Cloning and expression analysis of bHLH6 gene from Phyllostachys edulis
-
摘要:
目的 研究PhebHLH6转录因子在毛竹Phyllostachys edulis逆境胁迫应答中的作用,为毛竹抗逆分子机制研究奠定一定的基础。 方法 以毛竹实生苗为材料进行非生物胁迫处理[干旱胁迫、盐胁迫、水杨酸(SA)和脱落酸(ABA)处理],利用转录组数据筛选出1条差异表达基因,命名为PhebHLH6,并对其进行了基因克隆及生物信息学分析;采用实时荧光定量PCR方法分析PhebHLH6在干旱、盐胁迫及SA、ABA处理下的表达模式。 结果 PhebHLH6基因编码区长度为801 bp,编码266个氨基酸,包含bHLH结构域,属于典型的bHLH转录因子。组织特异性表达分析表明:PhebHLH6在毛竹各个组织均有表达,其中在1.5和3.0 m的笋顶部表达丰度最高。在干旱和高盐胁迫处理下,PhebHLH6的表达水平在处理3 h时被强烈诱导,但在处理24 h后显著下调。在SA和ABA激素处理下,PhebHLH6的表达水平被SA和ABA 诱导也呈先上升再下降的趋势,其中受SA强烈诱导,受ABA诱导作用较弱。 结论 PhebHLH6可能参与了毛竹干旱和盐胁迫早期响应途径,并可能在SA和ABA激素信号通路中起一定的调控作用。图4表2参32 Abstract:Objective The objective is to study the role of PhebHLH6 transcription factor in stress response of Phyllostachys edulis; so as to explore the molecular mechanism of resistance to stress in Ph. edulis. Methods Seedlings of Ph. edulis were treated with abiotic stress, including treatments of drought stress, salt stress, salicylic acid (SA) and abscisic acid (ABA). A differentially expressed gene named PhebHLH6 was screened using transcriptome data, and its gene cloning and bioinformatic analysis were performed. Real-time fluorescent quantitative PCR was used to analyze the expression patterns of PhebHLH6 under drought, salt stress and SA and ABA treatments. Result The coding region of PhebHLH6 gene had a base of 801 bp, encoding 266 amino acids, including bHLH domain, which was a typical bHLH transcription factor. Tissue-specific expression analysis showed that PhebHLH6 was expressed in nearly all the tissues of Ph. edulis, with the highest abundance at the top of 1.5 m and 3 m shoots. Under drought and high salt stress, the expression levels of PhebHLH6 were strongly induced after 3 h of treatment but significantly down-regulated after 24 h of treatment. Under SA and ABA hormone treatment, the expression levels of PhebHLH6 increased first and then decreased when induced by SA and ABA, with strong SA induction and weak ABA induction. Conclusion PhebHLH6 may be involved in the early response pathway to drought and salt stress of Ph. edulis and may play a regulatory role in SA and ABA hormone signaling pathways. [Ch, 4 fig. 2 tab. 32 ref.] -
Key words:
- Phyllostachys edulis /
- PhebHLH6 /
- gene clone /
- expression analysis
-
表 1 基因克隆及表达所用引物序列
Table 1. Primers used in gene clone and quantitative real-time PCR
用途 引物名称 序列(5′→3′) 基因克隆 PhebHLH6-F ATGGACGCGGACATGGGCGACA PhebHLH6-R CTAATAGCTCATCGAGCTCGGG
GGGCTTC实时荧光定量
PCR (RT-qPCR)Q-PhebHLH6-F CGAGAAGCTATACGCGATCC Q-PhebHLH6-F CTGCAGCTGCTGGATGTAAT Q-NTB-F TCTTGTTTGACACCGAAGAGGAG Q-NTB-F AATAGCTGTCCCTGGAGGAGTTT 表 2 PhebHLH6基因启动子顺式作用元件分析
Table 2. Cis-element analysis of PhebHLH6 gene promoter
作用元件 序列 数量 功能 作用元件 序列 数量 功能 ABRE CACGTG 9 脱落酸响应元件 Sp1 GGGCGG 1 光响应元件 ARE AAACCA 1 厌氧诱导顺式作用元件 chs-CMA2a TCACTTGA 1 光响应元件 CAAT-box CCAAT 15 启动子和增强子区域调控元件 TGA-element AACGAC 2 生长素响应元件 CGTCA-motif CGTCA 5 茉莉酸甲酯响应元件 O2-site GATGATGTGG 1 玉米醇溶蛋白代谢调节元件 MRE AACCTAA 1 光响应元件 TATA-box TATA 35 核心启动子元件 G-Box TACGTG 3 光响应元件 TGACG-motif TGACG 5 茉莉酸甲酯响应元件 -
[1] PENG Zhenhua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J]. Nature Genetics, 2013, 45(4): 456 − 461. doi: 10.1038/ng.2569 [2] 胡智勇. 毛竹的生物学特性及栽植技术[J]. 安徽农学通报, 2014, 20(12): 117 − 118. doi: 10.16377/j.cnki.issn1007-7731.2014.12.058 HU Zhiyong. Biological characteristics and planting techniques of Phyllostachys edulis [J]. Anhui Agricultural Science Bulletin, 2014, 20(12): 117 − 118. doi: 10.16377/j.cnki.issn1007-7731.2014.12.058 [3] 徐秀荣, 杨克彬, 王思宁, 等. 毛竹bHLH转录因子的鉴定及其在干旱和盐胁迫条件下的表达分析[J]. 植物科学学报, 2019, 37(5): 610 − 620. doi: 10.11913/PSJ.2095-0837.2019.50610 XU Xiurong, YANG Kebin, WANG Sining, et al. Identification of bHLH transcription factors in moso bamboo (Phyllostachys edulis) and their expression analysis under drought and salt stress [J]. Plant Science Journal, 2019, 37(5): 610 − 620. doi: 10.11913/PSJ.2095-0837.2019.50610 [4] 吕玉龙. 高温干旱对毛竹林的危害及抗旱经营措施建议[J]. 林业实用技术, 2014(8): 53 − 55. LÜ Yulong. Harm of high temperature and drought on moso bamboo forest and suggestions on drought resistance management [J]. Practical Forestry Technology, 2014(8): 53 − 55. [5] 毛美红, 丁笑章, 傅柳方, 等. 干旱对毛竹林新竹成竹影响的调查分析[J]. 世界竹藤通讯, 2012, 10(1): 12 − 15. doi: 10.3969/j.issn.1672-0431.2012.01.007 MAO Meihong, DING Xiaozhang, FU Liufang, et al. Investigation of the effect of drought on new moso forest cultivation [J]. World Bamboo and Rattan, 2012, 10(1): 12 − 15. doi: 10.3969/j.issn.1672-0431.2012.01.007 [6] CHEN Yiyun, LI Mengyao, WU Xuejun, et al. Genome-wide analysis of basic helix-loop-helix family transcription factors and their role in responses to abiotic stress in carrot [J]. Molecular Breeding, 2015, 35(5): 1 − 12. doi: 10.1007/s11032-015-0319-0 [7] SONNENFELD M J, DELVECCHIO C, SUN Xuetao. Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor [J]. Development Genes and Evolution, 2005, 215(5): 221 − 229. doi: 10.1007/s00427-004-0462-9 [8] BAILEY P C, MARTIN C, TOLEDO-ORTIZ G, et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana [J]. The Plant Cell, 2003, 15(11): 2497 − 2502. doi: 10.1105/tpc.151140 [9] LI Xiaoqing, TANG Yuanping, YUAN Zheng, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis [J]. Plant Physiology, 2006, 141(4): 1167 − 1184. doi: 10.1104/pp.106.080580 [10] LEDENT V, VERVOORT M. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis [J]. Genome Research, 2001, 11(5): 754 − 770. doi: 10.1101/gr.177001 [11] RIECHMANN J L, HEARD J E, MARTIN G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes [J]. Science, 2000, 290(5499): 2105 − 2110. doi: 10.1126/science.290.5499.2105 [12] AN Jianping, LI Haohao, SONG Laiqing, et al. The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple [J]. Plant Physiology and Biochemistry, 2016, 108: 24 − 31. doi: 10.1016/j.plaphy.2016.06.032 [13] KONDOU Y, NAKAZAWA M, KAWASHIMA M, et al. RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth [J]. Plant Physiology, 2008, 147(4): 1924 − 1935. doi: 10.1104/pp.108.118364 [14] HEISLER M G, ATKINSON A, BYLSTRA Y H, et al. SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein [J]. Development, 2001, 128(7): 1089 − 1098. doi: 10.1242/dev.128.7.1089 [15] WANG Houping, LI Yang, PAN Jinjing, et al. The bHLH transcription factors MYC2, MYC3, and MYC4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis [J]. Molecular Plant, 2017, 10(11): 1461 − 1464. [16] TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/helix-loop-helix transcription factor family [J]. Plant Cell, 2003, 15(8): 1749 − 1770. doi: 10.1105/tpc.013839 [17] HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity[J]. Molecular Biology and Evolution, 20(5): 735 − 747. [18] FAN Yu, YANG Hao, LAI Dili, et al. Genome-wide identification and expression analysis of the bHLH transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L. ) Moench] [J/OL]. BMC Genomics, 2021, 22: 415[2022-07-30]. doi: 10.1186/s12864-021-07652-9. [19] ZHAO Hansheng, GAO Zhimin, WANG Le, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis) [J/OL]. GigaScience, 2018, 7(10): giy115[2022-07-30]. doi: 10.1093/gigascience/giy115. [20] RYCHLIK W. OLIGO 7 primer analysis software [J]. PCR Primer Design, 2007, 402: 35 − 59. [21] GUO Zhenhua, MA Pengfei, YANG Guoqian, et al. Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos [J]. Molecular Plant, 2019, 12(10): 1353 − 1365. [22] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194 − 1202. [23] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta C_{T}} $ method[J]. Methods, 2000, 25(4): 402-408. [24] FAN Chunjie, MA Jinmin, GUO Qirong, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis) [J/OL]. PLoS ONE, 2013, 8(2): e56573[2022-07-31]. doi: 10.1371/journal. pone. 0056573. [25] MAO Ke, DONG Qinglong, LI Chao, et al. Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress[J/OL]. Front in Plant Science, 2017, 8: 480[2022-07-30]. doi: 10.3389/fpls.2017.00480. [26] HE Qiuju, LU Hong, GUO Huaxing, et al. OsbHLH6 interacts with OsSPX4 and regulates the phosphate starvation response in rice [J]. The Plant Journal, 2020, 105(3): 649 − 667. [27] 张子佳, 王迪, 傅彬英. 水稻转录因子bHLH家族基因响应环境胁迫表达谱分析[J]. 分子植物育种, 2008, 6(3): 425 − 431. doi: 10.3969/j.issn.1672-416X.2008.03.003 ZHANG Zijia, WANG Di, FU Binying. Expression patterns of rice bHLH genes responsive to environmental stresses [J]. Molecular Plant Breeding, 2008, 6(3): 425 − 431. doi: 10.3969/j.issn.1672-416X.2008.03.003 [28] 李朝霞, 高强, 刘雅正, 等. 玉米 ZmPTF1 基因克隆和过表达分析[J]. 湖南农业大学学报(自然科学版), 2007, 33(1): 92 − 96. LI Zhaoxia, GAO Qiang, LIU Yazheng, et al. Cloning of ZmPTF1 from Zea mays and its over expression analysis [J]. Journal of Hunan Agricultural University (Natural Sciences), 2007, 33(1): 92 − 96. [29] MENG Fanwei, YANG Chao, CAO Jidong, et al. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice [J]. Journal of Integrative Plant Biology, 2020, 62(10): 1552 − 1573. doi: 10.1111/jipb.12922 [30] WU Hua, YE Haiyan, YAO Ruifeng, et al. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice [J]. Plant Science, 2015, 232: 1 − 12. doi: 10.1016/j.plantsci.2014.12.010 [31] KIRIBUCHI K, SUGIMORI M, TAKEDA M, et al. RERJ1, a jasmonic acid-responsive gene from rice, encodes a basic helix-loop-helix protein [J]. Biochemical and Biophysical Research Communications, 2004, 325(3): 857 − 863. doi: 10.1016/j.bbrc.2004.10.126 [32] KIRIBUCHI K, JIKUMARU Y, KAKU H, et al. Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants [J]. Bioscience,Biotechnology,and Biochemistry, 2005, 69(5): 1042 − 1044. doi: 10.1271/bbb.69.1042 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220553

计量
- 文章访问数: 58
- 被引次数: 0