO3--N)。研究表明:合理增施氮肥可以促进植物生长,提升植物品质[2];除了影响光合作用,氮素还影响植物中抗氧化酶和膜脂过氧化物的生理代谢。过量氮肥会打破植物内活性氧代谢的平衡,破坏膜系统结构[3],导致植物生理系统的紊乱,影响植物类囊体数量和类囊体蛋白形成。psbApsbBpsbC是光系统Ⅱ核心复合体(PSⅡ)中重要的蛋白编码基因。卡尔文循环中,核酮糖-1, 5-二磷酸羧化酶(rubisco)是光合特性中碳同化的关键酶,主要由大、小2个亚基组成,在植物碳同化过程中具有重要作用,影响植物的光合特性[4]。不同植物在不同环境和生育期表现出对不同氮素形态吸收的显著性差异[5-6]。三叶青Tetrastigma hemsleyanum[7]和铁核桃Juglans sigillata[8]都表现出对NO3--N吸收的偏向性,而水稻Oryza sativa的叶绿素荧光动力学参数在2种氮素营养下没有差异[9];出现差异的原因可能与研究对象和条件都存在一定的相关性[10],但氮素形态对植物叶绿素荧光动力学过程及其参数的影响机制,目前尚无明确定论。总的来说,不同植物对氮素形态吸收具有偏向性,而后者直接影响了植物生长和叶绿素荧光特性,从而影响植物生长的产量和品质,因此合适的氮肥水平及形态对植物生长具有重要意义。近年来,关于氮肥对喜树生长的研究,主要集中在氮肥处理的不同水平[11],而尚未采用不同氮素形态的不同水平对喜树进行处理研究。因此,本研究以2年生喜树实生苗为实验材料,采用不同水平的铵态氮和硝态氮施肥处理,通过研究叶片生长、叶绿素荧光特性和叶绿体相关基因的表达,来探究适于喜树生长的最佳氮素水平和氮素形态,为喜树施肥栽培提供一定的理论依据。

    于2017年4月5日选取无病虫害、生长健壮、规格基本一致的优质2年生喜树实生苗270株(江西九江森淼绿化苗木公司),栽植在直径30.0 cm,高40.0 cm的花盆中。栽植基质为V(泥炭):V(珍珠岩):V(园土)=1:1:3,填土(10.0±0.2)kg·盆-1,土壤pH值为6.8,土壤电导率(EC)为0.305 mS·cm-1,水解氮为86.6 mg·kg-1,速效磷为3.2 mg·kg-1,速效钾为94.6 mg·kg-1。苗木于浙江农林大学平山试验基地(30°15′50.09″N,119°42′54.67″E)缓苗2月,缓苗期间正常浇水,待全部成活后,于6月18日搬于浙江农林大学温室内(30°15′30.39″N,119°43′26.92″E)进行施肥处理。

    试验以清水组为对照(ck),铵态氮处理组使用硫酸铵[(NH42SO4]施肥,施氮量分别为2.5(T1),5.0(T2),7.5(T3)和10.0(T4)g·株-1,硝态氮处理组使用硝酸钾(KNO3)施肥,施氮量分别为2.5(W1),5.0(W2),7.5(W3)和10.0(W4)g·株-1。所有盆栽苗均随机摆放,叶片之间无重叠,各盆配有直径40.0 cm的托盘,防止养分流失,每处理设置10株,重复3次。试验从6月18日至10月4日,隔15 d施肥1次。供试氮肥均为分析纯(AR99%),购自国药(硫酸铵CAS#: 7783-20-2,硝酸钾CAS: 7757-7)。施铵态肥时,肥料中加入7.0 μmol·L-1二氰二氨(C2H4N4, DCD)以抑制硝化反应,于0,30,60,90,105 d测定相关数据。试验期间进行正常的管理。

    叶长:分别于处理前后(0,105 d)选第2轮叶的倒数第3,4,5片叶子,用直尺测量苗木的叶长(测量3株,取平均值),从叶片与叶柄连接基部到叶片尖端,精确到0.1 cm。叶面积:于处理前后(0,105 d)选第2轮叶的倒数第3,4,5片叶子,用方格纸测定苗木的叶面积(测量3株,取平均值),从叶片与叶柄连接基部到叶片尖端的整个范围,精确到0.01 cm2。叶绿素a和叶绿素b:采集喜树顶端第5,6片叶,参照李合生[12]乙醇浸提法测定叶绿素质量分数。叶绿素荧光参数:采用Li-6400便携式光合仪(LI-COR,Lincoln,美国),于晴天上午9:00-11:00测定植株上位叶(第2轮叶倒数3,4片)叶绿素荧光参数。叶片暗适应30 min后测定初始荧光产量(Fo),随后施加1次强闪光(6 000 μmol·m-2·s-1,脉冲时间0.7 s)测最大荧光产量(Fm),然后在自然光下适应20 min,待荧光基本稳定再测得稳态荧光产量(Fs),最后给予1次强闪光,获得光适应下的最大荧光产量(Fm′)和最小荧光(Fo′)。各处理均3次重复。暗反应下PSⅡ最大光化学效率Fv/Fm=(Fm-Fo)/Fm,光系统下PSⅡ最大捕获效率Fv′/Fm′=(Fm′-Fo′)/Fm′,光化学猝灭系数qP=(Fm′-Fs)/(Fm′-Fo′),非光化学猝灭系数qNP=1-Fv′/Fm[13]。测定叶绿素荧光参数时,同时任选3株,从各株顶端6~9片叶中任意采集3片,放入液氮罐中带回实验室置于-80 ℃冰箱中保存,用于测定光合酶基因的表达。叶绿体基因的表达:采用RNAperp Pure Plant Kit(TIANGEN,北京)试剂提取喜树RNA;参照Reverse Transcriptase M-MLV(Takara,大连)试剂说明书合成cDNA,于-20 ℃储存备用。从美国国立生物技术信息中心(NCBI)上获得喜树叶绿体基因序列,以Actin为内参基因,用Primer Express software(Applied Bio systems)设计引物(表 1)。反转录产物cDNA稀释10倍后,用SYBR®Primix Ex TaqTM试剂盒(Takara,大连)进行实时荧光定量聚合酶链式反应(qRT-PCR),利用Light Cycler 480 Ⅱ(Roche)荧光定量仪器进行目的基因qRT-PCR表达分析,反应体系为20.0 μL,其中SYBR®Primix Ex TaqTM荧光染料10.0 μL,cDNA模板2.0 μL,上下游引物(10 μmol·L-1)各0.8 μL,双蒸水6.4 μL。两步法PCR扩增标准程序:预变性95 ℃ 30 s;聚合酶链式反应95 ℃ 5 s,61 ℃ 30 s,40个循环,每个样品重复3次,采用2-ΔΔCt算法分析结果。

    表  1  荧光定量PCR引物
    Table  1.  Primers sequence of target genes
    基因正向引物(5′→3′)反向引物(5′→3′)
    psbAACAGATTCGGTCAAGAGGAAGACAGTGAACCAGATACCTACTACAG
    psbBGGAGGAATCGCTTCTCATCATATCGGACGCTAAGATGGAATAGAC
    psbCGTCAATTATGTCTCGCCTAGAAGTGACCTACGAAGAAGAAGAATCCTAA
    RbcLCTTGGCAGCATTCCGAGTAACGTTGTCCATGTACCAGTAGAAGATT
    ActinGGTACTCGTTCACAACAACTGCTGCTGTCCATCGGGCAACTCATAG
    下载: 导出CSV 
    | 显示表格

    采用Excel 2007和SPSS 20.0软件对数据进行统计分析。采用单因素(one-way ANOVA)和Duncan法进行方差分析和多重比较(α=0.05)。利用Origin 9.0软件作图。图表中数据为平均值±标准差。

    表 2显示:喜树生长至105 d,叶长和叶面积均增加,处理组叶长和叶面积均显著高于ck(P<0.05)。随着氮素处理水平的提高,叶长和叶面积均呈先上升后下降趋势。与其他处理相比,T3和W3叶长和叶面积最大,叶长较ck(8.10±0.02)cm分别增加了32.3%和78.5%,叶面积较ck(25.43±0.15)cm2依次增加了130.0%和242.0%;且硝态氮处理水平下的叶长和叶面积均高于铵态氮,说明硝态氮更有利于植物生长。

    表  2  氮素处理水平对喜树叶长和叶面积的影响
    Table  2.  Effects of different concentrations of ammonium nitrogen and nitrate on leaf lengh of Camptotheca acuminata
    处理 叶长/cm 叶面积/cm2
    ck 13.00 ± 0.12 Ad 58.83 ± 0.14 Ae
    T1 15.80 ± 0.12 Ac 79.07 ± 0.08 Bd
    T2 16.70 ± 0.03 Bb 98.93 ± 0.08 Bc
    T3 16.70 ± 0.03 Bb 124.03 ± 0.12 Ba
    T4 16.40 ± 0.05 Bb 116.37 ± 0.31 Bb
    ck 13.00 ± 0.12 Ad 53.83 ± 0.14 Ae
    W1 19.20 ± 0.06 Ac 139.73 ± 0.24 Ad
    W2 20.80 ± 0.08 Ab 152.07 ± 0.35 Ab
    W3 23.20 ± 0.21 Aa 184.30 ± 0.05 Aa
    W4 20.50 ± 0.03 Ab 150.97 ± 0.12 Ac
    说明:不同小写字母表示同种氮素不同水平间差异显著(P < 0.05),不同大写字母表示同种氮素相同水平下与ck差异显著(P < 0.05)
    下载: 导出CSV 
    | 显示表格
    2.2.1   铵态氮不同处理水平对喜树叶片叶绿素质量分数的影响

    表 3可知:随生长时长,植株叶片叶绿素质量分数总体升高,除T4外,其他处理叶绿素质量分数60 d较30 d时有所下降,90 d时又有所上升,至105 d时达到最大值。相同生长时长下,不同处理水平间差异较小。生长至105 d时,T3叶绿素质量分数显著高于其余处理(P<0.05),较ck,T1,T2和T4依次上升了35.2%,17.2%,23.8%和15.2%。

    表  3  不同铵态氮处理水平对喜树叶片叶绿素质量分数的影响
    Table  3.  Effects of different concentrations of ammonium nitrogen and nitrate on chlorophyll content in C. acuminata
    处理 w叶绿素/(mg·g-1
    0 d 30 d 60 d 90 d 105 d
    ck 1.61 ± 0.26 Da 1.90 ± 0.26 Db 2.80 ± 0.10 Cb 3.96 ± 0.22 Ba 4.38 ± 0.16 Ac
    T1 1.63 ± 0.19 Da 4.54 ± 0.83 Aa 4.30 ± 0.08 Ca 3.72 ± 0.85 Ca 5.05 ± 0.12 ABb
    T2 1.61 ± 0.09 Da 4.78 ± 0.49 Aa 4.36 ± 0.19 Ca 4.72 ± 0.39 Ca 5.14 ± 0.36 ABb
    T3 1.67 ± 0.14 Da 5.25 ± 0.32 Ba 4.53 ± 0.17 Ca 4.80 ± 0.32 Ca 5.92 ± 0.11 Aa
    T4 1.61 ± 0.11 Da 4.88 ± 0.11 Ba 4.39 ± 0.15 ABa 4.26 ± 0.23 ABa 4.78 ± 0.22 Ab
    说明:不同小写字母表示同种氮素不同水平间差异显著(P < 0.05),不同大写字母表示同种氮素相同水平下与ck差异显著(P < 0.05)
    下载: 导出CSV 
    | 显示表格
    2.2.2   硝态氮不同处理水平对喜树叶片叶绿素质量分数的影响

    表 4表明:随处理时间的延长,硝态氮处理下喜树叶片叶绿素质量分数变化显著;但不同处理水平相比,质量分数差异较小。处理30~60 d,所有铵态氮处理下叶绿素质量分数均显著高于ck,各处理水平相比,W3处理下叶绿素质量分数最高,较ck和其他处理依次高出73.9%,44.5%,10.2%和31.3%。处理90~105 d,ck和W1的叶绿素质量分数继续上升,W2,W3和W4先上升后下降,105 d时,W1叶绿素质量分数高于其他处理,W4最低。

    表  4  不同硝态氮处理水平对喜树叶片叶绿素质量分数的影响
    Table  4.  Effects of different concentrations of ammonium nitrogen and nitrate on the chlorophyll content in C. acuminata
    处理 w叶绿素/(mg·g-1
    0 d 30 d 60 d 90 d 105 d
    ck 1.61 ± 0.17 Ca 1.90 ± 0.26 Ba 2.80 ± 0.10 ABc 4.38 ± 0.16 Ba 3.69 ± 0.22 Aab
    W1 1.65 ± 0.24 Ca 2.97 ± 0.84 Ba 3.37 ± 0.16 Ab 4.39 ± 0.10 Aa 4.41 ± 0.13 ABa
    W2 1.63 ± 0.12 Ba 3.84 ± 0.09 Aa 4.42 ± 0.38 Aab 3.68 ± 0.11 Abc 3.95 ± 0.11 Aa
    W3 1.67 ± 0.19 Ca 3.89 ± 0.14 Aa 4.87 ± 0.23 Aa 3.15 ± 0.49 Ac 3.83 ± 0.29 Ba
    W4 1.61 ± 0.11 Ba 3.45 ± 0.10 Aa 3.71 ± 0.28 Ab 3.22 ± 0.13 Ac 3.80 ± 0.35 Aa
    说明:不同小写字母表示同种氮素不同水平间差异显著(P < 0.05),不同大写字母表示同种氮素相同水平下与ck差异显著(P < 0.05)
    下载: 导出CSV 
    | 显示表格
    2.3.1   铵态氮不同处理水平对喜树叶片叶绿素荧光参数的影响

    图 1可知:至30 d,Fv/FmFv′/Fm′和qP呈显著上升趋势(P<0.05),qNP呈下降趋势,T4处理下Fv/FmFv′/Fm′和qP达到最大。到60 d时,T2和T3处理下Fv/FmFv′/Fm′和qP达到最大值,与ck相比,依次提高了1.4%,9.2%和84.8%。60 d时T3处理组各测试参数显著高于其他处理(P<0.05),T4显著低于其他处理。处理90~105 d,T2,T3和T4处理下Fv/FmFv′/Fm′和qP值呈下降趋势,T1处理下Fv/Fm下降,Fv′/Fm′和qP值呈上升趋势,T3依然高于其余处理。90 d时,T3处理下qNP显著低于其他同类处理,与ck相比下降了12.9%;105 d时,T4处理下Fv/FmFv′/Fm′和qP降到最小,显著低于其他处理;与ck相比,依次下降了11.1%,3.3%和5.6%。

    图  1  铵态氮不同处理水平对喜树叶片叶绿素荧光参数的影响
    Figure  1.  Effects of different concentrations of ammonium nitrogen on chlorophyll fluorescence characteristics of Camptotheca acuminata
    2.3.2   硝态氮不同处理水平对喜树叶片叶绿素荧光参数的影响

    图 2显示:30 d时,不同硝态氮处理下Fv/FmFv′/Fm′和qP显著上升,qNP显著下降,其中W4处理Fv/FmFv′/Fm′达到最大值,此后显著下降(P<0.05)。60 d时,W2和W3处理下Fv/FmFv′/Fm′和qP达到最大值,与ck相比,依次上升了2.6%,12.3%和115.8%;此时W3处理下这3个参数值显著高于其他处理。处理90~105 d,W2,W3和W4处理Fv/FmFv′/Fm′和qP值呈下降趋势;W1处理Fv/Fm下降,Fv′/Fm′和qP值上升;W3处理Fv′/Fm′和qP值依然高于其他处理,qNP显著低于其他处理,与ck相比下降了29.9%。至105 d时,W4处理Fv/FmFv′/Fm′和qP显著低于其他处理,与ck相比,依次下降了11.1%,3.3%和5.6%。

    图  2  铵态氮不同处理水平对喜树叶片叶绿素荧光参数的影响
    Figure  2.  Effects of different concentrations of nitrate nitrogen on chlorophyll fluorescence characteristics of C. acuminata

    以不同处理在0 d时的表达量为ck,增施氮肥对PSⅡ蛋白编码基因psbA图 3A图 3B),psbB图 3C图 3D),psbC图 3E图 3F)和光合酶基因RbcL图 3G图 3H)表达的影响显著(P<0.05)。由图 3可知:生长30 d,所有基因表达量显著提高。处理60 d时,T3处理下psbA表达上调,其余处理下所有基因表达显著下调(P<0.05),T3和W3处理下psbApsbCRbcL表达量显著高于其他同类处理(P<0.05),所有铵态氮处理psbB随处理水平的升高而升高,T2处理psbB表达量显著低于其他同类处理(P<0.05);与T1,T2和T4相比,T3处理psbA表达量上升了76.3%,50.8%和55.6%,psbC表达量上升了15.8%,16.5%和52.5%,RbcL表达量上升了66.8%,34.4%和39.9%。与W1,W2和W4相比,W3处理psbA表达量上升了71.9%,57.9%和75.6%;psbC表达量上升了8.7%,61.7%和15.4%;RbcL表达量上升了47.1%,22.3%和79.1%,处理90~105 d,T3和W3也保持显著优势,90 d时,T3较T1,T2和T4依次增加了88.9%,28.7%,379.1%,W3较W1,W2,W4依次增加了201.8%,52.3%和45.5%。105 d时,T4处理psbARbcL表达量显著低于其他同类水平处理,达到最小值。

    图  3  氮素形态和氮素水平对喜树叶绿体基因和光合酶基因表达的影响
    Figure  3.  Effects of different ammonium nitrogen and nitrate on the expression of chloroplast genes and photosynthetic enzyme genes in C. acuminata

    植物不同生长过程对氮肥需求不同,在合理范围内增施氮肥,可以显著促进植物生长,提高植物的产量和品质[14]。研究认为:与铵态氮相比,硝态氮具有更好的亲和力、氮转运和吸收效果[15]。本研究发现:铵态氮和硝态氮均提高了喜树的叶面积和叶长生长量,以T3和W3优势最为明显;相比而言,硝态氮处理下喜树生长更优;随着氮素水平的继续提高,喜树叶长和叶面积显著下降,说明植物吸收利用氮素存在一定限度,过量添加不利于生物量的积累[16]

    叶绿素参与光能的吸收传递及分配,是重要的光合色素;不同氮素形态对植物叶绿素合成及对光能吸收、传递、捕获和转换具有重要影响[17]。研究表明:适量增加氮素可促进米老排Mytilaria laosensis[18]和菘蓝Isatis indigotica[19]叶绿素合成,提高光合效率。本研究发现:合理范围内(T1~T3,W1~W3)增施氮肥,喜树叶片叶绿素合成和光合效率显著提高,以T3和W3效果最佳。对油麦菜Lactuca sativa var. longifoliaf[20]和黄瓜Cucumis sativus[21]而言,硝态氮处理下叶绿素相对含量和叶绿素荧光参数高于铵态氮处理;本研究同样发现,处理初期,相同氮素水平下,硝态氮处理组叶绿素质量分数和叶绿素荧光参数显著高于铵态氮,这可能与植物对氮素形态的吸收代谢有关。李晓静等[22]发现铵态氮以被动吸收为主,扩散进入生物膜并破坏生物膜结构,阻碍质子动力势的建立和碳同化物的形成;而硝态氮以主动吸收为主,进入生物膜并储存于液泡中,对植物体内离子平衡、碳同化物的形成有利。RAAB等[23]研究发现:高氮会造成叶绿素酶失活,叶绿素分解,光系统Ⅱ遭到破环,光子传递受阻,使植物发生光抑制现象;如小麦Triticum aestivum在高氮处理下,植物光合结构和功能受到伤害,光合特性降低[24]。本研究发现,处理中后期(60~105 d)高氮水平下(T4和W4),喜树的叶绿素质量分数、叶绿素荧光特性显著下降。原因可能是高铵态氮造成铵离子在体内积累,类囊体结构被破坏,质子形成受阻,形成氧化磷酸化,破坏碳水化合物的形成,导致叶绿素合成受阻和植物光合特性降低[25];高硝态氮处理破坏土壤理化性质,造成喜树缺素症,表现出对铁、镁等元素吸收的拮抗作用,从而影响植物光合特性[26]。不同氮素形态或水平对qNP影响无显著规律,其原因还需要进一步研究。

    光系统Ⅱ(PSⅡ)由多亚基复合组成,吸收外界光能并将激发能转移到反应中心;psbApsbBpsbC是编码PSⅡ反应中心蛋白质基因,RbcL基因编码核酮糖二磷酸羧化酶的大亚基。研究发现:增施氮肥可以提高植物碳同化能力,促进RbcL表达[27]。以甜菜Beta vulgaris[28]为例,铵态氮处理,其叶片中Rubisco酶基因表达高于硝态氮处理。本研究中,处理初期(30 d)不同氮素形态处理均促进了叶绿体基因的表达,相同水平下硝态氮处理RbcL的表达高于铵态氮;至中后期,T1和W1处理下RbcL的表达显著高于其他同类处理,说明适宜的铵态氮和硝态氮处理提高了植物的碳同化能力;相比之下,硝态氮较铵态氮更有利于提高喜树的碳同化能力,进一步说明了喜树是喜硝植物[29]。叶绿素荧光过程极其复杂,受各种刺激调控,植物碳同化和氮同化可能存在相应的竞争关系。本试验60 d时,叶绿体基因表达下调,可能原因是随着植物对长期环境变化的响应和适应,相关叶绿体基因表达受到影响[30-31]。环境胁迫造成PSⅡ中的蛋白质破坏,受蛋白编码基因刺激表达的影响,受损的蛋白质不断被新合成的蛋白质替代。SHAO等[32]发现:2.0 mg·L-1氮处理下,连苯三酚引起的铜绿假单胞菌Pseudomonas aeruginosa损害可通过psbA的刺激表达弥补。本实验中psbApsbBpsbC在不同氮素水平处理下表达差异不显著,可能是氮素刺激了PSⅡ的蛋白质合成,形成自我保护机制[33]。高氮处理下,植物光电子传递受阻、热耗散能力显著下降、碳同化能力下降,发生了明显的光抑制现象[34],也会造成叶绿体基因的表达显著下调。高铵态氮下铵离子的积累破坏了类囊体蛋白,降低了Rubisco酶活力,而高硝态氮下,植物对三价铁离子、二价镁离子的吸收下降,Rubisco酶活力受损,导致叶绿体基质中类囊体光驱电子的转移受阻碍,从而影响质子中铁硫-氧化蛋白的还原[35]

  • 图  1  ‘怀玉山’高山马铃薯叶绿体基因组图谱

    Figure  1  Chloroplast genome map of S. tuberosum var. cormosus ‘Huaiyushan’

    图  2  ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组大单拷贝区、小单拷贝区和反向重复区边界位置的比较

    Figure  2  Comparison on the boundary locations of large single copy region, small single copy region and inverted repeat region in chloroplast genomes of S. tuberosum var. cormosus ‘Huaiyushan’ and its 10 related species

    图  3  ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组密码子组成成分分析

    Figure  3  Composition analysis of chloroplast genome codons of S. tuberosum var. cormosus ‘Huaiyushan’ and its 10 related species

    图  4  ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组密码子GC3-GC12分析(A)、ENC-plot分析(B)和PR2-plot分析(C)

    Figure  4  GC3-GC12 analysis (A), ENC-plot analysis (B) and PR2-plot analysis (C) of chloroplast genome codons of S. tuberosum var. cormosus ‘Huaiyushan’ and its 10 related species

    图  5  基于叶绿体基因组的‘怀玉山’高山马铃薯及其18个近缘种的系统发育树

    Figure  5  Phylogenetic tree of S. tuberosum var. cormosus ‘Huaiyushan’ and its 18 related species based on chloroplast genome

    表  1  ‘怀玉山’高山马铃薯叶绿体基因功能分类

    Table  1.   Chloroplast gene functional classification of S. tuberosum var. cormosus ‘Huaiyushan’

    基因功能基因类型基因名基因数
    量/个
    光合作用   光系统Ⅰ psaApsaBpsaCpsaIpsaJ 5
    光系统Ⅱ psaJpsbApsbBpsbCpsbDpsbEpsbFpsbH*、psbIpsbKpsbLpsbM
    psbTpsbZ
    15
    NADH 脱氢 ndhAndhB*、ndhCndhDndhEndhFndhGndhHndhIndhJndhK 12
    细胞色素 b/f 复合体 petApetBpetDpetGpetLpetN 6
    ATP 合成酶 atpAatpBatpEatpFatpHatpI 6
    自我复制   核糖体大亚基蛋白质 rpl14、rpl16、rpl2*、rpl20、rpl22、rpl23*、rpl32、rpl33、rpl36 11
    核糖体小亚基蛋白质 rps11、rps12*、rps14、rps15、rps16、rps18、rps19、
    rps2、rps3、rps4、rps7*、rps8
    14
    核糖体大亚基 rbcL 1
    RNA 聚合酶 rpoArpoBrpoC1、rpoC2 4
    核糖体RNA rrn16*、rrn23*、rrn4.5*、rrn5* 8
    转运RNA trnA-UGC*、trnC-GCAtrnD-GUCtrnE-UUCtrnF-GAAtrnG-GCCtrnG-UCC
    trnH-GUGtrnI-CAU*、trnI-GAU*、trnK-UUUtrnL-CAA*、trnL-UAAtrnL-UAG
    trnM-CAUtrnN-GUU*、trnP-UGGtrnQ-UUGtrnR-ACG*、trnR-UCU
    trnS-GCUtrnS-GGAtrnS-UGAtrnT-GGUtrnT-UGUtrnV-GAC*、trnV-UAC
    trnW-CCAtrnY-GUAtrnfM-CAU
    37
    其他基因   成熟酶 matK 1
    蛋白酶 clpP1 1
    囊膜蛋白 cemA 1
    乙酰辅酶 A 羧化酶 accD 1
    c-型细胞色素合成基因 ccsA 1
    翻译起始因子 infA 1
    未知功能基因 保守假设叶绿体阅读框架 ycf1*、ycf15*、ycf2*、ycf3、ycf4 8
      说明:*表示该基因的数量有2个。
    下载: 导出CSV

    表  2  ‘怀玉山’高山马铃薯叶绿体基因组同义密码子的使用频率

    Table  2.   Relative synonymous codon usage (RSCU) of chloroplast genome of S. tuberosum var. cormosus ‘Huaiyushan’

    密码子氨基酸相对同义密码子
    使用频率
    数量/个密码子氨基酸相对同义密码子
    使用频率
    数量/个密码子氨基酸相对同义密码子
    使用频率
    数量/个
    GCAAla1.134 37401GGGGly0.731 07333CCUPro1.521 13432
    GCCAla0.718 53254GGUGly1.242 59566AGCSer0.342 61119
    GCGAla0.390 38138CACHis0.479 87149AGUSer1.191 94414
    GCUAla1.756 72621CAUHis1.520 13472UCASer1.197 70416
    AGAArg1.829 81491AUAIle 0.909 09680UCCSer0.955 85332
    AGGArg0.633 54170AUCIle 0.609 63456UCGSer0.595 97207
    CGAArg1.453 42390AUUIle 1.481 281 108UCUSer1.715 93596
    CGCArg0.368 9499CUALeu0.821 14391UAATer1.655 1748
    CGGArg0.424 85114CUCLeu0.434 72207UAGTer0.758 6222
    CGUArg1.289 44346CUGLeu0.403 22192UGATer0.586 2117
    AACAsn0.485 74315CUULeu1.297 86618ACAThr1.221 17421
    AAUAsn1.514 26982UUALeu1.812 39863ACCThr0.771 57266
    GACAsp0.408 80223UUGLeu1.230 66586ACGThr0.446 70154
    GAUAsp1.591 20868AAALys1.462 871 054ACUThr1.560 55538
    UGCCys0.556 2984AAGLys0.537 13387UGGTrp1.000 00490
    UGUCys1.443 71218AUGMet1.987 34628UACTyr0.397 12193
    CAAGln1.491 10712GUGMet0.012 664UAUTyr1.602 88779
    CAGGln0.508 90243UUCPhe0.722 19542GUAVal1.502 75547
    GAAGlu1.477 521 035UUUPhe1.277 81959GUCVal0.52473191
    GAGGlu0.522 48366CCAPro1.193 66339GUGVal0.524 73191
    GGAGly1.571 90716CCCPro0.742 96211GUUVal1.447 80527
    GGCGly0.454 45207CCGPro0.542 25154
    下载: 导出CSV

    表  3  ‘怀玉山’高山马铃薯叶绿体基因最优密码子筛选

    Table  3.   Optimal codon screening of chloroplast genome of S. tuberosum var. cormosus ‘Huaiyushan’

    密码子氨基酸相对同义密
    码子使用率
    密码子高表
    达相对概率
    密码子低表
    达相对概率
    ΔRSCU密码子氨基酸相对同义密
    码子使用率
    密码子高表
    达相对概率
    密码子低表
    达相对概率
    ΔRSCU
    CGU* Arg 1.289 44 0.631 58 1.428 57 0.796 99 UUU Phe 1.277 81 1.315 79 1.200 00 −0.115 79
    AAA* Lys 1.462 87 1.000 00 1.750 00 0.750 00 UUG Leu 1.230 66 0.750 00 0.600 00 −0.150 00
    CUU* Leu 1.297 86 1.022 73 1.500 00 0.477 27 AUU Ile 1.481 28 1.428 57 1.263 16 −0.165 41
    GUU* Val 1.447 80 0.800 00 1.250 00 0.450 00 CAU His 1.520 13 1.333 33 1.000 00 −0.333 33
    GGA* Gly 1.571 90 1.302 33 1.750 00 0.447 67 GAA Glu 1.477 52 1.469 39 1.000 00 −0.469 39
    GUA* Val 1.502 75 1.400 00 1.750 00 0.350 00 ACA Thr 1.221 17 1.000 00 0.444 44 −0.555 56
    GGU* Gly 1.242 59 1.302 33 1.500 00 0.197 67 CCA Pro 1.193 66 1.142 86 0.571 43 −0.571 43
    UCA* Ser 1.197 70 1.000 00 1.153 85 0.153 85 GAU Asp 1.591 20 1.600 00 1.000 00 −0.600 00
    GCU* Ala 1.756 72 2.105 26 2.250 00 0.144 74 AAU Asn 1.514 26 1.600 00 1.000 00 −0.600 00
    CCU* Pro 1.521 13 1.571 43 1.714 29 0.142 86 CAA Gln 1.491 10 1.615 38 1.000 00 −0.615 38
    AUG Met 1.987 34 1.000 00 1.000 00 0.000 00 AGU Ser 1.191 94 1.444 44 0.769 23 −0.675 21
    UAA Ter 1.655 17 1.200 00 1.200 00 0.000 00 CGA Arg 1.453 42 1.421 05 0.714 29 −0.706 76
    UGU Cys 1.443 71 1.000 00 1.000 00 0.000 00 UUA Leu 1.812 39 1.704 55 0.900 00 −0.804 55
    ACU Thr 1.560 55 1.600 00 1.555 56 −0.044 44 UCU Ser 1.715 93 1.888 89 0.769 23 −1.119 66
    GCA Ala 1.134 37 0.421 05 0.375 00 −0.046 05 AGA Arg 1.829 81 2.368 42 1.071 43 −1.296 99
    UAU Tyr 1.602 88 1.548 39 1.500 00 −0.048 39
      说明:标注*的密码子为最优密码子。
    下载: 导出CSV
  • [1] 尹明华, 谭鑫, 郑亚娇, 等. 高海拔生境下‘怀玉山’高山马铃薯和怀玉山本土农家薯块茎的转录组分析[J]. 核农学报, 2019, 33(7): 1330 − 1339.

    YIN Minghua, TAN Xin, ZHENG Yajiao, et al. The transcriptome analysis of alpine potato tuber and local farm potato tuber in Huaiyushan under high altitude habitats [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(7): 1330 − 1339.
    [2] 尹明华, 刘燕, 郁雪婷, 等. ‘怀玉山’高山马铃薯茎尖再生苗6 种病毒的 DAS-ELISA 检测与分析[J]. 浙江农业学报, 2017, 29(10): 1699 − 1705.

    YIN Minghua, LIU Yan, YU Xueting, et al. DAS-ELISA detection and analysis of six kinds of viruses in plantlets regenerated from Huaiyushan high mountain potato shoot-tips [J]. Acta Agriculturae Zhejiangensis, 2017, 29(10): 1699 − 1705.
    [3] 尹明华, 王钦, 张红蕾, 等. 高海拔生境下‘怀玉山’高山马铃薯和本土农家薯的全基因组重测序分析[J]. 基因组学与应用生物学, 2020, 39(3): 1198 − 1207.

    YIN Minghua, WANG Qin, ZHANG Honglei, et al. Whole genome re-sequencing analysis of alpine potato and local farm potato in Huaiyu Mountain under high altitude habitats [J]. Genomics and Applied Biology, 2020, 39(3): 1198 − 1207.
    [4] 洪森荣, 张铭心, 叶思雨, 等. 高山马铃薯种质资源遗传多样性的同工酶分析[J]. 浙江农业学报, 2018, 30(9): 1445 − 1453.

    HONG Senrong, ZHANG Mingxin, YE Siyu, et al. Genetic diversity analysis of alpine potato germplasm resources by isozyme [J]. Acta Agriculturae Zhejiangensis, 2018, 30(9): 1445 − 1453.
    [5] MEHMETOGLU E, KAYMAZ Y, ATES D, et al. The complete chloroplast genome sequence of Cicer echinospermum, genome organization and comparison with related species [J/OL]. Scientia Horticulturae, 2022, 296: 110912[2023-01-20]. doi: 10.1016/j.scienta.2022.110912.
    [6] SHENG Jiajing, YAN Mi, WANG Jia, et al. The complete chloroplast genome sequences of five Miscanthus species, and comparative analyses with other grass plastomes [J/OL]. Industrial Crops and Products, 2021, 162: 113248[2023-01-20]. doi: 10.1016/j.indcrop.2021.113248.
    [7] TANG Danfeng, WEI Fan, KASHIF M H, et al. Analysis of chloroplast differences in leaves of rice isonuclear alloplasmic lines [J]. Protoplasma, 2018, 255(3): 863 − 871.
    [8] LI Guoling, PAN Zonglian, GAO Shichen, et al. Analysis of synonymous codon usage of chloroplast genome in Porphyra umbilicalis [J]. Genes &Genomics, 2019, 41(10): 1173 − 1181.
    [9] DURET L. Evolution of synonymous codon usage in metazoans [J]. Current Opinion in Genetics &Development, 2002, 12(6): 640 − 649.
    [10] HERSHBERG R, PETROV D A. Selection on codon bias [J]. Annual Review of Genetics, 2008, 42: 287 − 299.
    [11] WANG Hongjun, MENG Tao, WEI Wenqiang. Analysis of synonymous codon usage bias in helicase gene from Autographa californicamultiple ucleopolyhedrovirus [J]. Genes &Genomics, 2018, 40(7): 767 − 780.
    [12] LONG Shiyu, YAO Huipeng, WU Qi, et al. Analysis of compositional bias and codon usage pattern of the coding sequence in Banna virus genome [J]. Virus Research, 2018, 258: 68 − 72.
    [13] 关惜今, 朱智国, 郑昊吉, 等. 马铃薯与其野生近缘种叶绿体基因组差异分析[J]. 云南师范大学学报(自然科学版), 2021, 41(4): 33 − 40.

    GUAN Xijin, ZHU Zhiguo, ZHENG Haoji, et al. Comparative analysis of plastid chloroplast genomes between potato and its wild relatives [J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2021, 41(4): 33 − 40.
    [14] ZHAO Chunbo, CHEN Shanshan, SUN Kai, et al. Sequencing and characterization the complete chloroplast genome of the potato, Solanum tuberosum L. [J]. Mitochondrial DNA Part B, 2019, 4(1): 953 − 954.
    [15] CHUNG H J, JUNG J D, PARK H W, et al. The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence [J]. Plant Cell Reports, 2006, 25: 1369 − 1379.
    [16] CHEN Shanshan, ZHAO Yanfei, ZHANG Jingying, et al. Characterization of the complete chloroplast genome of the Solanum tuberosum L. cv. Shepody (Solanaceae) [J]. Mitochondrial DNA Part B, 2021, 6(8): 2342 − 2344.
    [17] PARK T H. Complete chloroplast genome sequence of the wild diploid potato relative, Solanum acaule [J]. Mitochondrial DNA Part B, 2021, 6(3): 1189 − 1191.
    [18] PARK T H. Complete chloroplast genome sequence of the wild diploid potato relative, Solanum brevicaule [J]. Mitochondrial DNA Part B, 2019, 4(2): 4159 − 4160.
    [19] KHAN A R, PARK C E, PARK G S, et al. The whole chloroplast genome sequence of black nightshade plant (Solanum nigrum) [J]. Mitochondrial DNA Part A, 2015, 28(2): 169 − 170.
    [20] 尹明华, 卢咏琪, 罗怿文, 等. 怀玉山高山马铃薯脱落酸和环境胁迫诱导蛋白基因的克隆和序列分析[J]. 西南农业学报, 2021, 34(6): 1181 − 1187.

    YIN Minghua, LU Yongqi, LUO Yiwen, et al. Cloning and sequence analysis of abscisic acid and environmental stress inducible protein gene in alpine potato in Huaiyushan [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(6): 1181 − 1187.
    [21] 尹明华, 叶思雨, 宁本松, 等. 高山马铃薯脱毒苗DNA甲基化的MSAP分析[J]. 核农学报, 2019, 33(6): 1079 − 1087.

    YING Minghua, YE Siyu, NING Bensong, et al. MSAP analysis of genomic DNA methylation in virus-free plantlets of alpine potato [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(6): 1079 − 1087.
    [22] FENG Shangguo, ZHENG Kaixin, JIAO Kaili, et al. Complete chloroplast genomes of four Physalis species (Solanaceae): lights into genome structure, comparative analysis, and phylogenetic relationships [J/OL]. BMC Plant Biology, 2020, 20(1): 242[2023-01-20]. doi: 10.1186/s12870-020-02429-w.
    [23] ZHANG Tongwu, FANG Yongjun, WANG Xumin, et al. The complete chloroplast and mitochondrial genome sequences of Boeahygrometrica: insights into the evolution of plant organellar genomes [J/OL]. PLoS One, 2012, 7(1): e30531[2023-01-20]. doi: 10.1371/journal.pone.0030531.
    [24] 李连星, 彭劲谕, 王大玮, 等. 长爪栘[木衣]叶绿体基因组特征系统发育及密码子偏好性分析[J]. 生物工程学报, 2022, 38(1): 328 − 342.

    LI Lianxing, PENG Jinyu, WANG Dawei, et al. Chloroplast genome phylogeny and codon preference of Docynia longiunguis [J]. Chinese Journal of Biotechnology, 2022, 38(1): 328 − 342.
    [25] PROVAN J, POWELL W, HOLLINGSWORTH P M. Chloroplast microsatellites: new tools for studies in plant ecology and evolution [J]. Trends in Ecology &Evolution, 2001, 16(3): 142 − 147.
    [26] KAUNDUN S S, MATSUNOTO S. Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis [J]. Genome, 2002, 45: 1041 − 1048.
    [27] ZHANG Xinye, SHIRAISHI S, HUANG Minren. Analysis of genetic structure in population of Larix kaempferi by chloroplast SSR markers [J]. Hereditas, 2004, 26(4): 486 − 490.
    [28] ZHAO Yuhui, LU Dengxue, HAN Rongbing, et al. The complete chloroplast genome sequence of the shrubby cinquefoil Dasiphora fruticosa (Rosales: Rosaceae) [J]. Conservation Genetics Resources, 2018, 10(4): 675 − 678.
    [29] WANG Wenbin, YU Huan, WANG Jiahui, et al. The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa (Oleaceae) [J/OL]. International Journal of Molecular Sciences, 2017, 18(11): 2288[2023-01-20]. doi: 10.3390/ijms18112288.
    [30] KURLAND C, GALLANT J. Errors of heterologous protein expression [J]. Current Opinion in Biotechnology, 1996, 7(5): 489 − 493.
    [31] QIAN Wenfeng, ZHANG Jianzhi. Codon usage bias and nuclear mRNA concentration: correlation vs. causation [J/OL]. Proceedings of the National Academy of Sciences, 2021, 118: e2104714118[2023-01-20]. doi: 10.1073/pnas.2104714118.
    [32] GUSTAFSSON C, GOVINDARAJAN S, MINSHULL J. Codon bias and heterologous protein expression [J]. Trends in Biotechnology, 2004, 22(7): 346 − 353.
    [33] BUTT A M, NASRULLAH I, TONG Yigang. Genome-wide analysis of codon usage and influencing factors in chikungunya viruses [J/OL]. PLoS One, 2014, 9(3): e90905[2023-01-20]. doi: 10.1371/journal.pone.0090905.
    [34] BHATTACHARYYA D, UDDIN A, DAS S, et al. Mutation pressure and natural selection on codon usage in chloroplast genes of two species in Pisum L. (Fabaceae: Faboideae) [J]. Mitochondrial DNA Part A, 2019, 30(4): 664 − 673.
    [35] GU Wanjun, ZHOU Tong, MA Jianmin, et al. The relationship between synonymous codon usage and protein structure in Escherichia coli and Homo sapiens [J]. Biosystems, 2004, 73(2): 89 − 97.
    [36] INGVARSSON P K. Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula [J]. Molecular Biology and Evolution, 2006, 24(3): 836 − 844.
    [37] 尚明照, 刘方, 华金平, 等. 陆地棉叶绿体基因组密码子使用偏性的分析[J]. 中国农业科学, 2011, 44(2): 245 − 253.

    SHANG Mingzhao, LIU Fang, HUA Jinping, et al. Analysis on codon usage of chloroplast genome of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2011, 44(2): 245 − 253.
    [38] LIU Qingpo, XUE Qingzhong. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species [J]. Journal of Genetics, 2005, 84(1): 55 − 62.
    [39] PLOTKIN J B, KUDLA G. Synonymous but not the same: the causes and consequences of codon bias [J]. Nature Reviews Genetics, 2011, 12(1): 32 − 42.
    [40] ZHOU Zhipeng, DANG Yunkun, ZHOU Mian, et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription [J/OL]. Proceedings of the National Academy of Sciences, 2016, 113(41): E6117 − E6125[2023-01-20]. doi: 10.1073/pnas.1606724113.
    [41] ZHOU Tao, ZHU Honghong, WANG Jian, et al. Complete chloroplast genome sequence determination of Rheum species and comparative chloroplast genomics for the members of Rumiceae [J]. Plant Cell Reports, 2020, 39(6): 811 − 824.
  • [1] 陈梦瑶, 胡怡然, 郑志富, 潘天.  大豆IGT基因家族的全基因组鉴定及组织表达分析 . 浙江农林大学学报, 2025, 42(1): 64-73. doi: 10.11833/j.issn.2095-0756.20240354
    [2] 江转转, 陈红, 鲍红艳, 代雨童.  狼尾草属叶绿体基因组特征与分子标记开发 . 浙江农林大学学报, 2025, 42(2): 365-372. doi: 10.11833/j.issn.2095-0756.20240371
    [3] 朱梦飞, 胡迎峰, 师雪芹.  濒危植物新绒苔叶绿体基因组特征及系统发育位置分析 . 浙江农林大学学报, 2025, 42(1): 55-63. doi: 10.11833/j.issn.2095-0756.20240356
    [4] 李妍, 舒金平, 华克达, 张亚波, 应玥, 张威.  暗影饰皮夜蛾线粒体基因组全序列测定与分析 . 浙江农林大学学报, 2024, 41(4): 724-734. doi: 10.11833/j.issn.2095-0756.20240138
    [5] 刘萱, 邹龙海, 周明兵.  黄槽毛竹叶绿体基因组及毛竹种下分类群的叶绿体基因组序列比较 . 浙江农林大学学报, 2024, 41(5): 1037-1046. doi: 10.11833/j.issn.2095-0756.20240110
    [6] 段春燕, 王晓凌.  重瓣榆叶梅全叶绿体基因组遗传特征分析 . 浙江农林大学学报, 2024, 41(3): 577-585. doi: 10.11833/j.issn.2095-0756.20230489
    [7] 吴民华, 叶晓霞, 谭靖怡, 梁秋婷, 吴子健, 黄琼林.  了哥王叶绿体基因组分析 . 浙江农林大学学报, 2024, 41(2): 297-305. doi: 10.11833/j.issn.2095-0756.20230412
    [8] 魏亚楠, 龚明贵, 白娜, 苏佳杰, 姜霞.  梁山慈竹叶绿体基因组密码子偏好性分析 . 浙江农林大学学报, 2024, 41(4): 696-705. doi: 10.11833/j.issn.2095-0756.20230498
    [9] 周佩娜, 党静洁, 邵永芳, 石遵睿, 张琳, 刘潺潺, 吴啟南.  荆芥HD-Zip基因家族的全基因组鉴定及分析 . 浙江农林大学学报, 2023, 40(1): 12-21. doi: 10.11833/j.issn.2095-0756.20220390
    [10] 王杰, 贺文闯, 向坤莉, 武志强, 顾翠花.  基因组时代的植物系统发育研究进展 . 浙江农林大学学报, 2023, 40(1): 227-236. doi: 10.11833/j.issn.2095-0756.20220313
    [11] 刘俊, 李龙, 陈玉龙, 刘燕, 吴耀松, 任闪闪.  杜仲CONSTANS-like全基因组鉴定、系统进化及表达模式分析 . 浙江农林大学学报, 2022, 39(3): 475-485. doi: 10.11833/j.issn.2095-0756.20210385
    [12] 阮诗雨, 张智俊, 陈家璐, 马瑞芳, 朱丰晓, 刘笑雨.  毛竹GRF基因家族全基因组鉴定与表达分析 . 浙江农林大学学报, 2021, 38(4): 792-801. doi: 10.11833/j.issn.2095-0756.20200544
    [13] 陈娅欣, 周明兵.  毛竹长末端重复序列反转录转座子的全基因组特征及进化分析 . 浙江农林大学学报, 2021, 38(3): 455-463. doi: 10.11833/j.issn.2095-0756.20200458
    [14] 郑钢, 顾翠花, 林琳, 王杰.  20种千屈菜科植物rbcL基因密码子使用偏好性分析 . 浙江农林大学学报, 2021, 38(3): 476-484. doi: 10.11833/j.issn.2095-0756.20200390
    [15] 李思巧, 韦伊, 刘洪妤, 张志东, 张野, 王丽华, 刘玉林.  花椒cpSSR标记开发及在种间、种内的通用性分析 . 浙江农林大学学报, 2019, 36(6): 1241-1246. doi: 10.11833/j.issn.2095-0756.2019.06.023
    [16] 王树和, 周彩勤, 张奎望, 刘慧迪.  金叶女贞棒孢叶斑病菌的生物学特性、致病性及系统发育 . 浙江农林大学学报, 2019, 36(6): 1174-1181. doi: 10.11833/j.issn.2095-0756.2019.06.015
    [17] 陆军, 孙丽娟, 王晓荣, 吉泓睿, 倪晓详, 程龙军.  巨桉糖基转移酶基因EgrGATL1序列特征及表达分析 . 浙江农林大学学报, 2018, 35(4): 604-611. doi: 10.11833/j.issn.2095-0756.2018.04.004
    [18] 黄笑宇, 许在恩, 郭小勤.  基于全基因组的毛竹同义密码子使用偏好性分析 . 浙江农林大学学报, 2017, 34(1): 120-128. doi: 10.11833/j.issn.2095-0756.2017.01.017
    [19] 李洪滨, 朱诚棋, 周湘, 马良进, 苏秀.  红哺鸡竹异香柱菌的形态学和分子鉴定 . 浙江农林大学学报, 2016, 33(6): 1040-1044. doi: 10.11833/j.issn.2095-0756.2016.06.016
    [20] 王策, 秦静静, 甘红豪1, 李红, 罗志斌.  毛果杨全基因组磷酸根转运蛋白家族成员序列分析 . 浙江农林大学学报, 2012, 29(4): 516-526. doi: 10.11833/j.issn.2095-0756.2012.04.006
  • 期刊类型引用(13)

    1. 张兴月,陈金鑫,刘国元,余春梅,张健,姚彬,魏辉. 有刺枸骨和无刺枸骨在不同CO_2浓度下的光合能力分析. 安徽农学通报. 2024(04): 49-54 . 百度学术
    2. 张彬润. 叶面喷施氨基酸水溶肥对喜树生长及喜树碱含量的影响. 特种经济动植物. 2023(06): 73-74+77 . 百度学术
    3. 廖向研,谭鹰,邬桥平,刘志贤. 外源钙对干旱胁迫下喜树幼苗缓解效应. 温带林业研究. 2023(04): 21-26 . 百度学术
    4. 陈志青,刘梦竹,王锐,崔培媛,卢豪,魏海燕,张洪程,张海鹏. 纳米镁对水稻产量形成和氮素吸收利用的影响. 中国水稻科学. 2022(02): 195-206 . 百度学术
    5. 张海鹏,陈志青,王锐,卢豪,崔培媛,杨艳菊,张洪程. 氮肥配施纳米镁对水稻产量、品质和氮肥利用率的影响. 作物杂志. 2022(04): 255-261 . 百度学术
    6. 杜明慧,成玉婷,吴小莲,霍锦林,何子豪,陈永骥,何坤航,洪文泓,王海龙. 不同形态氮肥降低菜心吸收累积环丙沙星(CIP)的生理生化机制. 安徽农业大学学报. 2022(04): 630-637 . 百度学术
    7. 马道承,庞艳萍,田湘,王凌晖. 植物不同氮素形态配比施肥及其分子机制研究进展. 西部林业科学. 2022(05): 164-170 . 百度学术
    8. 崔云浩,刘俊清,张帆,王军娥,王艳芳,石玉. 不同氮素形态配比对辣椒幼苗生长及生理特性的影响. 江苏农业科学. 2022(20): 161-168 . 百度学术
    9. 郑钢,顾翠花,林琳,王杰. 20种千屈菜科植物rbcL基因密码子使用偏好性分析. 浙江农林大学学报. 2021(03): 476-484 . 本站查看
    10. 逯玉兰,李广,闫丽娟,燕振刚,聂志刚,董莉霞. 基于APSIM模型的不同氮肥方案小麦叶面积指数的模拟研究. 甘肃农业大学学报. 2020(03): 38-44+53 . 百度学术
    11. 时怡,梁博文,胡俊峰,董玥琪,杜培华,李中勇,张学英,徐继忠. 不同形态及浓度氮素对矮砧红富士苹果幼树生长和氮素吸收、运转的影响. 河南农业科学. 2020(09): 112-119 . 百度学术
    12. 刘向东,尹陈茜,陈雪峰,甘德欣,于晓英,许璐. 废弃物基质对高温气候下‘金丝皇菊’生长的影响. 江西农业大学学报. 2020(04): 707-717 . 百度学术
    13. 林劲草,肖莉,吴酬飞,张绍勇,杨惠宁,张立钦. 基于响应面法的马比木中喜树碱提取工艺的优化. 浙江农林大学学报. 2020(05): 1014-1019 . 本站查看

    其他类型引用(17)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230169

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/1/92

图(5) / 表(3)
计量
  • 文章访问数:  393
  • HTML全文浏览量:  104
  • PDF下载量:  24
  • 被引次数: 30
出版历程
  • 收稿日期:  2023-02-20
  • 修回日期:  2023-10-30
  • 录用日期:  2023-11-06
  • 网络出版日期:  2023-12-22
  • 刊出日期:  2024-02-20

‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析

doi: 10.11833/j.issn.2095-0756.20230169
    基金项目:  国家自然科学基金资助项目(32060092,31960079);2022年上饶市科技专项项目(2022A008);江西省科技厅重点研发计划一般项目(20192BBF60006,20202BBF63001);江西省教育厅科学技术研究项目(GJJ201704,GJJ211729);江西省现代农业产业技术体系建设专项(JXARS-13-赣东站);上饶市科技局平台载体建设项目(2020I001,2020J001)
    作者简介:

    洪森荣(ORCID: 0000-0002-9219-8303),教授,从事植物生物技术研究。E-mail: hongsenrong@163.com

  • 中图分类号: S532

摘要:   目的  分析‘怀玉山’高山马铃薯Solanum tuberosum var. cormosus ‘Huaiyushan’叶绿体基因组特征及密码子使用偏好性,为开展‘怀玉山’高山马铃薯叶绿体基因组密码子优化、叶绿体基因组改造,探索物种进化和增加外源基因表达等研究提供参考依据和理论基础。  方法  采用高通量测序技术对‘怀玉山’高山马铃薯叶绿体基因组进行测序,并利用生物信息学分析软件对组装和注释后的叶绿体基因组进行结构、基因组成及密码子偏好性分析。  结果  ‘怀玉山’高山马铃薯叶绿体基因组大小为155 296 bp,为经典的4段式结构。大单拷贝区(LSC)、小单拷贝区(SSC)和反向重复区(IR)长度分别为85 737、18 373、25 593 bp,总鸟嘌呤和胞嘧啶所占的比例(GC比例)为37.88%,共注释出133个基因,包含87个编码区(CDS)基因、37个tRNA基因、8个rRNA基因和1个假基因。‘怀玉山’高山马铃薯叶绿体基因组中共检测到38个简单重复序列位点(SSR位点,36个单碱基重复和2个双碱基重复)和32个长重复序列(16个正向重复和16个回文重复)。‘怀玉山’高山马铃薯叶绿体基因组核苷酸多样性为0~0.139 27,高变区主要分布在大单拷贝区和小单拷贝区,大单拷贝区trnL-UAA-trnF-GAAcemArps12-exon1-clpP1、clpP1基因变异率最高,小单拷贝区rpl32-trnL-UAGycf1基因变异率最高。‘怀玉山’高山马铃薯叶绿体基因组87个CDS基因的平均有效密码子数(ENC)为47.29,ENC>45的基因有60个,密码子偏性较弱。‘怀玉山’高山马铃薯叶绿体基因组密码子偏好以A、U结尾,使用偏性很大程度上受自然选择的影响,而受突变压力的影响小。CGU、AAA、CUU、GUU、GGA、GUA、GGU、UCA、GCU、CCU为‘怀玉山’高山马铃薯叶绿体基因组的10个最优密码子。  结论  ‘怀玉山’高山马铃薯与马铃薯栽培种S. tuberosum‘Desiree’亲缘关系较近。图5表3参41

English Abstract

洪森荣, 张牧彤, 徐子林, 等. ‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析[J]. 浙江农林大学学报, 2024, 41(1): 92-103. DOI: 10.11833/j.issn.2095-0756.20230169
引用本文: 洪森荣, 张牧彤, 徐子林, 等. ‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析[J]. 浙江农林大学学报, 2024, 41(1): 92-103. DOI: 10.11833/j.issn.2095-0756.20230169
TAO Jiangyue, LIU Lijuan, PANG Yong, et al. Automatic identification of tree species based on airborne LiDAR and hyperspectral data[J]. Journal of Zhejiang A&F University, 2018, 35(2): 314-323. DOI: 10.11833/j.issn.2095-0756.2018.02.016
Citation: HONG Senrong, ZHANG Mutong, XU Zilin, et al. Chloroplast genome characteristics and codon usage preference of Solanum tuberosum var. cormosus ‘Huaiyushan’[J]. Journal of Zhejiang A&F University, 2024, 41(1): 92-103. DOI: 10.11833/j.issn.2095-0756.20230169
  • ‘怀玉山’高山马铃薯Solanum tuberosum var. cormosus ‘Huaiyushan’,又名麻籽洋芋,茄科Solanaceae茄属Solanum 1年生草本植物,主要种植区域为江西省玉山县怀玉乡[1]。‘怀玉山’高山马铃薯食用、药用皆优,获批为国家地理标志农产品[23]。已有研究表明:‘怀玉山’高山马铃薯与云南德宏和曲靖以及湖北恩施的高山马铃薯种质存在差异[4]。但‘怀玉山’高山马铃薯的进化来源尚无相关研究报道。

    叶绿体是高等植物细胞内一种重要的与光合作用和物质代谢相关的细胞器,叶绿体基因组是一套具有母系遗传特征的独立基因组,是高等植物细胞质基因组的组成成分之一[5]。与核基因组相比,叶绿体基因组全长序列短、易测序获得、基因直系同源、基因结构稳定、保守性较高、进化速率适中,目前已经广泛应用于植物系统发育分析、物种分类鉴定及分子标记开发等研究中,在物种起源、进化、演变及比较基因组学等研究领域发挥着越来越大的作用[6]。密码子是核酸和蛋白质之间遗传信息传递的桥梁[7],mRNA上的遗传信息以tRNA三重密码子传递。氨基酸一般对应≥1的密码子[8],这些密码子称为同义密码子[9]。在自然选择或突变偏好的情况下,基因倾向于使用≥1的同义密码子,即同义密码子使用偏好性[1012]。目前,关于茄属的叶绿体基因组研究已有报道[1319],而针对‘怀玉山’高山马铃薯的研究大多集中在基因克隆[20]、转录组分析[3]、遗传多样性[4]、脱毒快繁[2]、DNA甲基化敏感扩增多态性(MSAP)分析[21]等方面,对‘怀玉山’高山马铃薯叶绿体全基因组及其密码子使用偏好性方面的研究还未见系统报道。本研究通过对‘怀玉山’高山马铃薯叶绿体基因组进行测序和组装,分析基于叶绿体基因组的‘怀玉山’高山马铃薯系统进化、结构解析和密码子偏好性等,为‘怀玉山’高山马铃薯叶绿体基因组研究和应用提供科学依据,也为进一步研究‘怀玉山’高山马铃薯遗传背景、种质资源保护与开发利用奠定基础。

    • 由上饶市薯芋类作物种质保存与利用重点实验室提供的‘怀玉山’高山马铃薯试管苗。

    • 选取‘怀玉山’高山马铃薯(MLS)试管苗叶片组织,利用植物基因组DNA提取试剂盒(北京天根生化科技有限公司)提取‘怀玉山’高山马铃薯试管苗DNA,质量分数为1%琼脂糖凝胶电泳检测DNA的完整性,NanoDrop 2000 分光光度计(Thermo Scientific公司)检测 DNA 浓度和纯度,用超声波将DNA片段化,然后对片段化的DNA进行片段纯化、末端修复、3′端加A、连接测序接头,再用琼脂糖凝胶电泳进行片段大小选择,进行聚合酶链式反应(PCR)扩增形成测序文库。建好的文库先进行文库质检,质检合格的文库用BGISEQ-500平台进行测序。

    • 通过SOAPnuk 1.3.0对raw data (测序下机的原始数据)进行数据过滤,去除其中的接头序列及低质量reads (高通量测序中一个反应获得的测序序列),获得高质量的clean data (对原始数据进行过滤后并剔除了低质量数据的剩余数据)。采用Noveplastys软件组装叶绿体基因组核心模块,以起始组装序列为起点开始组装叶绿体contigs (很多reads根据序列拼接在一起拼出的片段),如果contigs未环化,则利用CAP 3软件连接多个contigs为完整叶绿体基因组,并手动调整环状叶绿体基因组起始位置。使用GeSeq、tRNAscan-SE对叶绿体基因组进行注释,再经过手工校正后得到最终的基因注释结果。将注释完成的‘怀玉山’高山马铃薯叶绿体基因组序列提交至美国国家生物信息中心(NCBI),获得登录号:OP589401。使用OGDRAW绘制叶绿体基因组图谱。

    • 通过JSHYCloud在线工具集分析并统计叶绿体基因组、大单拷贝区(LSC)、小单拷贝区(SSC)和反向重复区(IR)的鸟嘌呤和胞嘧啶所占的比例(GC比例);使用MISA软件进行简单重复序列(SSR)分析,单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸、六核苷酸的最小重复值分别设置为10、6、5、5、5、5;利用REPuter软件进行长重复序列(longrepeat)分析,查找正向重复(F)、反向重复(R)、互补重复(C)、回文重复(P)等4种重复类型;通过Pasteur Galaxy 在线工具集中的CodonW模块分析密码子使用情况,设置输出结果为有效密码子数(ENC)和相对同义密码子使用频率(RSCU),其他参数设为默认值。将‘怀玉山’高山马铃薯叶绿体基因组序列上传至美国国家生物技术信息中心(NCBI) 进行BLASTn比对,选择highly similar sequence (megablast)比较相似性在95 %以上的序列,检索获得‘怀玉山’高山马铃薯的近缘种。利用Gview、VISTA tools、IRscope和DNADnaSP 6.0软件绘制‘怀玉山’高山马铃薯及其10个近缘种(S. cochoae NC_062512、多毛番茄S. habrochaites NC_026879、潘那利番茄S. pennellii NC_035742、S. bukasovii MT120867、S. boliviense NC_062870、S. trisectum NC_062469、S. salamancae NC_062480、S. clivorum NC_062513、S. mortonii NC_062426、S. insanum MW384851)的变异圈图、mVIST结构变异图、IR结构变异图,计算‘怀玉山’高山马铃薯及其10个近缘种的基因组核酸多样性(Pi),参数设置100 bp滑窗,25 bp的步长,并进行中性绘图分析(GC3-GC12分析)、ENC-plot分析、PR2-bias-plot分析和最优密码子分析;对‘怀玉山’高山马铃薯叶绿体基因的ENC进行排序,分别选取两端基因各5个,构建高表达基因库(ENC小)和低表达基因库(ENC大),并计算两者的RSCU差值(ΔRSCU)。筛选ΔRSCU≥0.08的高表达密码子,且将RSCU>1.00的高频率密码子定义为‘怀玉山’高山马铃薯叶绿体基因组的最优密码子;最后利用mafft 7.0和fasttree 2.1.10软件分别对‘怀玉山’高山马铃薯和18个近缘种以及烟草属Nicotiana 2个外类群物种进行序列比对和构建进化树。

    • 经过测序组装的完整的叶绿体基因组长度为155 296 bp,图1显示:‘怀玉山’高山马铃薯叶绿体基因组呈典型的四分体结构,包含1个LSC、1个SSC和2个将LSC与SSC分隔开的IR (IRa和IRb)。基因组的总GC比例为37.88%,A、T、C、G比例分别为30.65%、31.47%、19.24%、18.65%。LSC、SSC和IR的长度分别为85 737、18 373、25 593 bp。LSC的GC比例为36.01%,A、T、C、G比例分别为31.29%、32.70%、18.40%、17.61%;SSC的GC比例为32.09%,A、T、C、G比例分别为33.78%、34.14%、16.69%、15.40%;IRb的GC比例为43.10%,A、T、C、G比例分别为28.57%、28.33%、20.72%、22.39%;IRa的GC比例为43.10%,A、T、C、G比例分别为28.33%、28.57%、22.39%、20.72%。表明‘怀玉山’高山马铃薯IR的GC比例最大,LSC次之,SSC最少;叶绿体基因组总GC比例显著低于AT比例;叶绿体基因组各碱基比例从大到小依次为T、A、C、G。

      图  1  ‘怀玉山’高山马铃薯叶绿体基因组图谱

      Figure 1.  Chloroplast genome map of S. tuberosum var. cormosus ‘Huaiyushan’

    • 叶绿体基因组共注释到光合作用基因、自我复制基因、其他基因和未知功能基因4类,包括87个编码区(CDS)基因、37个tRNA基因、8个rRNA 基因、1个假基因,共133个基因。对有多个外显子的叶绿体基因进行结构分析,由2个外显子构成的基因有21个,包括13个CDS基因和8个tRNA基因;由 3个外显子构成的基因有4个,为clpP1、ycf3、rps12 (2个)基因。LSC的基因数量最多(81个),其中CDS基因59个、tRNA基因22个;SSC的基因数量为11个,其中CDS基因10个、tRNA基因1个;IR的基因数量为17个,其中CDS基因6个、rRNA基因4个、tRNA基因7个;SSC与IRb边界(JSB)的基因数量为2个(ndhFycf1);LSC与IRb边界(JLB)的基因数量为1个(rps19);SSC与IRa边界(JSA)的基因数量为2个(ycf1);LSC与IRa边界(JLA)的基因数量为0。rps12有2个拷贝,每个拷贝具有3个外显子,且2个拷贝共享第1个外显子,第1个外显子位于LSC,另外2个外显子位于IR (表1)。

      表 1  ‘怀玉山’高山马铃薯叶绿体基因功能分类

      Table 1.  Chloroplast gene functional classification of S. tuberosum var. cormosus ‘Huaiyushan’

      基因功能基因类型基因名基因数
      量/个
      光合作用   光系统Ⅰ psaApsaBpsaCpsaIpsaJ 5
      光系统Ⅱ psaJpsbApsbBpsbCpsbDpsbEpsbFpsbH*、psbIpsbKpsbLpsbM
      psbTpsbZ
      15
      NADH 脱氢 ndhAndhB*、ndhCndhDndhEndhFndhGndhHndhIndhJndhK 12
      细胞色素 b/f 复合体 petApetBpetDpetGpetLpetN 6
      ATP 合成酶 atpAatpBatpEatpFatpHatpI 6
      自我复制   核糖体大亚基蛋白质 rpl14、rpl16、rpl2*、rpl20、rpl22、rpl23*、rpl32、rpl33、rpl36 11
      核糖体小亚基蛋白质 rps11、rps12*、rps14、rps15、rps16、rps18、rps19、
      rps2、rps3、rps4、rps7*、rps8
      14
      核糖体大亚基 rbcL 1
      RNA 聚合酶 rpoArpoBrpoC1、rpoC2 4
      核糖体RNA rrn16*、rrn23*、rrn4.5*、rrn5* 8
      转运RNA trnA-UGC*、trnC-GCAtrnD-GUCtrnE-UUCtrnF-GAAtrnG-GCCtrnG-UCC
      trnH-GUGtrnI-CAU*、trnI-GAU*、trnK-UUUtrnL-CAA*、trnL-UAAtrnL-UAG
      trnM-CAUtrnN-GUU*、trnP-UGGtrnQ-UUGtrnR-ACG*、trnR-UCU
      trnS-GCUtrnS-GGAtrnS-UGAtrnT-GGUtrnT-UGUtrnV-GAC*、trnV-UAC
      trnW-CCAtrnY-GUAtrnfM-CAU
      37
      其他基因   成熟酶 matK 1
      蛋白酶 clpP1 1
      囊膜蛋白 cemA 1
      乙酰辅酶 A 羧化酶 accD 1
      c-型细胞色素合成基因 ccsA 1
      翻译起始因子 infA 1
      未知功能基因 保守假设叶绿体阅读框架 ycf1*、ycf15*、ycf2*、ycf3、ycf4 8
        说明:*表示该基因的数量有2个。
    • 叶绿体基因组中共检测到38个SSR位点,其中,单碱基重复有36个,双碱基重复有2个。其中,重复单元为A/T,重复频率为10的SSR位点数量最多(18个),重复频率为11的SSR位点数量次之(11个);重复单元为AT/AT、重复频率为6的SSR位点数量为2个。

    • 叶绿体基因组共鉴定到32个长重复序列,包括16个正向重复(15个30~39 bp,1个40~49 bp),16个回文重复 (13个30~39 bp,2个40~49 bp,1个50~59 bp),无反向重复和互补重复。

    • ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组结构从LSC中间呈线性展开,均由1个LSC、1个SSC和2个IR (IRa和IRb) 4部分组成。‘怀玉山’高山马铃薯及其10个近缘种rpl22、rps19、rpl2、ycf1、ndhFtrnHpsbA位置基本一致,但收缩和扩张的长度存在一些差异(图2)。

      图  2  ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组大单拷贝区、小单拷贝区和反向重复区边界位置的比较

      Figure 2.  Comparison on the boundary locations of large single copy region, small single copy region and inverted repeat region in chloroplast genomes of S. tuberosum var. cormosus ‘Huaiyushan’ and its 10 related species

    • ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组核苷酸多样性的变化范围为0~0.13927,高变区主要分布在LSC和SSC。LSC的trnL-UAA-trnF-GAAcemArps12-exon1-clpP1、clpP1基因变异率最高;SSC的rpl32-trnL-UAGycf1基因变异率最高。

    • 叶绿体基因组87个CDS基因密码子3个位置GC比例的平均值为38.38%,GC1、GC2、GC3分别为45.98%、39.55%、29.60%,这说明GC在密码子3个位点上的分布存在显著差异,只有GC2与平均GC大致接近(图3)。ENC是密码子偏性分析的重要指标,通常将35作为区分值来评估密码子偏倚的强度。叶绿体基因组87个CDS 基因的平均ENC为47.29,ENC>45的基因有60个,ENC>35的基因有83个,有4个基因的ENC<35,这表明叶绿体基因组的密码子偏性较弱。通过SPSS 20.0进行相关性分析,结果表明:密码子总GC比例(GCall)与GC1、GC2在0.01水平上均存在极显著的正相关,GCall与GC3在0.05水平上显著相关;GC1与GC2在0.05水平上存在显著正相关,但两者均与GC3不相关。这表明叶绿体基因组密码子前2位的碱基组成相似,而与第3位不相似。ENC与GC1、GC2、GC3均不相关,说明密码子上第1位、第2位和第3位的碱基组成对ENC没有显著影响。叶绿体基因组 87个CDS基因序列共有31个RSCU>1的密码子。在这31个密码子中,除AUG、UUG外,其余都以A、U结尾,表明A、U碱基在密码子最后位点上出现的频率最高。‘怀玉山’高山马铃薯叶绿体基因组密码子偏好以A、U结尾(表2)。

      图  3  ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组密码子组成成分分析

      Figure 3.  Composition analysis of chloroplast genome codons of S. tuberosum var. cormosus ‘Huaiyushan’ and its 10 related species

      表 2  ‘怀玉山’高山马铃薯叶绿体基因组同义密码子的使用频率

      Table 2.  Relative synonymous codon usage (RSCU) of chloroplast genome of S. tuberosum var. cormosus ‘Huaiyushan’

      密码子氨基酸相对同义密码子
      使用频率
      数量/个密码子氨基酸相对同义密码子
      使用频率
      数量/个密码子氨基酸相对同义密码子
      使用频率
      数量/个
      GCAAla1.134 37401GGGGly0.731 07333CCUPro1.521 13432
      GCCAla0.718 53254GGUGly1.242 59566AGCSer0.342 61119
      GCGAla0.390 38138CACHis0.479 87149AGUSer1.191 94414
      GCUAla1.756 72621CAUHis1.520 13472UCASer1.197 70416
      AGAArg1.829 81491AUAIle 0.909 09680UCCSer0.955 85332
      AGGArg0.633 54170AUCIle 0.609 63456UCGSer0.595 97207
      CGAArg1.453 42390AUUIle 1.481 281 108UCUSer1.715 93596
      CGCArg0.368 9499CUALeu0.821 14391UAATer1.655 1748
      CGGArg0.424 85114CUCLeu0.434 72207UAGTer0.758 6222
      CGUArg1.289 44346CUGLeu0.403 22192UGATer0.586 2117
      AACAsn0.485 74315CUULeu1.297 86618ACAThr1.221 17421
      AAUAsn1.514 26982UUALeu1.812 39863ACCThr0.771 57266
      GACAsp0.408 80223UUGLeu1.230 66586ACGThr0.446 70154
      GAUAsp1.591 20868AAALys1.462 871 054ACUThr1.560 55538
      UGCCys0.556 2984AAGLys0.537 13387UGGTrp1.000 00490
      UGUCys1.443 71218AUGMet1.987 34628UACTyr0.397 12193
      CAAGln1.491 10712GUGMet0.012 664UAUTyr1.602 88779
      CAGGln0.508 90243UUCPhe0.722 19542GUAVal1.502 75547
      GAAGlu1.477 521 035UUUPhe1.277 81959GUCVal0.52473191
      GAGGlu0.522 48366CCAPro1.193 66339GUGVal0.524 73191
      GGAGly1.571 90716CCCPro0.742 96211GUUVal1.447 80527
      GGCGly0.454 45207CCGPro0.542 25154
    • 分析发现:‘怀玉山’高山马铃薯及其10个近缘种植物叶绿体基因的GC3比例分布为0.142 9~0.443 2,GC12比例分布为0.285 7~0.658 5,两者大多沿对角线上方分布。两者的相关系数(r)为0.110 1 (R2=0.012 1),相关不显著(P>0.05),回归斜率为0.117 5,说明GC12与GC3不相关(图4A)。表明‘怀玉山’高山马铃薯叶绿体基因组密码子使用偏性很大程度上受自然选择的影响,而受突变压力的影响小。

      图  4  ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组密码子GC3-GC12分析(A)、ENC-plot分析(B)和PR2-plot分析(C)

      Figure 4.  GC3-GC12 analysis (A), ENC-plot analysis (B) and PR2-plot analysis (C) of chloroplast genome codons of S. tuberosum var. cormosus ‘Huaiyushan’ and its 10 related species

    • 分析表明:分布在期望曲线上或曲线附近的基因较少,分布在期望曲线下方且远离曲线的基因较多,说明大部分基因的实际ENC (ENCobs)与理论ENC (ENCexp)存在差异。为了解实际ENC和理论ENC的差异度,计算了‘怀玉山’高山马铃薯ENC比值频数,即(ENCexp-ENCobs)/ENCexp。结果表明:‘怀玉山’高山马铃薯叶绿体基因组基因中,有16.47%(14个)的基因分布在0~0.1区间,分布于期望曲线上或曲线附近,即ENCobs接近于ENCexp值,有83.53%的基因分布在0~0.1区间外,远离期望曲线分布,即ENCexp和ENCobs相差较大,表明自然选择是影响‘怀玉山’高山马铃薯叶绿体基因组密码子使用偏性的主要因素,而突变压力的作用较小(图4B)。

    • 分析表明: A3/AU3轴、G3/GC3轴均以0.5为界限,发现4个平面内基因分布不均衡。从G3/GC3轴看,多数基因位于上方(>0.5),少数基因位于下方(<0.5);从A3/AU3轴看,多数基因位于左侧(<0.5),少数基因位于右侧(>0.5)。这表明4种碱基在同义密码子第3位上存在C>G、T>A现象(图4C)。当密码子使用存在偏性完全受突变压力影响时,C和G以及A和T同义密码子在第3位上的分布应相等。因此,‘怀玉山’高山马铃薯叶绿体基因组密码子使用偏性主要受自然选择等因素影响。

    • RSCU分析可知:同时满足RSCU>1和ΔRSCU≥0.08的密码子共10个,即CGU、AAA、CUU、GUU、GGA、GUA、GGU、UCA、GCU、CCU,这些密码子都以A、U结尾,被确定为‘怀玉山’高山马铃薯叶绿体基因组的最优密码子(表3)。

      表 3  ‘怀玉山’高山马铃薯叶绿体基因最优密码子筛选

      Table 3.  Optimal codon screening of chloroplast genome of S. tuberosum var. cormosus ‘Huaiyushan’

      密码子氨基酸相对同义密
      码子使用率
      密码子高表
      达相对概率
      密码子低表
      达相对概率
      ΔRSCU密码子氨基酸相对同义密
      码子使用率
      密码子高表
      达相对概率
      密码子低表
      达相对概率
      ΔRSCU
      CGU* Arg 1.289 44 0.631 58 1.428 57 0.796 99 UUU Phe 1.277 81 1.315 79 1.200 00 −0.115 79
      AAA* Lys 1.462 87 1.000 00 1.750 00 0.750 00 UUG Leu 1.230 66 0.750 00 0.600 00 −0.150 00
      CUU* Leu 1.297 86 1.022 73 1.500 00 0.477 27 AUU Ile 1.481 28 1.428 57 1.263 16 −0.165 41
      GUU* Val 1.447 80 0.800 00 1.250 00 0.450 00 CAU His 1.520 13 1.333 33 1.000 00 −0.333 33
      GGA* Gly 1.571 90 1.302 33 1.750 00 0.447 67 GAA Glu 1.477 52 1.469 39 1.000 00 −0.469 39
      GUA* Val 1.502 75 1.400 00 1.750 00 0.350 00 ACA Thr 1.221 17 1.000 00 0.444 44 −0.555 56
      GGU* Gly 1.242 59 1.302 33 1.500 00 0.197 67 CCA Pro 1.193 66 1.142 86 0.571 43 −0.571 43
      UCA* Ser 1.197 70 1.000 00 1.153 85 0.153 85 GAU Asp 1.591 20 1.600 00 1.000 00 −0.600 00
      GCU* Ala 1.756 72 2.105 26 2.250 00 0.144 74 AAU Asn 1.514 26 1.600 00 1.000 00 −0.600 00
      CCU* Pro 1.521 13 1.571 43 1.714 29 0.142 86 CAA Gln 1.491 10 1.615 38 1.000 00 −0.615 38
      AUG Met 1.987 34 1.000 00 1.000 00 0.000 00 AGU Ser 1.191 94 1.444 44 0.769 23 −0.675 21
      UAA Ter 1.655 17 1.200 00 1.200 00 0.000 00 CGA Arg 1.453 42 1.421 05 0.714 29 −0.706 76
      UGU Cys 1.443 71 1.000 00 1.000 00 0.000 00 UUA Leu 1.812 39 1.704 55 0.900 00 −0.804 55
      ACU Thr 1.560 55 1.600 00 1.555 56 −0.044 44 UCU Ser 1.715 93 1.888 89 0.769 23 −1.119 66
      GCA Ala 1.134 37 0.421 05 0.375 00 −0.046 05 AGA Arg 1.829 81 2.368 42 1.071 43 −1.296 99
      UAU Tyr 1.602 88 1.548 39 1.500 00 −0.048 39
        说明:标注*的密码子为最优密码子。
    • 基于‘怀玉山’高山马铃薯和18个近缘种以及烟草属2个外类群物种叶绿体基因组构建的系统发育树分析可知:茄属聚为一大类,烟草属聚为另一大类。在茄属中,MLS与S. tuberosum NC_008096 (‘Ddeiree’)聚为一小分支。说明‘怀玉山’高山马铃薯与S. tuberosum ‘Ddeiree’亲缘关系较近,两者同源(图5)。

      图  5  基于叶绿体基因组的‘怀玉山’高山马铃薯及其18个近缘种的系统发育树

      Figure 5.  Phylogenetic tree of S. tuberosum var. cormosus ‘Huaiyushan’ and its 18 related species based on chloroplast genome

    • 叶绿体基因组结构保守、独立母系遗传,是被子植物基因组的重要组成部分,广泛用于被子植物的生长发育、类群分析和进化分析[22]。被子植物叶绿体基因组大小一般为120~180 kb,IR大小一般为20~30 kb [2324]。在本研究中,‘怀玉山’高山马铃薯叶绿体基因组长度和IR长度分别为155 296和25 593 bp,与S. tuberosum ‘Shepody’[16]叶绿体基因组长度和IR长度一致,与其他马铃薯品种[1315, 1718]相比,叶绿体基因组长度和IR长度不超过500 bp,说明马铃薯各个品种的叶绿体基因组较为保守。

      叶绿体的SSR不仅与核基因组SSR一样,具有高多态性、多等位性、共显性[25],也具有单亲遗传模式,结构简单、相对保守[26],因此,叶绿体的SSR有较好的种间、种内遗传变异区分能力,已成为区分物种的重要分子标记而被广泛应用[27]。关惜今等[13]研究表明:S. fernandezianum与其野生近缘种(S. phurejaS. palustreS. etuberosum)叶绿体基因组中共检测到36、36、42、40个SSR,SSR类型比较单一,只有单核苷酸和二核苷酸等2种类型,单核苷酸为A和T等2种类型,二核苷酸包括TA和AT等2种类型,其数目比较少。本研究结果与此一致。在本研究中,在‘怀玉山’高山马铃薯叶绿体基因组中共检测到38个SSR位点,其中,单碱基重复有36个,双碱基重复有2个,较少的SSR位点存在表明‘怀玉山’高山马铃薯叶绿体基因组可能不易发生重排。

      IR和单拷贝区(SC)边界的膨胀和收缩被认为是被子植物叶绿体全基因组大小变化的主要机制[28],同一属不同品种叶绿体基因组IR/SC边界位置变化也不同[29]。关惜今等[13]研究表明:S. fernandezianum与其野生近缘种(S. phurejaS. palustreS. etuberosum)叶绿体基因组rps19基因均横跨JLB,S. phurejandhF基因横跨JSB,S. fernandezianumS. palustreS. etuberosumndhF基因均右移,分布在SSC,S. fernandezianum、S. phurejaS. palustreS. etuberosumycf1基因总长度为5 664 bp,均横跨SSC和IRa区域。在本研究中,对‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组 IR/SC 边界区域的分析结果表明:这些叶绿体基因组的IR都存在扩张或收缩的现象。‘怀玉山’高山马铃薯的rps19基因横跨 JLB,横跨 JLB的左边和右边长度分别为209和69 bp,在JSA,‘怀玉山’高山马铃薯ycf1基因为5 663 bp,左边和右边长度分别为4 541和1 122 bp。

      许多植物存在密码子偏好性(CUB),即某一或几种特定密码子频率超过其他同义密码子。密码子偏好性可用来评估基因组中蛋白质编码区(CDS)的密码子使用情况[30]。植物密码子偏好性是物种不断适应外界环境进化所导致的结果,生物获得特定的密码子使用模式以适应起源、进化、自然选择和突变压力等多种因素[31]。影响不同物种中密码子偏好性差异的因素主要有碱基突变、基因表达水平、自然选择等,自然选择和突变压力被认为是2个最重要的因素[3234]。密码子第3 个碱基的同义突变不能改变氨基酸的类型,但被认为是决定氨基酸类型的重要特征,因此GC3 经常被用作密码子偏向的重要指标[3536]。本研究发现‘怀玉山’高山马铃薯叶绿体基因组的平均GC 比例为38.38%,GC3为29.60%,更倾向于使用A/T 密码子。RSCU分析结果也证实了这一点。‘怀玉山’高山马铃薯叶绿体基因组中存在A/T 密码子使用偏向,这与大多数高等植物的模式一致[37]。‘怀玉山’高山马铃薯叶绿体基因组平均ENC为47.29,ENC>35的基因有83个,有4个基因的ENC<35,表明‘怀玉山’高山马铃薯叶绿体基因组的密码子偏性较弱。当密码子的使用受到自然选择的影响时,GC3值往往分布在一个较小的范围内,GC12和GC3之间没有显著的相关性[38]。密码子偏好性可以通过调节基因翻译的准确性和效率影响基因表达,基因表达水平越高,密码子偏好性越强[3940]。通过建立的高低基因表达库,本研究挖掘到‘怀玉山’高山马铃薯叶绿体基因组10个最优密码子,即CGU、AAA、CUU、GUU、GGA、GUA、GGU、UCA、GCU、CCU,说明‘怀玉山’高山马铃薯叶绿体基因组密码子更偏好于以A/U 结尾。筛选到的最优密码子可以用于设计叶绿体基因表达载体,以提高叶绿体基因组中基因的表达水平,也可以利用已知密码子的使用偏好来推测和预测未知基因的表达和功能,可为今后从遗传水平上进行‘怀玉山’高山马铃薯育种改良提供参考。

      含有足够信息位点的叶绿体基因组已被证明可有效判断系统发育关系,甚至是在较低的分类学水平下植物之间也有较强的分类学意义,为物种间系统发育的研究提供了新的思路[41]。在本研究中,在茄属中‘怀玉山’高山马铃薯与S. tuberosum ‘Desiree’单独聚为一分支。说明‘怀玉山’高山马铃薯与S. tuberosum ‘Desiree’亲缘关系较近,表明两者同源,推测‘怀玉山’高山马铃薯可能是S. tuberosum ‘Desiree’从美国引种的。

      综上所述,本研究测序组装了‘怀玉山’高山马铃薯叶绿体基因组全序列,分析了其编码蛋白基因的密码子使用特点,从高表达优越密码子和高频密码子中选出两者共有的密码子,最终筛选得到了10个叶绿体蛋白编码基因的最优密码子。‘怀玉山’高山马铃薯密码子的偏好性受到突变、选择及其他多方面因素的共同影响,但自然选择的影响更大,这为用基因工程手段改造外源基因密码子,提高其在‘怀玉山’高山马铃薯叶绿体中的表达量提供了参考,也为在分子水平上研究茄科茄属植物的系统进化提供参考。

参考文献 (41)

目录

/

返回文章
返回