留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析

洪森荣 张牧彤 徐子林 张钦荣 罗雨欣 田文慧 王心雨

洪森荣, 张牧彤, 徐子林, 等. ‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析[J]. 浙江农林大学学报, 2024, 41(1): 92-103. DOI: 10.11833/j.issn.2095-0756.20230169
引用本文: 洪森荣, 张牧彤, 徐子林, 等. ‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析[J]. 浙江农林大学学报, 2024, 41(1): 92-103. DOI: 10.11833/j.issn.2095-0756.20230169
PANShi-xiu, MEN Xiu-xiang, FENG Jin-chao, et al. A review of studies on habitat selection by small and solitary forest ruminants[J]. Journal of Zhejiang A&F University, 2007, 24(3): 357-362.
Citation: HONG Senrong, ZHANG Mutong, XU Zilin, et al. Chloroplast genome characteristics and codon usage preference of Solanum tuberosum var. cormosus ‘Huaiyushan’[J]. Journal of Zhejiang A&F University, 2024, 41(1): 92-103. DOI: 10.11833/j.issn.2095-0756.20230169

‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析

DOI: 10.11833/j.issn.2095-0756.20230169
基金项目: 国家自然科学基金资助项目(32060092,31960079);2022年上饶市科技专项项目(2022A008);江西省科技厅重点研发计划一般项目(20192BBF60006,20202BBF63001);江西省教育厅科学技术研究项目(GJJ201704,GJJ211729);江西省现代农业产业技术体系建设专项(JXARS-13-赣东站);上饶市科技局平台载体建设项目(2020I001,2020J001)
详细信息
    作者简介: 洪森荣(ORCID: 0000-0002-9219-8303),教授,从事植物生物技术研究。E-mail: hongsenrong@163.com
  • 中图分类号: S532

Chloroplast genome characteristics and codon usage preference of Solanum tuberosum var. cormosus ‘Huaiyushan’

  • 摘要:   目的  分析‘怀玉山’高山马铃薯Solanum tuberosum var. cormosus ‘Huaiyushan’叶绿体基因组特征及密码子使用偏好性,为开展‘怀玉山’高山马铃薯叶绿体基因组密码子优化、叶绿体基因组改造,探索物种进化和增加外源基因表达等研究提供参考依据和理论基础。  方法  采用高通量测序技术对‘怀玉山’高山马铃薯叶绿体基因组进行测序,并利用生物信息学分析软件对组装和注释后的叶绿体基因组进行结构、基因组成及密码子偏好性分析。  结果  ‘怀玉山’高山马铃薯叶绿体基因组大小为155 296 bp,为经典的4段式结构。大单拷贝区(LSC)、小单拷贝区(SSC)和反向重复区(IR)长度分别为85 737、18 373、25 593 bp,总鸟嘌呤和胞嘧啶所占的比例(GC比例)为37.88%,共注释出133个基因,包含87个编码区(CDS)基因、37个tRNA基因、8个rRNA基因和1个假基因。‘怀玉山’高山马铃薯叶绿体基因组中共检测到38个简单重复序列位点(SSR位点,36个单碱基重复和2个双碱基重复)和32个长重复序列(16个正向重复和16个回文重复)。‘怀玉山’高山马铃薯叶绿体基因组核苷酸多样性为0~0.139 27,高变区主要分布在大单拷贝区和小单拷贝区,大单拷贝区trnL-UAA-trnF-GAAcemArps12-exon1-clpP1、clpP1基因变异率最高,小单拷贝区rpl32-trnL-UAGycf1基因变异率最高。‘怀玉山’高山马铃薯叶绿体基因组87个CDS基因的平均有效密码子数(ENC)为47.29,ENC>45的基因有60个,密码子偏性较弱。‘怀玉山’高山马铃薯叶绿体基因组密码子偏好以A、U结尾,使用偏性很大程度上受自然选择的影响,而受突变压力的影响小。CGU、AAA、CUU、GUU、GGA、GUA、GGU、UCA、GCU、CCU为‘怀玉山’高山马铃薯叶绿体基因组的10个最优密码子。  结论  ‘怀玉山’高山马铃薯与马铃薯栽培种S. tuberosum‘Desiree’亲缘关系较近。图5表3参41
  • 铁路、公路等基础设施建设会破坏和占压地表植被,形成大量的裸露坡面,遇到降雨极易发生水土流失,甚至出现滑坡、泥石流等次生地质灾害。裸露坡面常常具有坡度陡、坡体稳定性低、水分条件差和土壤瘠薄等特征,是不利于植被生长的困难立地。客土喷播绿化是裸露坡面恢复植被最快速最有效的方式之一,喷播后灌溉养护对植被生长至关重要[1]。大量调查发现:客土喷播后普遍存在过度灌溉,产生坡面径流,造成水土流失和水资源浪费;同时喷播基质通气不畅也会影响植被生长。可见,确定适合植被生长且能保证灌溉时坡面不产流的客土喷播基质含水量已成为当前亟需解决的问题。目前,关于适宜含水量研究大多集中在林地土壤与林木之间,如夏江宝等[2]对贝壳堤岛旱柳Salix matsudana光合效率的土壤水分临界效应及其阈值进行了分级研究,景雄等[3]对毛竹Phyllostachys edulis实生苗土壤水分有效性及生产力进行了分级研究,张淑勇等[4]对黄刺玫Rosa xanthina叶片光合生理参数的土壤水分阈值响应及其生产力进行了分级研究等,客土喷播基质适宜含水量与植被生长的关系研究则较少。以往的研究大都只关注了植物某一个生长阶段的土壤水分适宜含水量阈值[2, 5-6],缺乏对不同季节植被生长与基质水分关系的研究。鉴于此,本研究以北方地区常用的喷播修复植物黑麦草Lolium perenne作为研究对象,利用种植盆模拟客土喷播绿化,通过控制不同客土喷播基质水分梯度,分析夏、秋季黑麦草光合特性日变化对不同喷播基质水分的响应规律,以叶片净光合速率(Pn)和水分利用效率(EWU)作为“产”“效”来评价黑麦草生产力和水分利用能力的依据,并进行季节间比较,建立夏、秋季黑麦草喷播基质适宜含水量阈值分级,以期为北京至张家口的公路、铁路等冬季奥林匹克运动会交通廊道以及自然条件相近地区的工程创面客土喷播恢复植被灌溉养护提供参考。

    研究区河北省张家口市涿鹿县为北京冬季奥林匹克运动会延庆赛区和张家口崇礼赛区廊道沿线,高速公路G6和G7之间,地理坐标为40°26′20″N,115°17′03″E。涿鹿县属温带半干旱大陆性季风气候,年均气温为9.1 ℃,极端最高气温为39.2 ℃,极端最低气温为−23.9 ℃,年均降水量为367 mm,年均蒸发量为1 600 mm,无霜期为169 d,年平均积温为2 100~3 400 ℃,风向以西北为主,平均风速2~3 m·s−1,土壤为沙壤质褐土。

    喷播基质材料为客土(取自河北省涿鹿县苗圃)、木纤维[长1~3 cm,中矿复地生态环境技术研究院(北京)有限公司]、保水剂(3005KCE,美国艾森公司)、黏合剂(A30,美国艾森公司)、稻壳和黑麦草种子(北京布莱特草业有限公司)。喷播基质层和种子层的材料配比见表1。黑麦草播种量为4 g·m−2

    表 1  基质层和种子层的材料配比
    Table 1  Material ratio of matrix layer and seed layer
    喷播层次客土/
    %
    木纤
    维/%
    稻壳/
    %
    复合肥/
    (g·m−3)
    保水剂/
    (g·m−3)
    黏合剂/
    (g·m−3)
    基质层(10 cm)701020300200150
    种子层(3 cm)6733
      说明:客土、木纤维和稻壳为体积比
    下载: 导出CSV 
    | 显示表格

    利用种植盆试验模拟客土喷播绿化,种植盆上口直径50 cm、盆底直径40 cm、高15 cm,底部打孔便于排水。使用恒睿牌HKP125型客土喷播机。2021年4月26日,根据表1的材料配比将基质层和种子层分上、下2层先后喷播到种植盆内,采用微喷灌雾化喷头对喷播基质灌溉养护,保持喷播基质充分湿润(每次灌溉以喷播基质表面不积水为准),保证种子出苗有充足的水分。

    2021年5月26日开始控制喷播基质含水量(为质量含水量,下同),用环刀法测得喷播基质的田间持水量为30.36%,容重为1.12 g·cm−3。喷播基质含水量设置5个水分梯度,分别为30.36%、25.81%、21.25%、16.70%和12.14%,即喷播基质相对含水量(CRW)为100%、85%、70%、55%和40%,每个水分梯度设置3个重复。每天16:00用TDR350土壤水分速测仪(美国Spectrum公司)测定CRW(通过容重换算为质量含水量),每盆测定重复3次取平均值,并根据公式计算耗水量:ww=m/m。其中:w为设计质量含水量(%);w为实测质量含水量(%),根据TDR350实测值和容重换算;m为每盆黑麦草耗水量(g);m为每盆喷播基质干质量(g),可由基质体积和容重计算得出。使用微喷灌雾化喷头对喷播基质补充水分,为避免降水影响,试验在透明通风遮雨大棚内进行。

    于夏季(2021年8月5日,即控水2个月后)、秋季(2021年10月11日,即控水4个月后)选择连续3 d晴朗无云的天气,使用Li-6400XT便携式光合作用测定仪(标准叶室,Li-COR)测定黑麦草叶片Pn (μmol·m−2·s−1)、蒸腾速率Tr (mmol·m−2·s−1)、气孔导度Gs (mol·m−2·s−1)、胞间二氧化碳(CO2)摩尔浓度Ci (μmol·mol−1)等生理参数以及大气CO2摩尔浓度Ca (μmol·mol−1)、光合有效辐射PAR (μmol·m−2·s−1)、气温Ta (℃)和相对湿度Rh (%)等环境因子,并根据公式EWU=Pn/Tr计算水分利用效率、Ls=1−Ci/Ca计算气孔限制值。测定时间为8:00—16:00,隔2 h测1次,每个种植盆选取3株生长健康、长势一致的黑麦草,每株选取3片叶,每片叶记录3次读数,取平均值。

    运用Excel 2016整理光合参数与基质相对含水量数据;SPSS 22.0进行差异显著性检验LSD;Origin 2018进行作图和多项式拟合建立回归模型,使用F检验对回归模型进行显著性检验。

    图1可知:夏、秋季PAR的日变化为单峰曲线,均为先升高后下降,峰值均出现在12:00,夏季峰值为(1 393.71±110.04) μmol·m−2·s−1,秋季为(786.73±88.74) μmol·m−2·s−1。夏季PAR日均值(999.75±459.61) μmol·m−2·s−1大于秋季(504.07±274.09) μmol·m−2·s−1。夏、秋季Ca日变化为“V”型曲线,8:00—12:00下降,之后上升。秋季Ca日均值(421.15±17.65) μmol·mol−1大于夏季(411.54 ±10.76) μmol·mol−1,两者相差较小,仅为2.30%。

    图 1  夏、秋季光合有效辐射(PAR)和大气CO2摩尔浓度(Ca)的日变化
    Figure 1  Diurnal variation of photosynthetically active radiation (PAR) and atmospheric CO2 concentration (Ca) in summer and autumn

    图2可知:夏、秋季Ta的日变化与PAR相似,也为单峰曲线,在12:00达最大值。夏季Ta最大为(42.88±1.46) ℃,秋季为(28.41±1.06) ℃。夏季日均值(37.87±3.23) ℃大于秋季(26.21±2.03) ℃。夏、秋季Rh的日变化与Ta相反,12:00前下降,之后上升,夏、秋季Rh最低值分别为20.98%±1.65%和17.05%±1.47%。夏季Rh日均值(26.72%±5.56%)大于秋季(19.98%±2.70%)。

    图 2  夏、秋季气温(Ta)和相对湿度(Rh)的日变化的日变化     
    Figure 2  Diurnal variation of temperature (Ta) and relative humidity (Rh) in summer and autumn
    2.2.1   不同喷播基质含水量下黑麦草叶片净光合速率(Pn)的日变化

    夏、秋季黑麦草叶片Pn日变化对CRW有明显的阈值响应(图3)。当CRW为70%~85%时,Pn的变化呈双峰曲线,均出现光合“午休”现象,上午和下午各出现1个峰值,此水分范围内,Pn在全天各时段均最高。当CRW增加至100%时,Pn呈单峰曲线,峰值出现在12:00。当CRW降低到55%和40%时,Pn为单峰曲线,峰值均出现在8:00(但秋季CRW为55%时Pn峰值出现在10:00),Pn在全天各时段均处于较低水平,表明CRW低于55%会严重抑制植物的光合作用。由表2可知:Pn日均值对CRW也有明显的阈值响应。当CRW为85%时,夏季Pn日均值最大,达(11.17±3.08) μmol·m−2·s−1,与其他水分梯度有显著差异(P<0.05)。秋季的Pn日均值在CRW为70%时达最大,为(7.02±1.97) μmol·m−2·s−1,与其他水分梯度也有显著差异(P<0.05)。夏季Pn日均值均大于秋季,CRW为55%~100%时两季差异达到显著(P<0.05)。CRW为40%时,两季Pn日均值均较低,可见当CRW较低时植物光合作用将受到严重影响。综上所述,夏、秋两季维持黑麦草较高PnCRW为70%~85%,高于或低于此范围,Pn明显受到抑制。

    图 3  夏、秋季不同喷播基质含水量下黑麦草净光合速率(Pn)的日变化
    Figure 3  Diurnal variation of net photosynthetic rate (Pn) of L. perenne under different spraying substrate water content in summer and autumn
    表 2  夏、秋季不同喷播基质含水量下黑麦草光合生理参数的日均值变化
    Table 2  Change of daily mean of photosynthetic physiological parameters of L. perenne under different spraying substrate water content in summer and autumn
    CRW/%Pn/(μmol·m−2·s−1)Tr/(mmol·m−2·s−1)EWU/(mol·mol−1)
    夏季秋季夏季秋季夏季秋季
    1006.79±2.01 Abc4.30±0.95 Bb5.59±1.17 Aab2.75±0.16 Bab1.32±0.20 Bbc1.56±0.26 Acd
    8511.17±3.08 Aa6.07±1.24 Ba6.83±1.12 Aa3.13±0.40 Ba1.61±0.22 Ba1.92±0.22 Ab
    709.26±2.79 Aab7.02±1.97 Ba6.76±0.63 Aa2.92±0.59 Ba1.43±0.15 Bab2.37±0.25 Aa
    555.77±2.09 Ac3.77±1.03 Bb4.91±0.93 Ab2.35±0.30 Bbc1.20±0.12 Bbc1.63±0.20 Ac
    402.80±1.66 Ae2.74±0.78 Ab3.03±0.87 Ac2.16±0.28 Ac1.01±0.28 Ac1.28±0.16 Ad
      说明:同列不同小写字母、同行不同大写字母均表示差异显著(P<0.05)
    下载: 导出CSV 
    | 显示表格
    2.2.2   不同喷播基质含水量下黑麦草叶片蒸腾速率(Tr)的日变化

    夏、秋季黑麦草叶片Tr日变化规律与Pn基本相似(图4),当CRW为70%~85%时,黑麦草Tr的日变化呈双峰曲线。当CRW增加至100%时,Tr呈现单峰曲线,夏、秋季峰值均出现在14:00,但日均值却低于CRW为70%~85%时。表明基质水分充足可有效延缓Tr“午休”,但会降低Tr。当CRW≤55%时,Tr呈单峰曲线,峰值出现在8:00或10:00,全天各时段均处于较低的水平。结合表2可知:当CRW≥55%时,夏季Tr日均值显著高于秋季(P<0.05)),可见不同季节气候环境对植物Tr影响较大。当CRW为40%时,Tr日均值显著低于其他水分梯度(P<0.05),表明水分胁迫严重限制Tr。综上所述,CRW过高或过低均会降低黑麦草Tr,当CRW为70%~85%时,黑麦草会保持较高的Tr,保障植物正常生理活动。

    图 4  夏、秋季不同喷播基质含水量下黑麦草蒸腾速率(Tr)的日变化
    Figure 4  Diurnal variation of transpiration rate (Tr) of L. perenne under different spraying substrate water content in summer and autumn
    2.2.3   不同喷播基质含水量下黑麦草叶片水分利用效率(EWU)的日变化

    EWU日变化对基质含水量有明显的阈值响应(图5)。CRW为70%~85%时,EWU为双峰曲线(但秋季CRW=85%时为单峰曲线),全天各时段EWU均高于其他水分梯度。当CRW增加至100%时,EWU表现为单峰曲线,峰值出现在12:00。CRW为40%~55%时,EWU峰值出现在8:00或10:00,之后不断降低。结合表2可知:当CRW≥55%时,秋季EWU日均值显著高于夏季(P<0.05),CRW为40%时秋季EWU日均值高于夏季,但不差异显著。CRW为40%和100%时,EWU日均值均显著低于其他水分梯度(P<0.05),表明CRW过高或过低都会降低EWU。综上所述,夏、秋季维持黑麦草同时具有较高PnEWUCRW为70%~85%,在这个水分范围内,Tr也保持较高水平,有利于植物的光合作用。

    图 5  夏、秋季不同喷播基质含水量下黑麦草水分利用效率(EWU)的日变化
    Figure 5  Diurnal variation of water use efficiency (EWU) of L. perenne under different spraying substrate water content in summer and autumn
    2.2.4   不同喷播基质含水量下黑麦草叶片气孔导度(Gs)、胞间CO2摩尔浓度(Ci)和气孔限制值(Ls)的日变化

    夏、秋季黑麦草GsCRW具有明显的阈值响应(图6),当CRW为70%~85%时,Gs呈现双峰曲线。当CRW=100%时,Gs为单峰曲线,峰值出现在12:00。当CRW为40%~55%时,全天Gs峰值出现在8:00,之后一直降低,维持在较低水平。CiLsCRW的阈值响应表现不同的变化规律(图7图8),上午和下午表现也不同。CRW为70%~100%时,Pn下降,GsCi明显下降,Ls明显升高,表明Pn下降原因是气孔限制。CRW=55%时,上午Pn下降,GsCi明显下降,Ls升高,但下午Pn下降,GsLs下降,Ci反而升高,可见限制黑麦草Pn的原因上午和下午不同,上午以气孔限制为主,气孔关闭导致CO2供应不足,下午以非气孔限制为主,水分胁迫导致植物叶片光合结构受损,Pn下降。当CRW=40%时,Ci从8:00开始上升且一直处于较高水平,而Ls全天都较低,表明水分胁迫严重损坏了植物叶片光合结构,降低了光合作用有关酶的活性,从而降低了Pn。由图9可知:夏、秋季不同CRW范围内PnGs的正比关系不同,当CRW>55%时,随着Gs增大,Pn线性增大,PnGs为线性正比关系;当CRW≤55%时,PnGs为非线性关系。因此,当CRW=55%时,黑麦草不仅发生了Pn限制机制的转变,其PnGs之间的关系也发生转变。综上所述,在CRW=55%时出现上午、下午CiLs变化相反的情况,表明此基质含水量是黑麦草叶片Pn下降由气孔限制为主转变为非气孔限制为主的临界点。

    图 6  夏、秋季不同喷播基质含水量下黑麦草气孔导度(Gs)的日变化
    Figure 6  Diurnal variation of stomatal conductance (Gs) of L. perenne under different water content of spraying substrate in summer and autumn
    图 7  夏、秋季不同喷播基质含水量下黑麦草胞间CO2摩尔浓度(Ci)的日变化
    Figure 7  Diurnal variation of intercellular CO2 concentration (Ci) of L. perenne under different water content of spraying substrate in summer and autumn
    图 8  夏、秋季不同喷播基质含水量下黑麦草气孔限制值(Ls)的日变化
    Figure 8  Diurnal variation of stomatal limit value (Ls) of L. perenne under different spraying substrate water content in summer and autumn
    图 9  夏、秋季黑麦草净光合速率(Pn)和气孔导度(Gs)的关系
    Figure 9  Relationship between net photosynthetic rate (Pn) and stomatal conductance (Gs) of L. perenne in summer and autumn

    为进一步确定黑麦草喷播基质相对含水量(CRW)分级临界值,对黑麦草PnTr、EWUGs的日均值与CRW构建回归模型(表3)。由PnCRW的回归模型知:夏、秋季Pn达最大值的CRW分别为78.17%、76.02%,其对应的最大Pn分别为9.68和 6.33 μmol·m−2·s−1。令Pn=0,求出夏、秋季水合补偿点的CRW分别为35.02%、30.83%(CRW大于100%的点均已舍去)。根据回归模型的积分式[2]求出CRW为40%~100%时黑麦草夏季Pn平均值为7.77 μmol·m−2·s−1,对应的CRW分别为58.98%和97.36%。同理可求出黑麦草秋季Pn平均值为5.29 μmol·m−2·s−1,对应的CRW分别为57.71%和94.33%。由此可以确定黑麦草夏、秋季Pn达到中等以上水平的CRW分别为58.98%~97.36%、57.71%~94.33%。

    表 3  夏、秋季黑麦草光合参数与喷播基质相对含水量的回归模型
    Table 3  Regression model between photosynthetic parameters of L. perenne and relative water content of spraying substrate in summer and autumn
    参数季节回归模型决定系数FP
    Pn夏季y=−22.092 7+0.813 0x−0.005 2x20.8878.989.12×10−11
    秋季y=−11.584 0+0.471 3x−0.003 1x20.8145.601.49×10−8
    Tr夏季y=−9.497 1+0.398 7x−0.002 5x20.94595.830.000
    秋季y=−0.574 0+0.083 8x−0.000 5x20.8339.085.74×10−8
    EWU夏季y=−0.844 9+0.061 0x−0.000 4x20.8031.053.93×10−7
    秋季y=−2.344 8+0.122 2x−0.000 83x20.7635.291.37×10−7
    Gs夏季y=−0.354 2+0.013 5x−0.000 086x20.7839.974.73×10−8
    秋季y=−0.319 7+0.012 2x−0.000 077x20.8353.943.30×10−9
      说明:y表示各参数,x表示喷播基质相对含水量(CRW)
    下载: 导出CSV 
    | 显示表格

    根据EWUCRW的回归模型,求出夏、秋季EWU达最大值的CRW分别为76.25%、73.61%,对应的最大值分别为1.48和 2.15 μmol·mmol−1。令EWU=0,求出夏、秋季的对应的CRW分别为15.41%、22.68%(CRW大于100%的点均已舍去)。根据回归模型的积分式求出CRW为40%~100%时黑麦草夏季EWU的平均值为1.35 μmol·mmol−1,对应的CRW分别为58.17%和94.33%。同理可求出黑麦草秋季EWU的平均值为1.89 μmol·mmol−1,对应的CRW分别为55.81%和91.42%。由此确定黑麦草夏、秋季EWU达到中等以上水平的CRW分别为58.17%~94.33%、55.81%~91.42%。

    PnEWU取最大值点、平均值点、最低值点和Pn下降气孔限制转折点的喷播基质CRW临界值,作为黑麦草喷播基质适宜含水量阈值分级临界点,建立喷播基质适宜含水量的阈值分级(表4)。此分级标准将PnEWU作为“产”“效”来评价黑麦草生产力和水分利用能力的依据,建立了黑麦草喷播基质适宜含水量阈值分级。以Pn=0时的水合补偿点作为临界点,低于此临界点划为“无产无效水”范围。Pn下降原因由气孔限制为主转为非气孔限制为主对应的CRW称为“Pn气孔限制转折点”。PnEWU取最大值时的CRW确定为“高产高效水”临界值点。依据PnEWUCRW的回归模型积分式求解二者的平均值来确定PnEWU达到中等以上水平的临界点,在此范围内称为“中产”“中效”,此范围外称为“低产”“低效”。为更清晰地展示5种阈值分级类型,借助坐标轴对其划分参数和数值进行展示(图10)。

    表 4  基于光合特性的黑麦草喷播基质适宜含水量阈值分级
    Table 4  Threshold gradient of suitable water content of L. perenne spraying substrate based on photosynthetic characteristics
    季节临界值指标临界点对应的CRW/%基质适宜含水量阈值分级类型基质适宜含水量阈值/%
    夏季 Pn=0 35.02 无产无效水 <35.02
    Pn(sl→nsl) 55.00 低产低效水 35.02~55.00,97.36~100.00
    Pn取平均值(Pn-ave) 58.98~97.36 中产中效水 78.17~97.36
    Pn取最大值(Pn-max) 78.17 中产高效水 55.00~76.25
    EWU取最大值(EWU-max) 76.25 高产高效水 76.25~78.17
    EWU取平均值(EWU-ave) 58.17~94.33
    秋季 Pn=0 30.83 无产无效水 <30.83
    Pn(sl→nsl) 55.00 低产低效水 30.83~55.00,94.33~100.00
    Pn取平均值(Pn-ave) 57.71~94.33 中产中效水 76.02~94.33
    Pn取最大值(Pn-max) 76.02 中产高效水 55.00~73.61
    EWU取最大值(EWU-max) 73.61 高产高效水 73.61~76.02
    EWU取平均值(EWU-ave) 55.81~91.42
      说明:Pn=0为水合补偿点,Pn(sl→nsl)Pn气孔限制转折点
    下载: 导出CSV 
    | 显示表格
    图 10  夏、秋季黑麦草喷播基质适宜含水量阈值分级坐标轴图示
    Figure 10  Coordinate graphic figures of spraying substrate suitable water content threshold gradient of L. perenne in summer and autumn

    夏、秋季黑麦草光合生理参数(PnTrEWUGsCiLs)日变化对喷播基质含水量的阈值响应规律与黄刺玫[5]、文冠果Xanthoceras sorbifolia[6]、连翘Forsythia suspensa[7]、山杏Prunus sibirica[8]、羊草Leymus chinensis和紫花苜蓿Medicago sativa[9]等对土壤水分阈值响应的规律一致,即CRW过高或过低均会抑制植物光合作用。CRW为70%~85%时,夏、秋季PnTr日变化均呈现双峰曲线,在12:00表现出“光合午休”现象。主要原因是中午气温最高,高温影响植物光合酶的活性,降低Pn;空气相对湿度低,叶片表面饱和水汽压差增大,叶片气孔保卫细胞失水过多,导致部分气孔关闭,降低TrPn[10]CRW为100%时,夏、秋季Pn日变化均呈现单峰曲线,峰值出现在12:00,但Pn日均值并不高。表明水分充足可以延缓植物光合午休,但CRW过高,喷播基质孔隙较小,不利于根系呼吸,影响根系吸收营养元素,造成光合叶绿素含量降低,从而降低Pn[11]CRW为100%时,夏、秋季Tr日变化的峰值延迟到14:00。已有研究表明:当水分充足时光照强度是影响Tr的主要因子,光合辐射可以促进叶片气孔开放,从而增强Tr[12-13]CRW为40%~55%时,夏、秋季PnTr均处于较低水平,原因是严重水分胁迫下植物为减少体内水分散失增加了气孔阻力[4],导致PnTr降低。研究表明:适度的干旱胁迫能有效提高植物的水分利用效率[14-15],与本研究观点一致,即CRW为70%~85%时黑麦草EWU达最大值,并非在CRW最高的时候。秋季EWU显著高于夏季,主要原因是秋季Tr的降低幅度比Pn的降低幅度要更大,这与许多学者[16-18]的研究结果一致。

    夏、秋季黑麦草Gs日变化与Pn的变化规律基本相似,但通过对PnGs的关系拟合可知:PnGsCRW≤55%时两者为非线性关系,CRW>55%时为线性正比关系,这与郎莹等[19]的研究结果一致。轻度水分胁迫下,叶片气孔部分关闭,Gs下降,进入叶片CO2减少,因此Ci降低,Ls升高,但是当CRW为55%时,下午时段Gs下降,Ci升高,表明水分胁迫可能破坏了叶片的光合结构,导致叶片吸收CO2、光合作用能力下降。这也进一步说明,在CRW为55%时,黑麦草Pn下降原因已经由气孔限制为主转变为非气孔限制为主。已有研究表明:当植物光合作用受到非气孔限制时,水分胁迫可能开始损坏光合结构[20-21],叶绿体受损并且不可逆[22],当CRW进一步降低,植物叶子变黄甚至脱落[21]。因此,CRW=55%被认为是黑麦草喷播基质适宜含水量阈值分级的临界点。

    采用PnEWU作为土壤水分的“产”“效”指标可评价土壤水分有效性和适宜含水量范围[2-3, 5, 7, 23],主要方法有3类:第1类为聚类分析法[4, 24],即通过试验获取多个水分梯度下的PnEWU进行聚类分析,得到不同的水分分级临界点。由于获取的水分梯度随机性较大,该方法缺乏足够代表性。第2类为极限值法,即通过获取PnEWUCRW的定量关系,找出PnEWU的最低值、最大值点和气孔限制转折点,以此来划分水分分级临界点。但此法并未对中等水平的“产”“效”进行划分[26]。第3类为回归方程拟合法,即通过建立植物PnEWUCRW的回归模型,计算Pn的水合补偿点、PnEWU最低值点、最大值点和平均值点对应的土壤水分,并以此作为土壤水分有效性阈值分级临界点。该方法对土壤水分分级比较完整[2-3, 21]。本研究结合第2类和第3类方法,即采用回归方程拟合法计算临界值点再结合Pn气孔限制转折点来确定喷播基质适宜含水量阈值分级标准。在拟合时采用了PnEWU的日平均值与CRW,相比只测上午光合数据[2, 4, 6, 21]的研究更具有代表性。本研究确定的“无产无效水”“低产低效水”“中产中效水”“中产高效水”和“高产高效水”5种喷播基质适宜含水量阈值分级类型,可以根据不同的工程绿化养护要求和黑麦草不同生长阶段对水分的需求来选择利用。例如,在裸露边坡等困难立地最突出的特征是干旱和缺水,坡面工程绿化以防治水土流失和提高水分利用效率为目标,而不是充分供水达到最高产量 [24-25]。因此既满足边坡植被修复要求,又不因灌溉量过大而造成坡面水土流失、影响植物生长和浪费水资源等问题,可以保持喷播基质含水量在“中产高效水”(55.00%≤CRW≤76.25%和55.00%≤CRW≤73.61%)的范围,以此为标准进行灌溉。

    夏、秋季黑麦草净光合速率水合补偿点的喷播基质相对含水量分别为35.02%和30.83%,即实际质量含水量分别为10.63%和9.36%,喷播基质含水量低于此值光合作用无效。夏、秋季黑麦草净光合速率下降由气孔限制转变为非气孔限制的喷播基质相对含水量均为55%,即实际质量含水量为16.70%,喷播基质含水量低于此值将对黑麦草叶片光合结构造成不可逆性损坏,建议灌溉养护时保持基质含水量不能低于此水分范围。客土喷播绿化以快速恢复植被为目标时可以保持喷播基质含水量在“高产高效水”范围,以此为标准进行灌溉,夏、秋季分别为76.25%≤CRW≤78.17%和73.61%≤CRW≤76.02%,即实际质量含水量分别为23.15%~23.73%和22.35%~23.08%。客土喷播绿化以提高水分利用效率并恢复基本植被(即恢复到当地自然植被盖度为准)为目标时,可以保持喷播基质含水量在“中产高效水”范围,以此为标准进行灌溉,夏、秋季分别为55.00%≤CRW≤76.25%和55.00%≤CRW≤73.61%,即实际质量含水量分别为16.70%~23.15%和16.70%~22.35%。

  • 图  1  ‘怀玉山’高山马铃薯叶绿体基因组图谱

    Figure  1  Chloroplast genome map of S. tuberosum var. cormosus ‘Huaiyushan’

    图  2  ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组大单拷贝区、小单拷贝区和反向重复区边界位置的比较

    Figure  2  Comparison on the boundary locations of large single copy region, small single copy region and inverted repeat region in chloroplast genomes of S. tuberosum var. cormosus ‘Huaiyushan’ and its 10 related species

    图  3  ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组密码子组成成分分析

    Figure  3  Composition analysis of chloroplast genome codons of S. tuberosum var. cormosus ‘Huaiyushan’ and its 10 related species

    图  4  ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组密码子GC3-GC12分析(A)、ENC-plot分析(B)和PR2-plot分析(C)

    Figure  4  GC3-GC12 analysis (A), ENC-plot analysis (B) and PR2-plot analysis (C) of chloroplast genome codons of S. tuberosum var. cormosus ‘Huaiyushan’ and its 10 related species

    图  5  基于叶绿体基因组的‘怀玉山’高山马铃薯及其18个近缘种的系统发育树

    Figure  5  Phylogenetic tree of S. tuberosum var. cormosus ‘Huaiyushan’ and its 18 related species based on chloroplast genome

    表  1  ‘怀玉山’高山马铃薯叶绿体基因功能分类

    Table  1.   Chloroplast gene functional classification of S. tuberosum var. cormosus ‘Huaiyushan’

    基因功能基因类型基因名基因数
    量/个
    光合作用   光系统Ⅰ psaApsaBpsaCpsaIpsaJ 5
    光系统Ⅱ psaJpsbApsbBpsbCpsbDpsbEpsbFpsbH*、psbIpsbKpsbLpsbM
    psbTpsbZ
    15
    NADH 脱氢 ndhAndhB*、ndhCndhDndhEndhFndhGndhHndhIndhJndhK 12
    细胞色素 b/f 复合体 petApetBpetDpetGpetLpetN 6
    ATP 合成酶 atpAatpBatpEatpFatpHatpI 6
    自我复制   核糖体大亚基蛋白质 rpl14、rpl16、rpl2*、rpl20、rpl22、rpl23*、rpl32、rpl33、rpl36 11
    核糖体小亚基蛋白质 rps11、rps12*、rps14、rps15、rps16、rps18、rps19、
    rps2、rps3、rps4、rps7*、rps8
    14
    核糖体大亚基 rbcL 1
    RNA 聚合酶 rpoArpoBrpoC1、rpoC2 4
    核糖体RNA rrn16*、rrn23*、rrn4.5*、rrn5* 8
    转运RNA trnA-UGC*、trnC-GCAtrnD-GUCtrnE-UUCtrnF-GAAtrnG-GCCtrnG-UCC
    trnH-GUGtrnI-CAU*、trnI-GAU*、trnK-UUUtrnL-CAA*、trnL-UAAtrnL-UAG
    trnM-CAUtrnN-GUU*、trnP-UGGtrnQ-UUGtrnR-ACG*、trnR-UCU
    trnS-GCUtrnS-GGAtrnS-UGAtrnT-GGUtrnT-UGUtrnV-GAC*、trnV-UAC
    trnW-CCAtrnY-GUAtrnfM-CAU
    37
    其他基因   成熟酶 matK 1
    蛋白酶 clpP1 1
    囊膜蛋白 cemA 1
    乙酰辅酶 A 羧化酶 accD 1
    c-型细胞色素合成基因 ccsA 1
    翻译起始因子 infA 1
    未知功能基因 保守假设叶绿体阅读框架 ycf1*、ycf15*、ycf2*、ycf3、ycf4 8
      说明:*表示该基因的数量有2个。
    下载: 导出CSV

    表  2  ‘怀玉山’高山马铃薯叶绿体基因组同义密码子的使用频率

    Table  2.   Relative synonymous codon usage (RSCU) of chloroplast genome of S. tuberosum var. cormosus ‘Huaiyushan’

    密码子氨基酸相对同义密码子
    使用频率
    数量/个密码子氨基酸相对同义密码子
    使用频率
    数量/个密码子氨基酸相对同义密码子
    使用频率
    数量/个
    GCAAla1.134 37401GGGGly0.731 07333CCUPro1.521 13432
    GCCAla0.718 53254GGUGly1.242 59566AGCSer0.342 61119
    GCGAla0.390 38138CACHis0.479 87149AGUSer1.191 94414
    GCUAla1.756 72621CAUHis1.520 13472UCASer1.197 70416
    AGAArg1.829 81491AUAIle 0.909 09680UCCSer0.955 85332
    AGGArg0.633 54170AUCIle 0.609 63456UCGSer0.595 97207
    CGAArg1.453 42390AUUIle 1.481 281 108UCUSer1.715 93596
    CGCArg0.368 9499CUALeu0.821 14391UAATer1.655 1748
    CGGArg0.424 85114CUCLeu0.434 72207UAGTer0.758 6222
    CGUArg1.289 44346CUGLeu0.403 22192UGATer0.586 2117
    AACAsn0.485 74315CUULeu1.297 86618ACAThr1.221 17421
    AAUAsn1.514 26982UUALeu1.812 39863ACCThr0.771 57266
    GACAsp0.408 80223UUGLeu1.230 66586ACGThr0.446 70154
    GAUAsp1.591 20868AAALys1.462 871 054ACUThr1.560 55538
    UGCCys0.556 2984AAGLys0.537 13387UGGTrp1.000 00490
    UGUCys1.443 71218AUGMet1.987 34628UACTyr0.397 12193
    CAAGln1.491 10712GUGMet0.012 664UAUTyr1.602 88779
    CAGGln0.508 90243UUCPhe0.722 19542GUAVal1.502 75547
    GAAGlu1.477 521 035UUUPhe1.277 81959GUCVal0.52473191
    GAGGlu0.522 48366CCAPro1.193 66339GUGVal0.524 73191
    GGAGly1.571 90716CCCPro0.742 96211GUUVal1.447 80527
    GGCGly0.454 45207CCGPro0.542 25154
    下载: 导出CSV

    表  3  ‘怀玉山’高山马铃薯叶绿体基因最优密码子筛选

    Table  3.   Optimal codon screening of chloroplast genome of S. tuberosum var. cormosus ‘Huaiyushan’

    密码子氨基酸相对同义密
    码子使用率
    密码子高表
    达相对概率
    密码子低表
    达相对概率
    ΔRSCU密码子氨基酸相对同义密
    码子使用率
    密码子高表
    达相对概率
    密码子低表
    达相对概率
    ΔRSCU
    CGU* Arg 1.289 44 0.631 58 1.428 57 0.796 99 UUU Phe 1.277 81 1.315 79 1.200 00 −0.115 79
    AAA* Lys 1.462 87 1.000 00 1.750 00 0.750 00 UUG Leu 1.230 66 0.750 00 0.600 00 −0.150 00
    CUU* Leu 1.297 86 1.022 73 1.500 00 0.477 27 AUU Ile 1.481 28 1.428 57 1.263 16 −0.165 41
    GUU* Val 1.447 80 0.800 00 1.250 00 0.450 00 CAU His 1.520 13 1.333 33 1.000 00 −0.333 33
    GGA* Gly 1.571 90 1.302 33 1.750 00 0.447 67 GAA Glu 1.477 52 1.469 39 1.000 00 −0.469 39
    GUA* Val 1.502 75 1.400 00 1.750 00 0.350 00 ACA Thr 1.221 17 1.000 00 0.444 44 −0.555 56
    GGU* Gly 1.242 59 1.302 33 1.500 00 0.197 67 CCA Pro 1.193 66 1.142 86 0.571 43 −0.571 43
    UCA* Ser 1.197 70 1.000 00 1.153 85 0.153 85 GAU Asp 1.591 20 1.600 00 1.000 00 −0.600 00
    GCU* Ala 1.756 72 2.105 26 2.250 00 0.144 74 AAU Asn 1.514 26 1.600 00 1.000 00 −0.600 00
    CCU* Pro 1.521 13 1.571 43 1.714 29 0.142 86 CAA Gln 1.491 10 1.615 38 1.000 00 −0.615 38
    AUG Met 1.987 34 1.000 00 1.000 00 0.000 00 AGU Ser 1.191 94 1.444 44 0.769 23 −0.675 21
    UAA Ter 1.655 17 1.200 00 1.200 00 0.000 00 CGA Arg 1.453 42 1.421 05 0.714 29 −0.706 76
    UGU Cys 1.443 71 1.000 00 1.000 00 0.000 00 UUA Leu 1.812 39 1.704 55 0.900 00 −0.804 55
    ACU Thr 1.560 55 1.600 00 1.555 56 −0.044 44 UCU Ser 1.715 93 1.888 89 0.769 23 −1.119 66
    GCA Ala 1.134 37 0.421 05 0.375 00 −0.046 05 AGA Arg 1.829 81 2.368 42 1.071 43 −1.296 99
    UAU Tyr 1.602 88 1.548 39 1.500 00 −0.048 39
      说明:标注*的密码子为最优密码子。
    下载: 导出CSV
  • [1] 尹明华, 谭鑫, 郑亚娇, 等. 高海拔生境下‘怀玉山’高山马铃薯和怀玉山本土农家薯块茎的转录组分析[J]. 核农学报, 2019, 33(7): 1330 − 1339.

    YIN Minghua, TAN Xin, ZHENG Yajiao, et al. The transcriptome analysis of alpine potato tuber and local farm potato tuber in Huaiyushan under high altitude habitats [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(7): 1330 − 1339.
    [2] 尹明华, 刘燕, 郁雪婷, 等. ‘怀玉山’高山马铃薯茎尖再生苗6 种病毒的 DAS-ELISA 检测与分析[J]. 浙江农业学报, 2017, 29(10): 1699 − 1705.

    YIN Minghua, LIU Yan, YU Xueting, et al. DAS-ELISA detection and analysis of six kinds of viruses in plantlets regenerated from Huaiyushan high mountain potato shoot-tips [J]. Acta Agriculturae Zhejiangensis, 2017, 29(10): 1699 − 1705.
    [3] 尹明华, 王钦, 张红蕾, 等. 高海拔生境下‘怀玉山’高山马铃薯和本土农家薯的全基因组重测序分析[J]. 基因组学与应用生物学, 2020, 39(3): 1198 − 1207.

    YIN Minghua, WANG Qin, ZHANG Honglei, et al. Whole genome re-sequencing analysis of alpine potato and local farm potato in Huaiyu Mountain under high altitude habitats [J]. Genomics and Applied Biology, 2020, 39(3): 1198 − 1207.
    [4] 洪森荣, 张铭心, 叶思雨, 等. 高山马铃薯种质资源遗传多样性的同工酶分析[J]. 浙江农业学报, 2018, 30(9): 1445 − 1453.

    HONG Senrong, ZHANG Mingxin, YE Siyu, et al. Genetic diversity analysis of alpine potato germplasm resources by isozyme [J]. Acta Agriculturae Zhejiangensis, 2018, 30(9): 1445 − 1453.
    [5] MEHMETOGLU E, KAYMAZ Y, ATES D, et al. The complete chloroplast genome sequence of Cicer echinospermum, genome organization and comparison with related species [J/OL]. Scientia Horticulturae, 2022, 296: 110912[2023-01-20]. doi: 10.1016/j.scienta.2022.110912.
    [6] SHENG Jiajing, YAN Mi, WANG Jia, et al. The complete chloroplast genome sequences of five Miscanthus species, and comparative analyses with other grass plastomes [J/OL]. Industrial Crops and Products, 2021, 162: 113248[2023-01-20]. doi: 10.1016/j.indcrop.2021.113248.
    [7] TANG Danfeng, WEI Fan, KASHIF M H, et al. Analysis of chloroplast differences in leaves of rice isonuclear alloplasmic lines [J]. Protoplasma, 2018, 255(3): 863 − 871.
    [8] LI Guoling, PAN Zonglian, GAO Shichen, et al. Analysis of synonymous codon usage of chloroplast genome in Porphyra umbilicalis [J]. Genes &Genomics, 2019, 41(10): 1173 − 1181.
    [9] DURET L. Evolution of synonymous codon usage in metazoans [J]. Current Opinion in Genetics &Development, 2002, 12(6): 640 − 649.
    [10] HERSHBERG R, PETROV D A. Selection on codon bias [J]. Annual Review of Genetics, 2008, 42: 287 − 299.
    [11] WANG Hongjun, MENG Tao, WEI Wenqiang. Analysis of synonymous codon usage bias in helicase gene from Autographa californicamultiple ucleopolyhedrovirus [J]. Genes &Genomics, 2018, 40(7): 767 − 780.
    [12] LONG Shiyu, YAO Huipeng, WU Qi, et al. Analysis of compositional bias and codon usage pattern of the coding sequence in Banna virus genome [J]. Virus Research, 2018, 258: 68 − 72.
    [13] 关惜今, 朱智国, 郑昊吉, 等. 马铃薯与其野生近缘种叶绿体基因组差异分析[J]. 云南师范大学学报(自然科学版), 2021, 41(4): 33 − 40.

    GUAN Xijin, ZHU Zhiguo, ZHENG Haoji, et al. Comparative analysis of plastid chloroplast genomes between potato and its wild relatives [J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2021, 41(4): 33 − 40.
    [14] ZHAO Chunbo, CHEN Shanshan, SUN Kai, et al. Sequencing and characterization the complete chloroplast genome of the potato, Solanum tuberosum L. [J]. Mitochondrial DNA Part B, 2019, 4(1): 953 − 954.
    [15] CHUNG H J, JUNG J D, PARK H W, et al. The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence [J]. Plant Cell Reports, 2006, 25: 1369 − 1379.
    [16] CHEN Shanshan, ZHAO Yanfei, ZHANG Jingying, et al. Characterization of the complete chloroplast genome of the Solanum tuberosum L. cv. Shepody (Solanaceae) [J]. Mitochondrial DNA Part B, 2021, 6(8): 2342 − 2344.
    [17] PARK T H. Complete chloroplast genome sequence of the wild diploid potato relative, Solanum acaule [J]. Mitochondrial DNA Part B, 2021, 6(3): 1189 − 1191.
    [18] PARK T H. Complete chloroplast genome sequence of the wild diploid potato relative, Solanum brevicaule [J]. Mitochondrial DNA Part B, 2019, 4(2): 4159 − 4160.
    [19] KHAN A R, PARK C E, PARK G S, et al. The whole chloroplast genome sequence of black nightshade plant (Solanum nigrum) [J]. Mitochondrial DNA Part A, 2015, 28(2): 169 − 170.
    [20] 尹明华, 卢咏琪, 罗怿文, 等. 怀玉山高山马铃薯脱落酸和环境胁迫诱导蛋白基因的克隆和序列分析[J]. 西南农业学报, 2021, 34(6): 1181 − 1187.

    YIN Minghua, LU Yongqi, LUO Yiwen, et al. Cloning and sequence analysis of abscisic acid and environmental stress inducible protein gene in alpine potato in Huaiyushan [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(6): 1181 − 1187.
    [21] 尹明华, 叶思雨, 宁本松, 等. 高山马铃薯脱毒苗DNA甲基化的MSAP分析[J]. 核农学报, 2019, 33(6): 1079 − 1087.

    YING Minghua, YE Siyu, NING Bensong, et al. MSAP analysis of genomic DNA methylation in virus-free plantlets of alpine potato [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(6): 1079 − 1087.
    [22] FENG Shangguo, ZHENG Kaixin, JIAO Kaili, et al. Complete chloroplast genomes of four Physalis species (Solanaceae): lights into genome structure, comparative analysis, and phylogenetic relationships [J/OL]. BMC Plant Biology, 2020, 20(1): 242[2023-01-20]. doi: 10.1186/s12870-020-02429-w.
    [23] ZHANG Tongwu, FANG Yongjun, WANG Xumin, et al. The complete chloroplast and mitochondrial genome sequences of Boeahygrometrica: insights into the evolution of plant organellar genomes [J/OL]. PLoS One, 2012, 7(1): e30531[2023-01-20]. doi: 10.1371/journal.pone.0030531.
    [24] 李连星, 彭劲谕, 王大玮, 等. 长爪栘[木衣]叶绿体基因组特征系统发育及密码子偏好性分析[J]. 生物工程学报, 2022, 38(1): 328 − 342.

    LI Lianxing, PENG Jinyu, WANG Dawei, et al. Chloroplast genome phylogeny and codon preference of Docynia longiunguis [J]. Chinese Journal of Biotechnology, 2022, 38(1): 328 − 342.
    [25] PROVAN J, POWELL W, HOLLINGSWORTH P M. Chloroplast microsatellites: new tools for studies in plant ecology and evolution [J]. Trends in Ecology &Evolution, 2001, 16(3): 142 − 147.
    [26] KAUNDUN S S, MATSUNOTO S. Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis [J]. Genome, 2002, 45: 1041 − 1048.
    [27] ZHANG Xinye, SHIRAISHI S, HUANG Minren. Analysis of genetic structure in population of Larix kaempferi by chloroplast SSR markers [J]. Hereditas, 2004, 26(4): 486 − 490.
    [28] ZHAO Yuhui, LU Dengxue, HAN Rongbing, et al. The complete chloroplast genome sequence of the shrubby cinquefoil Dasiphora fruticosa (Rosales: Rosaceae) [J]. Conservation Genetics Resources, 2018, 10(4): 675 − 678.
    [29] WANG Wenbin, YU Huan, WANG Jiahui, et al. The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa (Oleaceae) [J/OL]. International Journal of Molecular Sciences, 2017, 18(11): 2288[2023-01-20]. doi: 10.3390/ijms18112288.
    [30] KURLAND C, GALLANT J. Errors of heterologous protein expression [J]. Current Opinion in Biotechnology, 1996, 7(5): 489 − 493.
    [31] QIAN Wenfeng, ZHANG Jianzhi. Codon usage bias and nuclear mRNA concentration: correlation vs. causation [J/OL]. Proceedings of the National Academy of Sciences, 2021, 118: e2104714118[2023-01-20]. doi: 10.1073/pnas.2104714118.
    [32] GUSTAFSSON C, GOVINDARAJAN S, MINSHULL J. Codon bias and heterologous protein expression [J]. Trends in Biotechnology, 2004, 22(7): 346 − 353.
    [33] BUTT A M, NASRULLAH I, TONG Yigang. Genome-wide analysis of codon usage and influencing factors in chikungunya viruses [J/OL]. PLoS One, 2014, 9(3): e90905[2023-01-20]. doi: 10.1371/journal.pone.0090905.
    [34] BHATTACHARYYA D, UDDIN A, DAS S, et al. Mutation pressure and natural selection on codon usage in chloroplast genes of two species in Pisum L. (Fabaceae: Faboideae) [J]. Mitochondrial DNA Part A, 2019, 30(4): 664 − 673.
    [35] GU Wanjun, ZHOU Tong, MA Jianmin, et al. The relationship between synonymous codon usage and protein structure in Escherichia coli and Homo sapiens [J]. Biosystems, 2004, 73(2): 89 − 97.
    [36] INGVARSSON P K. Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula [J]. Molecular Biology and Evolution, 2006, 24(3): 836 − 844.
    [37] 尚明照, 刘方, 华金平, 等. 陆地棉叶绿体基因组密码子使用偏性的分析[J]. 中国农业科学, 2011, 44(2): 245 − 253.

    SHANG Mingzhao, LIU Fang, HUA Jinping, et al. Analysis on codon usage of chloroplast genome of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2011, 44(2): 245 − 253.
    [38] LIU Qingpo, XUE Qingzhong. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species [J]. Journal of Genetics, 2005, 84(1): 55 − 62.
    [39] PLOTKIN J B, KUDLA G. Synonymous but not the same: the causes and consequences of codon bias [J]. Nature Reviews Genetics, 2011, 12(1): 32 − 42.
    [40] ZHOU Zhipeng, DANG Yunkun, ZHOU Mian, et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription [J/OL]. Proceedings of the National Academy of Sciences, 2016, 113(41): E6117 − E6125[2023-01-20]. doi: 10.1073/pnas.1606724113.
    [41] ZHOU Tao, ZHU Honghong, WANG Jian, et al. Complete chloroplast genome sequence determination of Rheum species and comparative chloroplast genomics for the members of Rumiceae [J]. Plant Cell Reports, 2020, 39(6): 811 − 824.
  • [1] 陈梦瑶, 胡怡然, 郑志富, 潘天.  大豆IGT基因家族的全基因组鉴定及组织表达分析 . 浙江农林大学学报, 2025, 42(1): 64-73. doi: 10.11833/j.issn.2095-0756.20240354
    [2] 江转转, 陈红, 鲍红艳, 代雨童.  狼尾草属叶绿体基因组特征与分子标记开发 . 浙江农林大学学报, 2025, 42(2): 365-372. doi: 10.11833/j.issn.2095-0756.20240371
    [3] 朱梦飞, 胡迎峰, 师雪芹.  濒危植物新绒苔叶绿体基因组特征及系统发育位置分析 . 浙江农林大学学报, 2025, 42(1): 55-63. doi: 10.11833/j.issn.2095-0756.20240356
    [4] 李妍, 舒金平, 华克达, 张亚波, 应玥, 张威.  暗影饰皮夜蛾线粒体基因组全序列测定与分析 . 浙江农林大学学报, 2024, 41(4): 724-734. doi: 10.11833/j.issn.2095-0756.20240138
    [5] 刘萱, 邹龙海, 周明兵.  黄槽毛竹叶绿体基因组及毛竹种下分类群的叶绿体基因组序列比较 . 浙江农林大学学报, 2024, 41(5): 1037-1046. doi: 10.11833/j.issn.2095-0756.20240110
    [6] 段春燕, 王晓凌.  重瓣榆叶梅全叶绿体基因组遗传特征分析 . 浙江农林大学学报, 2024, 41(3): 577-585. doi: 10.11833/j.issn.2095-0756.20230489
    [7] 吴民华, 叶晓霞, 谭靖怡, 梁秋婷, 吴子健, 黄琼林.  了哥王叶绿体基因组分析 . 浙江农林大学学报, 2024, 41(2): 297-305. doi: 10.11833/j.issn.2095-0756.20230412
    [8] 魏亚楠, 龚明贵, 白娜, 苏佳杰, 姜霞.  梁山慈竹叶绿体基因组密码子偏好性分析 . 浙江农林大学学报, 2024, 41(4): 696-705. doi: 10.11833/j.issn.2095-0756.20230498
    [9] 周佩娜, 党静洁, 邵永芳, 石遵睿, 张琳, 刘潺潺, 吴啟南.  荆芥HD-Zip基因家族的全基因组鉴定及分析 . 浙江农林大学学报, 2023, 40(1): 12-21. doi: 10.11833/j.issn.2095-0756.20220390
    [10] 王杰, 贺文闯, 向坤莉, 武志强, 顾翠花.  基因组时代的植物系统发育研究进展 . 浙江农林大学学报, 2023, 40(1): 227-236. doi: 10.11833/j.issn.2095-0756.20220313
    [11] 刘俊, 李龙, 陈玉龙, 刘燕, 吴耀松, 任闪闪.  杜仲CONSTANS-like全基因组鉴定、系统进化及表达模式分析 . 浙江农林大学学报, 2022, 39(3): 475-485. doi: 10.11833/j.issn.2095-0756.20210385
    [12] 阮诗雨, 张智俊, 陈家璐, 马瑞芳, 朱丰晓, 刘笑雨.  毛竹GRF基因家族全基因组鉴定与表达分析 . 浙江农林大学学报, 2021, 38(4): 792-801. doi: 10.11833/j.issn.2095-0756.20200544
    [13] 陈娅欣, 周明兵.  毛竹长末端重复序列反转录转座子的全基因组特征及进化分析 . 浙江农林大学学报, 2021, 38(3): 455-463. doi: 10.11833/j.issn.2095-0756.20200458
    [14] 郑钢, 顾翠花, 林琳, 王杰.  20种千屈菜科植物rbcL基因密码子使用偏好性分析 . 浙江农林大学学报, 2021, 38(3): 476-484. doi: 10.11833/j.issn.2095-0756.20200390
    [15] 李思巧, 韦伊, 刘洪妤, 张志东, 张野, 王丽华, 刘玉林.  花椒cpSSR标记开发及在种间、种内的通用性分析 . 浙江农林大学学报, 2019, 36(6): 1241-1246. doi: 10.11833/j.issn.2095-0756.2019.06.023
    [16] 王树和, 周彩勤, 张奎望, 刘慧迪.  金叶女贞棒孢叶斑病菌的生物学特性、致病性及系统发育 . 浙江农林大学学报, 2019, 36(6): 1174-1181. doi: 10.11833/j.issn.2095-0756.2019.06.015
    [17] 陆军, 孙丽娟, 王晓荣, 吉泓睿, 倪晓详, 程龙军.  巨桉糖基转移酶基因EgrGATL1序列特征及表达分析 . 浙江农林大学学报, 2018, 35(4): 604-611. doi: 10.11833/j.issn.2095-0756.2018.04.004
    [18] 黄笑宇, 许在恩, 郭小勤.  基于全基因组的毛竹同义密码子使用偏好性分析 . 浙江农林大学学报, 2017, 34(1): 120-128. doi: 10.11833/j.issn.2095-0756.2017.01.017
    [19] 李洪滨, 朱诚棋, 周湘, 马良进, 苏秀.  红哺鸡竹异香柱菌的形态学和分子鉴定 . 浙江农林大学学报, 2016, 33(6): 1040-1044. doi: 10.11833/j.issn.2095-0756.2016.06.016
    [20] 王策, 秦静静, 甘红豪1, 李红, 罗志斌.  毛果杨全基因组磷酸根转运蛋白家族成员序列分析 . 浙江农林大学学报, 2012, 29(4): 516-526. doi: 10.11833/j.issn.2095-0756.2012.04.006
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230169

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/1/92

图(5) / 表(3)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  105
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-20
  • 修回日期:  2023-10-30
  • 录用日期:  2023-11-06
  • 网络出版日期:  2023-12-22
  • 刊出日期:  2024-02-20

‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析

doi: 10.11833/j.issn.2095-0756.20230169
    基金项目:  国家自然科学基金资助项目(32060092,31960079);2022年上饶市科技专项项目(2022A008);江西省科技厅重点研发计划一般项目(20192BBF60006,20202BBF63001);江西省教育厅科学技术研究项目(GJJ201704,GJJ211729);江西省现代农业产业技术体系建设专项(JXARS-13-赣东站);上饶市科技局平台载体建设项目(2020I001,2020J001)
    作者简介:

    洪森荣(ORCID: 0000-0002-9219-8303),教授,从事植物生物技术研究。E-mail: hongsenrong@163.com

  • 中图分类号: S532

摘要:   目的  分析‘怀玉山’高山马铃薯Solanum tuberosum var. cormosus ‘Huaiyushan’叶绿体基因组特征及密码子使用偏好性,为开展‘怀玉山’高山马铃薯叶绿体基因组密码子优化、叶绿体基因组改造,探索物种进化和增加外源基因表达等研究提供参考依据和理论基础。  方法  采用高通量测序技术对‘怀玉山’高山马铃薯叶绿体基因组进行测序,并利用生物信息学分析软件对组装和注释后的叶绿体基因组进行结构、基因组成及密码子偏好性分析。  结果  ‘怀玉山’高山马铃薯叶绿体基因组大小为155 296 bp,为经典的4段式结构。大单拷贝区(LSC)、小单拷贝区(SSC)和反向重复区(IR)长度分别为85 737、18 373、25 593 bp,总鸟嘌呤和胞嘧啶所占的比例(GC比例)为37.88%,共注释出133个基因,包含87个编码区(CDS)基因、37个tRNA基因、8个rRNA基因和1个假基因。‘怀玉山’高山马铃薯叶绿体基因组中共检测到38个简单重复序列位点(SSR位点,36个单碱基重复和2个双碱基重复)和32个长重复序列(16个正向重复和16个回文重复)。‘怀玉山’高山马铃薯叶绿体基因组核苷酸多样性为0~0.139 27,高变区主要分布在大单拷贝区和小单拷贝区,大单拷贝区trnL-UAA-trnF-GAAcemArps12-exon1-clpP1、clpP1基因变异率最高,小单拷贝区rpl32-trnL-UAGycf1基因变异率最高。‘怀玉山’高山马铃薯叶绿体基因组87个CDS基因的平均有效密码子数(ENC)为47.29,ENC>45的基因有60个,密码子偏性较弱。‘怀玉山’高山马铃薯叶绿体基因组密码子偏好以A、U结尾,使用偏性很大程度上受自然选择的影响,而受突变压力的影响小。CGU、AAA、CUU、GUU、GGA、GUA、GGU、UCA、GCU、CCU为‘怀玉山’高山马铃薯叶绿体基因组的10个最优密码子。  结论  ‘怀玉山’高山马铃薯与马铃薯栽培种S. tuberosum‘Desiree’亲缘关系较近。图5表3参41

English Abstract

洪森荣, 张牧彤, 徐子林, 等. ‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析[J]. 浙江农林大学学报, 2024, 41(1): 92-103. DOI: 10.11833/j.issn.2095-0756.20230169
引用本文: 洪森荣, 张牧彤, 徐子林, 等. ‘怀玉山’高山马铃薯叶绿体基因组特征及密码子使用偏好性分析[J]. 浙江农林大学学报, 2024, 41(1): 92-103. DOI: 10.11833/j.issn.2095-0756.20230169
PANShi-xiu, MEN Xiu-xiang, FENG Jin-chao, et al. A review of studies on habitat selection by small and solitary forest ruminants[J]. Journal of Zhejiang A&F University, 2007, 24(3): 357-362.
Citation: HONG Senrong, ZHANG Mutong, XU Zilin, et al. Chloroplast genome characteristics and codon usage preference of Solanum tuberosum var. cormosus ‘Huaiyushan’[J]. Journal of Zhejiang A&F University, 2024, 41(1): 92-103. DOI: 10.11833/j.issn.2095-0756.20230169
  • ‘怀玉山’高山马铃薯Solanum tuberosum var. cormosus ‘Huaiyushan’,又名麻籽洋芋,茄科Solanaceae茄属Solanum 1年生草本植物,主要种植区域为江西省玉山县怀玉乡[1]。‘怀玉山’高山马铃薯食用、药用皆优,获批为国家地理标志农产品[23]。已有研究表明:‘怀玉山’高山马铃薯与云南德宏和曲靖以及湖北恩施的高山马铃薯种质存在差异[4]。但‘怀玉山’高山马铃薯的进化来源尚无相关研究报道。

    叶绿体是高等植物细胞内一种重要的与光合作用和物质代谢相关的细胞器,叶绿体基因组是一套具有母系遗传特征的独立基因组,是高等植物细胞质基因组的组成成分之一[5]。与核基因组相比,叶绿体基因组全长序列短、易测序获得、基因直系同源、基因结构稳定、保守性较高、进化速率适中,目前已经广泛应用于植物系统发育分析、物种分类鉴定及分子标记开发等研究中,在物种起源、进化、演变及比较基因组学等研究领域发挥着越来越大的作用[6]。密码子是核酸和蛋白质之间遗传信息传递的桥梁[7],mRNA上的遗传信息以tRNA三重密码子传递。氨基酸一般对应≥1的密码子[8],这些密码子称为同义密码子[9]。在自然选择或突变偏好的情况下,基因倾向于使用≥1的同义密码子,即同义密码子使用偏好性[1012]。目前,关于茄属的叶绿体基因组研究已有报道[1319],而针对‘怀玉山’高山马铃薯的研究大多集中在基因克隆[20]、转录组分析[3]、遗传多样性[4]、脱毒快繁[2]、DNA甲基化敏感扩增多态性(MSAP)分析[21]等方面,对‘怀玉山’高山马铃薯叶绿体全基因组及其密码子使用偏好性方面的研究还未见系统报道。本研究通过对‘怀玉山’高山马铃薯叶绿体基因组进行测序和组装,分析基于叶绿体基因组的‘怀玉山’高山马铃薯系统进化、结构解析和密码子偏好性等,为‘怀玉山’高山马铃薯叶绿体基因组研究和应用提供科学依据,也为进一步研究‘怀玉山’高山马铃薯遗传背景、种质资源保护与开发利用奠定基础。

    • 由上饶市薯芋类作物种质保存与利用重点实验室提供的‘怀玉山’高山马铃薯试管苗。

    • 选取‘怀玉山’高山马铃薯(MLS)试管苗叶片组织,利用植物基因组DNA提取试剂盒(北京天根生化科技有限公司)提取‘怀玉山’高山马铃薯试管苗DNA,质量分数为1%琼脂糖凝胶电泳检测DNA的完整性,NanoDrop 2000 分光光度计(Thermo Scientific公司)检测 DNA 浓度和纯度,用超声波将DNA片段化,然后对片段化的DNA进行片段纯化、末端修复、3′端加A、连接测序接头,再用琼脂糖凝胶电泳进行片段大小选择,进行聚合酶链式反应(PCR)扩增形成测序文库。建好的文库先进行文库质检,质检合格的文库用BGISEQ-500平台进行测序。

    • 通过SOAPnuk 1.3.0对raw data (测序下机的原始数据)进行数据过滤,去除其中的接头序列及低质量reads (高通量测序中一个反应获得的测序序列),获得高质量的clean data (对原始数据进行过滤后并剔除了低质量数据的剩余数据)。采用Noveplastys软件组装叶绿体基因组核心模块,以起始组装序列为起点开始组装叶绿体contigs (很多reads根据序列拼接在一起拼出的片段),如果contigs未环化,则利用CAP 3软件连接多个contigs为完整叶绿体基因组,并手动调整环状叶绿体基因组起始位置。使用GeSeq、tRNAscan-SE对叶绿体基因组进行注释,再经过手工校正后得到最终的基因注释结果。将注释完成的‘怀玉山’高山马铃薯叶绿体基因组序列提交至美国国家生物信息中心(NCBI),获得登录号:OP589401。使用OGDRAW绘制叶绿体基因组图谱。

    • 通过JSHYCloud在线工具集分析并统计叶绿体基因组、大单拷贝区(LSC)、小单拷贝区(SSC)和反向重复区(IR)的鸟嘌呤和胞嘧啶所占的比例(GC比例);使用MISA软件进行简单重复序列(SSR)分析,单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸、六核苷酸的最小重复值分别设置为10、6、5、5、5、5;利用REPuter软件进行长重复序列(longrepeat)分析,查找正向重复(F)、反向重复(R)、互补重复(C)、回文重复(P)等4种重复类型;通过Pasteur Galaxy 在线工具集中的CodonW模块分析密码子使用情况,设置输出结果为有效密码子数(ENC)和相对同义密码子使用频率(RSCU),其他参数设为默认值。将‘怀玉山’高山马铃薯叶绿体基因组序列上传至美国国家生物技术信息中心(NCBI) 进行BLASTn比对,选择highly similar sequence (megablast)比较相似性在95 %以上的序列,检索获得‘怀玉山’高山马铃薯的近缘种。利用Gview、VISTA tools、IRscope和DNADnaSP 6.0软件绘制‘怀玉山’高山马铃薯及其10个近缘种(S. cochoae NC_062512、多毛番茄S. habrochaites NC_026879、潘那利番茄S. pennellii NC_035742、S. bukasovii MT120867、S. boliviense NC_062870、S. trisectum NC_062469、S. salamancae NC_062480、S. clivorum NC_062513、S. mortonii NC_062426、S. insanum MW384851)的变异圈图、mVIST结构变异图、IR结构变异图,计算‘怀玉山’高山马铃薯及其10个近缘种的基因组核酸多样性(Pi),参数设置100 bp滑窗,25 bp的步长,并进行中性绘图分析(GC3-GC12分析)、ENC-plot分析、PR2-bias-plot分析和最优密码子分析;对‘怀玉山’高山马铃薯叶绿体基因的ENC进行排序,分别选取两端基因各5个,构建高表达基因库(ENC小)和低表达基因库(ENC大),并计算两者的RSCU差值(ΔRSCU)。筛选ΔRSCU≥0.08的高表达密码子,且将RSCU>1.00的高频率密码子定义为‘怀玉山’高山马铃薯叶绿体基因组的最优密码子;最后利用mafft 7.0和fasttree 2.1.10软件分别对‘怀玉山’高山马铃薯和18个近缘种以及烟草属Nicotiana 2个外类群物种进行序列比对和构建进化树。

    • 经过测序组装的完整的叶绿体基因组长度为155 296 bp,图1显示:‘怀玉山’高山马铃薯叶绿体基因组呈典型的四分体结构,包含1个LSC、1个SSC和2个将LSC与SSC分隔开的IR (IRa和IRb)。基因组的总GC比例为37.88%,A、T、C、G比例分别为30.65%、31.47%、19.24%、18.65%。LSC、SSC和IR的长度分别为85 737、18 373、25 593 bp。LSC的GC比例为36.01%,A、T、C、G比例分别为31.29%、32.70%、18.40%、17.61%;SSC的GC比例为32.09%,A、T、C、G比例分别为33.78%、34.14%、16.69%、15.40%;IRb的GC比例为43.10%,A、T、C、G比例分别为28.57%、28.33%、20.72%、22.39%;IRa的GC比例为43.10%,A、T、C、G比例分别为28.33%、28.57%、22.39%、20.72%。表明‘怀玉山’高山马铃薯IR的GC比例最大,LSC次之,SSC最少;叶绿体基因组总GC比例显著低于AT比例;叶绿体基因组各碱基比例从大到小依次为T、A、C、G。

      图  1  ‘怀玉山’高山马铃薯叶绿体基因组图谱

      Figure 1.  Chloroplast genome map of S. tuberosum var. cormosus ‘Huaiyushan’

    • 叶绿体基因组共注释到光合作用基因、自我复制基因、其他基因和未知功能基因4类,包括87个编码区(CDS)基因、37个tRNA基因、8个rRNA 基因、1个假基因,共133个基因。对有多个外显子的叶绿体基因进行结构分析,由2个外显子构成的基因有21个,包括13个CDS基因和8个tRNA基因;由 3个外显子构成的基因有4个,为clpP1、ycf3、rps12 (2个)基因。LSC的基因数量最多(81个),其中CDS基因59个、tRNA基因22个;SSC的基因数量为11个,其中CDS基因10个、tRNA基因1个;IR的基因数量为17个,其中CDS基因6个、rRNA基因4个、tRNA基因7个;SSC与IRb边界(JSB)的基因数量为2个(ndhFycf1);LSC与IRb边界(JLB)的基因数量为1个(rps19);SSC与IRa边界(JSA)的基因数量为2个(ycf1);LSC与IRa边界(JLA)的基因数量为0。rps12有2个拷贝,每个拷贝具有3个外显子,且2个拷贝共享第1个外显子,第1个外显子位于LSC,另外2个外显子位于IR (表1)。

      表 1  ‘怀玉山’高山马铃薯叶绿体基因功能分类

      Table 1.  Chloroplast gene functional classification of S. tuberosum var. cormosus ‘Huaiyushan’

      基因功能基因类型基因名基因数
      量/个
      光合作用   光系统Ⅰ psaApsaBpsaCpsaIpsaJ 5
      光系统Ⅱ psaJpsbApsbBpsbCpsbDpsbEpsbFpsbH*、psbIpsbKpsbLpsbM
      psbTpsbZ
      15
      NADH 脱氢 ndhAndhB*、ndhCndhDndhEndhFndhGndhHndhIndhJndhK 12
      细胞色素 b/f 复合体 petApetBpetDpetGpetLpetN 6
      ATP 合成酶 atpAatpBatpEatpFatpHatpI 6
      自我复制   核糖体大亚基蛋白质 rpl14、rpl16、rpl2*、rpl20、rpl22、rpl23*、rpl32、rpl33、rpl36 11
      核糖体小亚基蛋白质 rps11、rps12*、rps14、rps15、rps16、rps18、rps19、
      rps2、rps3、rps4、rps7*、rps8
      14
      核糖体大亚基 rbcL 1
      RNA 聚合酶 rpoArpoBrpoC1、rpoC2 4
      核糖体RNA rrn16*、rrn23*、rrn4.5*、rrn5* 8
      转运RNA trnA-UGC*、trnC-GCAtrnD-GUCtrnE-UUCtrnF-GAAtrnG-GCCtrnG-UCC
      trnH-GUGtrnI-CAU*、trnI-GAU*、trnK-UUUtrnL-CAA*、trnL-UAAtrnL-UAG
      trnM-CAUtrnN-GUU*、trnP-UGGtrnQ-UUGtrnR-ACG*、trnR-UCU
      trnS-GCUtrnS-GGAtrnS-UGAtrnT-GGUtrnT-UGUtrnV-GAC*、trnV-UAC
      trnW-CCAtrnY-GUAtrnfM-CAU
      37
      其他基因   成熟酶 matK 1
      蛋白酶 clpP1 1
      囊膜蛋白 cemA 1
      乙酰辅酶 A 羧化酶 accD 1
      c-型细胞色素合成基因 ccsA 1
      翻译起始因子 infA 1
      未知功能基因 保守假设叶绿体阅读框架 ycf1*、ycf15*、ycf2*、ycf3、ycf4 8
        说明:*表示该基因的数量有2个。
    • 叶绿体基因组中共检测到38个SSR位点,其中,单碱基重复有36个,双碱基重复有2个。其中,重复单元为A/T,重复频率为10的SSR位点数量最多(18个),重复频率为11的SSR位点数量次之(11个);重复单元为AT/AT、重复频率为6的SSR位点数量为2个。

    • 叶绿体基因组共鉴定到32个长重复序列,包括16个正向重复(15个30~39 bp,1个40~49 bp),16个回文重复 (13个30~39 bp,2个40~49 bp,1个50~59 bp),无反向重复和互补重复。

    • ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组结构从LSC中间呈线性展开,均由1个LSC、1个SSC和2个IR (IRa和IRb) 4部分组成。‘怀玉山’高山马铃薯及其10个近缘种rpl22、rps19、rpl2、ycf1、ndhFtrnHpsbA位置基本一致,但收缩和扩张的长度存在一些差异(图2)。

      图  2  ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组大单拷贝区、小单拷贝区和反向重复区边界位置的比较

      Figure 2.  Comparison on the boundary locations of large single copy region, small single copy region and inverted repeat region in chloroplast genomes of S. tuberosum var. cormosus ‘Huaiyushan’ and its 10 related species

    • ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组核苷酸多样性的变化范围为0~0.13927,高变区主要分布在LSC和SSC。LSC的trnL-UAA-trnF-GAAcemArps12-exon1-clpP1、clpP1基因变异率最高;SSC的rpl32-trnL-UAGycf1基因变异率最高。

    • 叶绿体基因组87个CDS基因密码子3个位置GC比例的平均值为38.38%,GC1、GC2、GC3分别为45.98%、39.55%、29.60%,这说明GC在密码子3个位点上的分布存在显著差异,只有GC2与平均GC大致接近(图3)。ENC是密码子偏性分析的重要指标,通常将35作为区分值来评估密码子偏倚的强度。叶绿体基因组87个CDS 基因的平均ENC为47.29,ENC>45的基因有60个,ENC>35的基因有83个,有4个基因的ENC<35,这表明叶绿体基因组的密码子偏性较弱。通过SPSS 20.0进行相关性分析,结果表明:密码子总GC比例(GCall)与GC1、GC2在0.01水平上均存在极显著的正相关,GCall与GC3在0.05水平上显著相关;GC1与GC2在0.05水平上存在显著正相关,但两者均与GC3不相关。这表明叶绿体基因组密码子前2位的碱基组成相似,而与第3位不相似。ENC与GC1、GC2、GC3均不相关,说明密码子上第1位、第2位和第3位的碱基组成对ENC没有显著影响。叶绿体基因组 87个CDS基因序列共有31个RSCU>1的密码子。在这31个密码子中,除AUG、UUG外,其余都以A、U结尾,表明A、U碱基在密码子最后位点上出现的频率最高。‘怀玉山’高山马铃薯叶绿体基因组密码子偏好以A、U结尾(表2)。

      图  3  ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组密码子组成成分分析

      Figure 3.  Composition analysis of chloroplast genome codons of S. tuberosum var. cormosus ‘Huaiyushan’ and its 10 related species

      表 2  ‘怀玉山’高山马铃薯叶绿体基因组同义密码子的使用频率

      Table 2.  Relative synonymous codon usage (RSCU) of chloroplast genome of S. tuberosum var. cormosus ‘Huaiyushan’

      密码子氨基酸相对同义密码子
      使用频率
      数量/个密码子氨基酸相对同义密码子
      使用频率
      数量/个密码子氨基酸相对同义密码子
      使用频率
      数量/个
      GCAAla1.134 37401GGGGly0.731 07333CCUPro1.521 13432
      GCCAla0.718 53254GGUGly1.242 59566AGCSer0.342 61119
      GCGAla0.390 38138CACHis0.479 87149AGUSer1.191 94414
      GCUAla1.756 72621CAUHis1.520 13472UCASer1.197 70416
      AGAArg1.829 81491AUAIle 0.909 09680UCCSer0.955 85332
      AGGArg0.633 54170AUCIle 0.609 63456UCGSer0.595 97207
      CGAArg1.453 42390AUUIle 1.481 281 108UCUSer1.715 93596
      CGCArg0.368 9499CUALeu0.821 14391UAATer1.655 1748
      CGGArg0.424 85114CUCLeu0.434 72207UAGTer0.758 6222
      CGUArg1.289 44346CUGLeu0.403 22192UGATer0.586 2117
      AACAsn0.485 74315CUULeu1.297 86618ACAThr1.221 17421
      AAUAsn1.514 26982UUALeu1.812 39863ACCThr0.771 57266
      GACAsp0.408 80223UUGLeu1.230 66586ACGThr0.446 70154
      GAUAsp1.591 20868AAALys1.462 871 054ACUThr1.560 55538
      UGCCys0.556 2984AAGLys0.537 13387UGGTrp1.000 00490
      UGUCys1.443 71218AUGMet1.987 34628UACTyr0.397 12193
      CAAGln1.491 10712GUGMet0.012 664UAUTyr1.602 88779
      CAGGln0.508 90243UUCPhe0.722 19542GUAVal1.502 75547
      GAAGlu1.477 521 035UUUPhe1.277 81959GUCVal0.52473191
      GAGGlu0.522 48366CCAPro1.193 66339GUGVal0.524 73191
      GGAGly1.571 90716CCCPro0.742 96211GUUVal1.447 80527
      GGCGly0.454 45207CCGPro0.542 25154
    • 分析发现:‘怀玉山’高山马铃薯及其10个近缘种植物叶绿体基因的GC3比例分布为0.142 9~0.443 2,GC12比例分布为0.285 7~0.658 5,两者大多沿对角线上方分布。两者的相关系数(r)为0.110 1 (R2=0.012 1),相关不显著(P>0.05),回归斜率为0.117 5,说明GC12与GC3不相关(图4A)。表明‘怀玉山’高山马铃薯叶绿体基因组密码子使用偏性很大程度上受自然选择的影响,而受突变压力的影响小。

      图  4  ‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组密码子GC3-GC12分析(A)、ENC-plot分析(B)和PR2-plot分析(C)

      Figure 4.  GC3-GC12 analysis (A), ENC-plot analysis (B) and PR2-plot analysis (C) of chloroplast genome codons of S. tuberosum var. cormosus ‘Huaiyushan’ and its 10 related species

    • 分析表明:分布在期望曲线上或曲线附近的基因较少,分布在期望曲线下方且远离曲线的基因较多,说明大部分基因的实际ENC (ENCobs)与理论ENC (ENCexp)存在差异。为了解实际ENC和理论ENC的差异度,计算了‘怀玉山’高山马铃薯ENC比值频数,即(ENCexp-ENCobs)/ENCexp。结果表明:‘怀玉山’高山马铃薯叶绿体基因组基因中,有16.47%(14个)的基因分布在0~0.1区间,分布于期望曲线上或曲线附近,即ENCobs接近于ENCexp值,有83.53%的基因分布在0~0.1区间外,远离期望曲线分布,即ENCexp和ENCobs相差较大,表明自然选择是影响‘怀玉山’高山马铃薯叶绿体基因组密码子使用偏性的主要因素,而突变压力的作用较小(图4B)。

    • 分析表明: A3/AU3轴、G3/GC3轴均以0.5为界限,发现4个平面内基因分布不均衡。从G3/GC3轴看,多数基因位于上方(>0.5),少数基因位于下方(<0.5);从A3/AU3轴看,多数基因位于左侧(<0.5),少数基因位于右侧(>0.5)。这表明4种碱基在同义密码子第3位上存在C>G、T>A现象(图4C)。当密码子使用存在偏性完全受突变压力影响时,C和G以及A和T同义密码子在第3位上的分布应相等。因此,‘怀玉山’高山马铃薯叶绿体基因组密码子使用偏性主要受自然选择等因素影响。

    • RSCU分析可知:同时满足RSCU>1和ΔRSCU≥0.08的密码子共10个,即CGU、AAA、CUU、GUU、GGA、GUA、GGU、UCA、GCU、CCU,这些密码子都以A、U结尾,被确定为‘怀玉山’高山马铃薯叶绿体基因组的最优密码子(表3)。

      表 3  ‘怀玉山’高山马铃薯叶绿体基因最优密码子筛选

      Table 3.  Optimal codon screening of chloroplast genome of S. tuberosum var. cormosus ‘Huaiyushan’

      密码子氨基酸相对同义密
      码子使用率
      密码子高表
      达相对概率
      密码子低表
      达相对概率
      ΔRSCU密码子氨基酸相对同义密
      码子使用率
      密码子高表
      达相对概率
      密码子低表
      达相对概率
      ΔRSCU
      CGU* Arg 1.289 44 0.631 58 1.428 57 0.796 99 UUU Phe 1.277 81 1.315 79 1.200 00 −0.115 79
      AAA* Lys 1.462 87 1.000 00 1.750 00 0.750 00 UUG Leu 1.230 66 0.750 00 0.600 00 −0.150 00
      CUU* Leu 1.297 86 1.022 73 1.500 00 0.477 27 AUU Ile 1.481 28 1.428 57 1.263 16 −0.165 41
      GUU* Val 1.447 80 0.800 00 1.250 00 0.450 00 CAU His 1.520 13 1.333 33 1.000 00 −0.333 33
      GGA* Gly 1.571 90 1.302 33 1.750 00 0.447 67 GAA Glu 1.477 52 1.469 39 1.000 00 −0.469 39
      GUA* Val 1.502 75 1.400 00 1.750 00 0.350 00 ACA Thr 1.221 17 1.000 00 0.444 44 −0.555 56
      GGU* Gly 1.242 59 1.302 33 1.500 00 0.197 67 CCA Pro 1.193 66 1.142 86 0.571 43 −0.571 43
      UCA* Ser 1.197 70 1.000 00 1.153 85 0.153 85 GAU Asp 1.591 20 1.600 00 1.000 00 −0.600 00
      GCU* Ala 1.756 72 2.105 26 2.250 00 0.144 74 AAU Asn 1.514 26 1.600 00 1.000 00 −0.600 00
      CCU* Pro 1.521 13 1.571 43 1.714 29 0.142 86 CAA Gln 1.491 10 1.615 38 1.000 00 −0.615 38
      AUG Met 1.987 34 1.000 00 1.000 00 0.000 00 AGU Ser 1.191 94 1.444 44 0.769 23 −0.675 21
      UAA Ter 1.655 17 1.200 00 1.200 00 0.000 00 CGA Arg 1.453 42 1.421 05 0.714 29 −0.706 76
      UGU Cys 1.443 71 1.000 00 1.000 00 0.000 00 UUA Leu 1.812 39 1.704 55 0.900 00 −0.804 55
      ACU Thr 1.560 55 1.600 00 1.555 56 −0.044 44 UCU Ser 1.715 93 1.888 89 0.769 23 −1.119 66
      GCA Ala 1.134 37 0.421 05 0.375 00 −0.046 05 AGA Arg 1.829 81 2.368 42 1.071 43 −1.296 99
      UAU Tyr 1.602 88 1.548 39 1.500 00 −0.048 39
        说明:标注*的密码子为最优密码子。
    • 基于‘怀玉山’高山马铃薯和18个近缘种以及烟草属2个外类群物种叶绿体基因组构建的系统发育树分析可知:茄属聚为一大类,烟草属聚为另一大类。在茄属中,MLS与S. tuberosum NC_008096 (‘Ddeiree’)聚为一小分支。说明‘怀玉山’高山马铃薯与S. tuberosum ‘Ddeiree’亲缘关系较近,两者同源(图5)。

      图  5  基于叶绿体基因组的‘怀玉山’高山马铃薯及其18个近缘种的系统发育树

      Figure 5.  Phylogenetic tree of S. tuberosum var. cormosus ‘Huaiyushan’ and its 18 related species based on chloroplast genome

    • 叶绿体基因组结构保守、独立母系遗传,是被子植物基因组的重要组成部分,广泛用于被子植物的生长发育、类群分析和进化分析[22]。被子植物叶绿体基因组大小一般为120~180 kb,IR大小一般为20~30 kb [2324]。在本研究中,‘怀玉山’高山马铃薯叶绿体基因组长度和IR长度分别为155 296和25 593 bp,与S. tuberosum ‘Shepody’[16]叶绿体基因组长度和IR长度一致,与其他马铃薯品种[1315, 1718]相比,叶绿体基因组长度和IR长度不超过500 bp,说明马铃薯各个品种的叶绿体基因组较为保守。

      叶绿体的SSR不仅与核基因组SSR一样,具有高多态性、多等位性、共显性[25],也具有单亲遗传模式,结构简单、相对保守[26],因此,叶绿体的SSR有较好的种间、种内遗传变异区分能力,已成为区分物种的重要分子标记而被广泛应用[27]。关惜今等[13]研究表明:S. fernandezianum与其野生近缘种(S. phurejaS. palustreS. etuberosum)叶绿体基因组中共检测到36、36、42、40个SSR,SSR类型比较单一,只有单核苷酸和二核苷酸等2种类型,单核苷酸为A和T等2种类型,二核苷酸包括TA和AT等2种类型,其数目比较少。本研究结果与此一致。在本研究中,在‘怀玉山’高山马铃薯叶绿体基因组中共检测到38个SSR位点,其中,单碱基重复有36个,双碱基重复有2个,较少的SSR位点存在表明‘怀玉山’高山马铃薯叶绿体基因组可能不易发生重排。

      IR和单拷贝区(SC)边界的膨胀和收缩被认为是被子植物叶绿体全基因组大小变化的主要机制[28],同一属不同品种叶绿体基因组IR/SC边界位置变化也不同[29]。关惜今等[13]研究表明:S. fernandezianum与其野生近缘种(S. phurejaS. palustreS. etuberosum)叶绿体基因组rps19基因均横跨JLB,S. phurejandhF基因横跨JSB,S. fernandezianumS. palustreS. etuberosumndhF基因均右移,分布在SSC,S. fernandezianum、S. phurejaS. palustreS. etuberosumycf1基因总长度为5 664 bp,均横跨SSC和IRa区域。在本研究中,对‘怀玉山’高山马铃薯及其10个近缘种叶绿体基因组 IR/SC 边界区域的分析结果表明:这些叶绿体基因组的IR都存在扩张或收缩的现象。‘怀玉山’高山马铃薯的rps19基因横跨 JLB,横跨 JLB的左边和右边长度分别为209和69 bp,在JSA,‘怀玉山’高山马铃薯ycf1基因为5 663 bp,左边和右边长度分别为4 541和1 122 bp。

      许多植物存在密码子偏好性(CUB),即某一或几种特定密码子频率超过其他同义密码子。密码子偏好性可用来评估基因组中蛋白质编码区(CDS)的密码子使用情况[30]。植物密码子偏好性是物种不断适应外界环境进化所导致的结果,生物获得特定的密码子使用模式以适应起源、进化、自然选择和突变压力等多种因素[31]。影响不同物种中密码子偏好性差异的因素主要有碱基突变、基因表达水平、自然选择等,自然选择和突变压力被认为是2个最重要的因素[3234]。密码子第3 个碱基的同义突变不能改变氨基酸的类型,但被认为是决定氨基酸类型的重要特征,因此GC3 经常被用作密码子偏向的重要指标[3536]。本研究发现‘怀玉山’高山马铃薯叶绿体基因组的平均GC 比例为38.38%,GC3为29.60%,更倾向于使用A/T 密码子。RSCU分析结果也证实了这一点。‘怀玉山’高山马铃薯叶绿体基因组中存在A/T 密码子使用偏向,这与大多数高等植物的模式一致[37]。‘怀玉山’高山马铃薯叶绿体基因组平均ENC为47.29,ENC>35的基因有83个,有4个基因的ENC<35,表明‘怀玉山’高山马铃薯叶绿体基因组的密码子偏性较弱。当密码子的使用受到自然选择的影响时,GC3值往往分布在一个较小的范围内,GC12和GC3之间没有显著的相关性[38]。密码子偏好性可以通过调节基因翻译的准确性和效率影响基因表达,基因表达水平越高,密码子偏好性越强[3940]。通过建立的高低基因表达库,本研究挖掘到‘怀玉山’高山马铃薯叶绿体基因组10个最优密码子,即CGU、AAA、CUU、GUU、GGA、GUA、GGU、UCA、GCU、CCU,说明‘怀玉山’高山马铃薯叶绿体基因组密码子更偏好于以A/U 结尾。筛选到的最优密码子可以用于设计叶绿体基因表达载体,以提高叶绿体基因组中基因的表达水平,也可以利用已知密码子的使用偏好来推测和预测未知基因的表达和功能,可为今后从遗传水平上进行‘怀玉山’高山马铃薯育种改良提供参考。

      含有足够信息位点的叶绿体基因组已被证明可有效判断系统发育关系,甚至是在较低的分类学水平下植物之间也有较强的分类学意义,为物种间系统发育的研究提供了新的思路[41]。在本研究中,在茄属中‘怀玉山’高山马铃薯与S. tuberosum ‘Desiree’单独聚为一分支。说明‘怀玉山’高山马铃薯与S. tuberosum ‘Desiree’亲缘关系较近,表明两者同源,推测‘怀玉山’高山马铃薯可能是S. tuberosum ‘Desiree’从美国引种的。

      综上所述,本研究测序组装了‘怀玉山’高山马铃薯叶绿体基因组全序列,分析了其编码蛋白基因的密码子使用特点,从高表达优越密码子和高频密码子中选出两者共有的密码子,最终筛选得到了10个叶绿体蛋白编码基因的最优密码子。‘怀玉山’高山马铃薯密码子的偏好性受到突变、选择及其他多方面因素的共同影响,但自然选择的影响更大,这为用基因工程手段改造外源基因密码子,提高其在‘怀玉山’高山马铃薯叶绿体中的表达量提供了参考,也为在分子水平上研究茄科茄属植物的系统进化提供参考。

参考文献 (41)

目录

/

返回文章
返回