Volume 31 Issue 3
Oct.  2014
Turn off MathJax
Article Contents

LIU Yufang, CHEN Shuanglin, LI Yingchun, GUO Ziwu, YANG Qingping. Environmental stress on physiological plasticity of bamboo: a review[J]. Journal of Zhejiang A&F University, 2014, 31(3): 473-480. doi: 10.11833/j.issn.2095-0756.2014.03.022
Citation: LIU Yufang, CHEN Shuanglin, LI Yingchun, GUO Ziwu, YANG Qingping. Environmental stress on physiological plasticity of bamboo: a review[J]. Journal of Zhejiang A&F University, 2014, 31(3): 473-480. doi: 10.11833/j.issn.2095-0756.2014.03.022

Environmental stress on physiological plasticity of bamboo: a review

doi: 10.11833/j.issn.2095-0756.2014.03.022
  • Received Date: 2013-09-03
  • Rev Recd Date: 2013-10-21
  • Publish Date: 2014-06-20
  • The purpose of this paper is to provide a theoretical reference for management countermeasures of bamboo adaptability considering a background of environmental change, especially climate change.During growth various environmental stresses affect bamboo which in turn responds with a physical answer and adaptation.In the long-term evolutionary process, bamboo has formed corresponding protection mechanisms and ecological adaptation strategies; however, physiological plasticity is the most direct response to environmental impacts from stress including temperature, moisture, soil salinity, nutrients, atmospheric pollution, and heavy metals.The effects of environmental stress on physiological plasticity of bamboo are reviewed from active oxygen metabolism, membrane lipid peroxidation and the antioxidant enzyme system, osmotic regulation system, and photosynthetic physiology to name a few.The key research direction of bamboo in physiological adaptability and response mechanism, sifting of stress resistance, distribution and carbon balance with environmental stress is also presented.
  • [1]
    SMIRNOFF N.The role of active oxygen in the response of plants to water deficit and desiccation[J].New Phytol, 1993,125(1):27-58.
    [2]
    CAMPBELL B D,GRIME J P,MACKEY J M L.A trade-off between scale and precision in resource foraging[J].Oecologia, 1991,87(4):532-538.
    [3]
    FRANSEN B,de KROON H.Soil nutrient heterogeneity alters competition between two perennial grass species[J].Ecology, 2001,82(9):2534-2546.
    [4]
    WANG Qingcheng,CHENG Yunhuan.Response of fine roots to soil nutrient spatial heterogeneity[J].Chin J Appl Ecol, 2004, 15(6):1063-1068.
    [5]
    DUAN Baoli,LÜ Yanwei,YIN Chunying,et al.Morphological and physiological plasticity of woody plant in response to high light and low light[J].Chin J Appl&Environ Biol, 2005, 11(2):238-245.
    [6]
    ZHANG Aiqin,PANG Qiuying,YAN Xiufeng, Advances in salt-tolerance mechanisms of Suaeda plants[J].Acta Ecol Sin, 2013, 33(12):3575-3583.
    [7]
    JIANG Mingyi,GUO Shaochuan.Oxidative stress and antioxidation induced by water deficiency in plants[J].Plant Physiol Commun, 1996, 32(2):144-150.
    [8]
    ZHUANG Minghao,CHEN Shuanglin,LI Yingchun,et al.Effects of elevated O3 and CO2 concentrations on the membrane lipid peroxidation and antioxidant system of Oligostachyum lubricum leaves[J].Chin J Ecol, 2012, 31(9):2184-2190.
    [9]
    GU Daxing,CHEN Shuanglin.Physiological response of Oligostachyum lubricum to different NaCl stress[J].Acta Bot Boreal-Occident Sin, 2011, 31(6):1209-1215.
    [10]
    YING Yeqing,GUO Jing,WEI Jianfen,et al.Effects of drought stress on physiological characteristics of Phyllostachys edulis seedlings[J].Chin J Ecol,2011,30(2):262-266.
    [11]
    WANG Bing,CAO Banghua,CAI Chunju.Effect of heavy metal stress on antioxidative enzymes and lipid peroxidationin two dwarf bamboos(Sasa auricoma and Arundinaria fortunei)[J].World Bamb Rattan, 2010, 8(4):15-19.
    [12]
    ZHUANG Minghao,LI Yingchun,LI Ying,et al.Physiological responses of three dwarf ornamental bamboos to the elevated atmospheric ozone concentration[J].Acta Bot Boreal-Occident Sin, 2011, 31(10):2014-2020.
    [13]
    CHEN Shaoyu.Injury of membrane lipid peroxidation to plant cell[J].Plant Physiol Commun, 1991, 27(2):84-90.
    [14]
    LIN Shuyan,DING Yulong.The physiological responds to drought stress of Pseudosasa japonica[J].China For Sci Technol, 2006, 20(1):40-41.
    [15]
    WU Yourong,ZHENG Yushan.Growth,physiological,and biochemical responses of Bambusa multiplex to salt stress[J].J Fujian Coll For, 2012, 32(1):23-27.
    [16]
    ZHUANG Minghao,LI Yingchun,CHEN Shuanglin.Differences in O3 stress tolerance between Phyllostachys edulis and Oligostachyum lubricum[J].Chin J Ecol, 2011, 30(10):2191-2196.
    [17]
    YAN Kun,CHEN Wei,HE Xingyuan,et al.Responses of photosynthesis,lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3[J].Environ Exp Bot, 2010,69(2):198-204.
    [18]
    LI Zaijun,CAI Kongyu,CHEN Guifang,et al.Effect of continuous drought stress and rewatering on osmo-regulation substances and cell membrane permeability in leaves of Dendrocalamus latiflorus[J].J Sichuan For Sci Technol, 2010, 31(3):55-59.
    [19]
    YING Yeqing,WEI Jianfen,XIE Nannan,et al.Effects of natural low temperature stress on physiological and biochemical properties of Phyllostachys edulis[J].J Nanjing For Univ Nat Sci Ed, 2011, 35(3):133-136.
    [20]
    HE Qijiang,LI Nan,WANG Bo,et al.Effect of NaCl treatment on phisiochemical properties of Phyllostachys praecox[J].J Zhejiang For Sci Technol, 2011, 31(1):44-48.
    [21]
    ZHAO Lan,XING Xinting,JIANG Zehui,et al.Study on the drought Resistance of four dwarf ornamental bamboos[J].For Res, 2010, 23(2):221-226.
    [22]
    HUANG Weiye,WU Miaodan,YANG Li,et al.Physiological responses of Phyllostachys pubescens seedlings to different NaCl concentration[J].J Northwest For Univ, 2010, 25(1):35-38.
    [23]
    ZHANG Yanhua,LIU Guohua,WANG Fusheng.Variation of inner physiological and biochemical characteristics of five bamboos under flooding stress[J].China For Sci Technol, 2009, 23(5):71-74.
    [24]
    YI Shouli,LEI Ting,GAO Suping.Change of SOD, CAT, POD activity in two sympodial bamboos under low temperature stress[J].Northern Hortic, 2010(19):153-156.
    [25]
    ZHENG Yushan,ZHENG Rongmei,YAO Qingduan.Effects of salt stress on physiology and biochemistry in the leaves of Dendrocalamus oldhami on the coast[J].J Fujian Agric For Univ Nat Sci Ed, 2003, 32(4):478-481.
    [26]
    XU Chuanbao,DAI Qingmin.Changes of three osmotic regulatory metabolites contents in leaves of bamboo under low temperature stress[J].J Henan Agric Sci, 2011, 40(1):127-130.
    [27]
    ZHUANG Minghao,LI Yingchun,GUO Ziwu,et al.Physiological response of Indocalamus decorus to simulated atmospheric ozone stress with multiply-increasing concentrations[J].J Plant Resour Environ, 2012, 21(2):68-72.
    [28]
    ZHANG Yajun,WANG Lixue,CHEN Chao,et al.Research progress in response mechanism of plants to adversity stress[J].Acta Agric Jiangxi, 2011, 23(9):60-65.
    [29]
    ZHANG Junhuan,ZHANG Guoqiang,LIU Yueping,et al.Cytochemical localization and changes in activity of plasma membrane Ca2+-ATPase in young grape(Vitis vinifera L.‘Jingxiu’)plants during cross adaptation to temperature stresses[J].Sci Agric Sin, 2006, 39(8):1617-1625.
    [30]
    JIANG Qin,YING Yeqing,XIE Nannan,et al.Effect of Ca2+/CaM messenger on drough resistance of Phyllostachys edulis[J].Acta Agric Univ Jiangxi, 2012, 34(4):743-748.
    [31]
    GU Daxing,CHEN Shuanglin,GU Lijian,et al.Impacts of NaCl stress on Oligostachyum lubricum cell membrane permeability and mineralion uptake, transportation, and allocation[J].Acta Ecol Sin, 2011, 30(7):1417-1422.
    [32]
    HE Qijiang.The Ionic Response and Physiological Ecological Changes of Ph.praecox Under Salt Stress[D].Beijing:Chinese Academy of Forestry, 2011.
    [33]
    WAN Xianchong,SONG Yongjun.Effects of salt stress and Ca2+ regulation on bamboo root viability and MDA content[J].J Nanjing For Univ Nat Sci Ed, 1995, 19(3):16-20.
    [34]
    HE Kaiyue,GUO Chunmei.Effects of salt stress on SOD and POD activities in three bamboos[J].J Jiangsu For Sci Technol, 1995, 22(4):11-14.
    [35]
    XIE Yinfeng,YANG Wanhong,LU Meirong,et al.Efects of silicon on photosynthetic characteristics of Indocalamils barbatus under simuiated acid rain stress[J].Chin J Appl Ecol, 2008, 19(6):1179-1184.
    [36]
    FARQUHAR G D,SHARKEY T D.Stomatal conductance and photosynthesis[J].Ann Rev Plant Physiol, 1982,33:317-345.
    [37]
    YAN Yan,QIN Jinzhou,SU Wenhui,et al.Diurnal variation of photosynthesis of Phyllostachys aurea grown inside and outside greenhouse and its influential factors in summer[J].J Anhui Agric Univ, 2013, 40(3):378-382.
    [38]
    ZHENG Bingsong,JIN Aiwu,CHENG Xiaojian,et al.Study on the photosynthetic characteristics of Phyllostachys violascens leaves[J].J Fujian Coll For,2001,21(4):359-362.
    [39]
    JIN Aiwu,ZHENG Bingsong,TAO Jinxing,et al.Diurnal change of photosynthetic speed and its influential factors on Lei bamboo[J].J Zhejiang For Coll,2000,17(3):271-275.
    [40]
    GU Daxing,CHEN Shuanglin,ZHENG Weiman,et al.Review of the ecologicol adaptability of bamboo[J].J Bamb Res,2010,29(1):17-23.
    [41]
    YANG Yanshan,ZHU Yong,YANG Jinbo.Review on the research advances of the Bambusoideae photosynthesis in adaptation to water stress[J].J Anhui Agric Sci, 2011, 39(19):11572-11573.
    [42]
    LIN Qiongying,CHEN Jianxin,YANG Shuzhen,et al.Gas exchange with Phyllostachys pubescens on Mount Tianmu,Zhejiang Province[J].J Zhejiang For Coll,2008,25(4):522-526.
    [43]
    SHI Jianmin,GUO Qirong,YANG Guangyao,et al.Seasonal photosynthetic responses of Phyllostachys edulis to environmental factors[J].Guihaia,27(6):923-928.
    [44]
    XU Daquan,LI Deyao,QIU Guoxiong,et al.Studies on stomatal limitation of photosynthesis in the bamboo (Phyllostachys pubescens) leaves[J].Acta Phytophysiol Sin, 1987, 13(2):154-160.
    [45]
    ZHENG Rongmei,ZHENG Yushan,ZHANG Mei,et al.Study on impact of photosynthesis and chlorophyll of Dendrocalamopsis oldhami grown in the coastal areas under salt stress[J].J Bamb Res,2002, 21(4):76-80.
    [46]
    WANG Yaping,WANG Kaiyun,ZHANG Yuanbin,et al.The responses of gas exchange of bamboo(Fargesia denudate) leaf on elevated CO2 concentration and light intensity[J].J Northwest For Univ, 2008, 23(1):6-9.
    [47]
    SHI Jianmin,YANG Guangyao,YANG Qingpei,et al.Photosynthetic responses of Phyllostachys edulis ‘Pachyloen’ to doubled CO2 concentration[J].Guihaia,2010,30(5):636-640.
    [48]
    SHI Jianmin,GUO Qirong,YANG Guangyao.Seasonal photosynthetic responses of Phyllostachys edulis to light under doubled CO2 concentration[J].Acta Agric Univ Jiangxi,2007,29(2):215-219.
    [49]
    LI Ying,CHEN Shuanglin,LI Yingchun,et al.Research review in the effects of climate factors on bamboo growth[J].J Bamb Res, 2011,30(3):9-12.
    [50]
    ZHANG Liyang,WEN Guosheng,ZHANG Rumin,et al.Climate change response using a simulation study of photosynthetic physiology on Phyllostachys pubescens[J].J Zhejiang A&F Univ,2011,28(4):555-561.
    [51]
    ZHAO Tianhong,WANG Meiyu,ZHANG Weiwei,et al.Effects of elevated atmospheric CO2 concentration on plant photosynthesis[J].Ecol Environ,2006, 15(5):1096-1100.
    [52]
    YANG Jinyan,YANG Wanqin,WANG Kaiyun,et al.Woody plants respond to interactiongs between elevated CO2 and increased temperature[J].Acta Phytoecol Sin,2003,27(3):304-310.
    [53]
    YANG Liyan.Responses of Photosynthetie and Physiologieal Characteristicsof Fargesia denudata to Elevated CO2 Concentration and Temperature[D].Ya'an:Sichuan Agricultural University,2011.
    [54]
    FLEXAS J, MEDRANO H.Drought-inhibition of photosynthesis in C3 plants stomatal and non-stomatal limitations revisited[J].Ann Bot, 2002,89(2):183-189.
    [55]
    ELAGOZ V, HAN S S, MANNING W J.Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity[J].Environ Pollut,2006,140(3):395-405.
    [56]
    ROUHI V, SAMSON R, LEMEUR R, et al.Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery[J].Environ Exp Bot, 2007,59(2):117-129.
    [57]
    LI Ying,CHEN Shuanglin,XIE Shuangxi,et al.Effects of atmospheric ozone stress on photosynthetic physio-response of three dwarf bamboos[J].J Trop Subtrop Bot, 2012, 20(3):263-269.
    [58]
    LI Juan,PENG Zhenhua,GAO Jian,et al.Photosynthetic parameters and chlorophyll fluorescence characteristics of Pleioblastus kongosanensis ‘Faureostriaus’ under drought stress[J].Chin J Appl Ecol, 2011, 22(6):1395-1402.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(3805) PDF downloads(790) Cited by()

Related
Proportional views

Environmental stress on physiological plasticity of bamboo: a review

doi: 10.11833/j.issn.2095-0756.2014.03.022

Abstract: The purpose of this paper is to provide a theoretical reference for management countermeasures of bamboo adaptability considering a background of environmental change, especially climate change.During growth various environmental stresses affect bamboo which in turn responds with a physical answer and adaptation.In the long-term evolutionary process, bamboo has formed corresponding protection mechanisms and ecological adaptation strategies; however, physiological plasticity is the most direct response to environmental impacts from stress including temperature, moisture, soil salinity, nutrients, atmospheric pollution, and heavy metals.The effects of environmental stress on physiological plasticity of bamboo are reviewed from active oxygen metabolism, membrane lipid peroxidation and the antioxidant enzyme system, osmotic regulation system, and photosynthetic physiology to name a few.The key research direction of bamboo in physiological adaptability and response mechanism, sifting of stress resistance, distribution and carbon balance with environmental stress is also presented.

LIU Yufang, CHEN Shuanglin, LI Yingchun, GUO Ziwu, YANG Qingping. Environmental stress on physiological plasticity of bamboo: a review[J]. Journal of Zhejiang A&F University, 2014, 31(3): 473-480. doi: 10.11833/j.issn.2095-0756.2014.03.022
Citation: LIU Yufang, CHEN Shuanglin, LI Yingchun, GUO Ziwu, YANG Qingping. Environmental stress on physiological plasticity of bamboo: a review[J]. Journal of Zhejiang A&F University, 2014, 31(3): 473-480. doi: 10.11833/j.issn.2095-0756.2014.03.022
  • 竹类植物是地球陆地生态系统中的重要资源,是热带和亚热带森林的重要组成部分,是集经济、生态和社会效益于一体的优良木本植物,在区域社会经济发展和生态环境保护中发挥着重要的作用。竹子在整个生命活动过程中常会遇到各种环境胁迫,对竹子的生长发育会造成不利影响,胁迫达到一定程度甚至会引起竹子死亡[1]。植物在长期的进化过程中,为了最大限度地利用环境资源,对所处的环境胁迫产生各种各样的可塑性反应,包括形态可塑性[2]、生理可塑性等[3-4],其中,生理可塑性是植物克服环境胁迫的重要途径[5]。开展竹子生理可塑性的研究能更准确地了解环境胁迫对竹子生理生态的影响,可以为竹子可持续经营提供理论依据。关于竹子对逆境的生理响应与适应国内外开展了较多的研究,本文从活性氧代谢、膜脂过氧化、抗氧化酶系统、渗透调节系统、光合生理等方面对竹子生理可塑性的环境胁迫效应研究进行了综述,并对相关的重点研究方向进行了展望。

  • 在正常的植物细胞中,活性氧的产生和清除处于平衡状态。在逆境胁迫下,植物叶绿体在碳同化过程中利用二氧化碳(CO2)的能力受到抑制,光合电子传递和呼吸电子传递等在内的多条代谢途径会在植物细胞内积累大量的活性氧类物质(ROS),当活性氧的产生量超过了其代谢保护酶系统的清除能力,细胞内活性氧产生和清除的平衡被打破,植物活性氧代谢失衡[6-7]。环境胁迫对竹子活性氧代谢会产生明显的影响。四季竹Oligostachyum lubricum在臭氧(O3[8]或者盐分胁迫[9]、毛竹Phyllostachys edulis在水分胁迫[10]、菲黄竹Sasa auricoma和菲白竹Sasa fortunei在重金属胁迫[11]等的影响下都会诱导竹子细胞内活性氧产生,胁迫初期过量的活性氧产生会激活体内的抗氧化酶活性,使活性氧含量降低,但随着胁迫时间的延长,活性氧会大量积累。当然,不同的环境胁迫对竹子活性氧代谢的影响存在一定的差异,也存在着交互作用,如高浓度二氧化碳胁迫初期,四季竹叶片超氧阴离子含量显著上升,随着处理时间的延长,又显著下降;高浓度臭氧整个处理期间,四季竹叶片超氧阴离子含量显著升高;而在高浓度臭氧和二氧化碳复合作用下,初期四季竹叶片超氧阴离子含量无显著变化,随着处理时间的延长,则显著下降,说明高浓度二氧化碳一定程度上能缓解高浓度臭氧对四季竹造成的氧化损伤[8]。环境胁迫对竹子活性氧代谢的影响也存在着种间差异,如大气臭氧浓度倍增1倍时,美丽箬竹Indocalamus decorus和黄条金刚竹Pleioblastus kongosanensis叶片氧自由基含量仅略有升高,而白缟椎谷笹竹Sasa glabra f.albostriata显著升高[12],这也体现出了耐受臭氧胁迫能力的种间差异。

  • 环境胁迫会损伤植物细胞膜系统,引起膜脂过氧化反应[13]。许多研究表明,在环境胁迫条件下竹子会发生明显的膜脂过氧化现象。毛竹和平安竹Pseudosasa japonica ‘Itsutsumiana’的干旱胁迫下[10, 14],四季竹和观音竹Bambusa multiplex var. riviereorum的盐分胁迫下[9, 15],菲黄竹的重金属胁迫下[11],毛竹和四季竹的臭氧胁迫下[16-17],随着胁迫的增强,竹子质膜透性增大,严重损伤生物膜的膜脂过氧化最终产物丙二醛(MDA)含量增加,并且随胁迫时间的延长增加越多,膜脂化程度加剧,膜结构破坏。也有研究表明:麻竹Dendrocalamus latiflorus在干旱胁迫下[18],毛竹在低温胁迫下[19]和雷竹Phyllostachys violascens在盐分胁迫下[9, 20],随着胁迫时间的延长,丙二醛含量呈先升高后下降趋势,并逐渐趋于稳定;菲白竹在重金属胁迫下,丙二醛含量一直呈下降趋势[11]。从竹子对环境胁迫的细胞膜脂过氧化反应分析表明,不同竹种对不同类型胁迫的耐受能力存在一定的差异。

  • 环境胁迫会诱导植物抗氧化酶系统发挥保护作用。随着胁迫程度的增强和胁迫时间的延长,菲白竹等在干旱胁迫[14, 21]、四季竹在臭氧胁迫[12, 16]、菲白竹在重金属胁迫[11]、观音竹在盐分胁迫[15]、毛竹在低温胁迫[19]等的影响下,竹子的超氧化物歧化酶(SOD)的活性基本呈先升高后下降的趋势。但四季竹在盐分胁迫下超氧化物歧化酶活性呈先下降后升高趋势[9],毛竹在臭氧胁迫下呈下降趋势[16],菲黄竹在重金属胁迫下总体呈“N”型变化趋势[11]。说明在环境胁迫条件下,竹子体内活性氧代谢加强,作为植物体内抗氧化系统的第一道防线超氧化物歧化酶起到关键作用,活性被诱导激活,催化负氧离子发生歧化反应生成氧气和过氧化氢,对抗或阻断氧自由基对细胞造成的损害,及时修复受损细胞。过氧化物酶(POD)和过氧化氢酶(CAT)可进一步催化清除过氧化氢产生水。随着胁迫程度的增强和胁迫时间的延长,菲黄竹在重金属胁迫[11]、毛竹在低温胁迫[19]的影响下,竹子过氧化物酶活性呈“N”型变化趋势;观音竹在盐分胁迫[15]、菲白竹在重金属胁迫[11]影响下,竹子过氧化物酶活性呈先升高后下降趋势;在大气臭氧浓度倍增条件下,毛竹、四季竹、黄条金刚竹和白缟椎谷笹竹过氧化物酶活性呈升高趋势,而美丽箬竹相反[12, 16];四季竹在盐分胁迫的影响下,过氧化物酶活性呈先下降后上升趋势[9],而观音竹相反[15],毛竹则呈倒“N”型变化趋势[22]。竹子过氧化氢酶活性随着胁迫程度的增强和胁迫时间的延长,菲白竹等在干旱胁迫[21]、长叶苦竹Pleioblastus china f.hisauchii等在淹水胁迫[23]、菲白竹在重金属胁迫[11]和观音竹在盐分胁迫[15]的影响下,竹子过氧化氢酶活性随着胁迫程度的增强和胁迫时间的延长,均呈先升高后下降趋势,而慈竹Neosinocalamus affinis和大叶慈竹Dendrocalamus farinosus在低温胁迫[24]的影响下相反,菲黄竹在重金属胁迫的影响下呈“N”型变化趋势[11]。大量研究表明竹子主要通过超氧化物歧化作用、过氧化物酶和过氧化氢酶等途径使活性氧簇(ROS)产生与清除保持平衡。而且不同竹种在不同的环境胁迫条件下抗氧化酶系统清除ROS的能力存在一定的差异,也体现出竹子耐受逆境胁迫的能力存在种间差异。

  • 脯氨酸(Pro)和可溶性糖是植物重要的渗透调节物质,在环境胁迫下,对竹子代谢起到重要的调节作用。麻竹、黄条金刚竹、菲白竹、铺地竹、菲黄竹干旱胁迫[18, 21]和四季竹臭氧胁迫[8]下,脯氨酸和可溶性糖含量变化趋势基本一致,随着胁迫程度的增强和胁迫时间的延长,呈先升高后降低趋势,而绿竹Bambusa oldhami盐分胁迫[25]下脯氨酸则呈持续上升趋势。可溶性蛋白作为渗透调节物质、能量物质和信息传递物质在竹子抵御逆境的过程中起到较大的作用。观音竹盐分胁迫[15]、麻竹干旱胁迫[18]、四季竹臭氧胁迫[8]和毛竹低温胁迫[19, 26]下可溶性蛋白含量随胁迫程度的加剧呈下降趋势。大气臭氧浓度倍增,黄条金刚竹和毛竹体内可溶性蛋白含量呈升高趋势[12, 16],而美丽箬竹、白缟椎谷笹竹和四季竹呈下降趋势[27]。而且可溶性蛋白含量与竹子的抗寒性密切相关[26],总体而言,抗寒性强的竹种含量高,抗寒性弱的竹种含量低。说明从脯氨酸、可溶性糖和可溶性蛋白含量也能一定程度上反映出竹子耐受环境胁迫能力的种间差异。

    植物细胞在受到环境刺激后胞内钙离子(Ca2+)浓度升高,与胞外形成钙离子浓度梯度,产生钙信号,盐分、干旱、缺氧和低温等胁迫均可引起钙离子浓度增加,钙信号通过钙通道传递到钙受体,调节植物体内一系列的变化[28-29]。毛竹在干旱胁迫条件下,钙信号系统主要通过调节保护酶、脯氨酸和可溶性蛋白等来提高毛竹对干旱的适应性,钙离子能促进植物脯氨酸积累,抑制可溶性蛋白含量下降等[30]。四季竹叶片[31]和雷竹根系[32]钙离子含量随盐分胁迫浓度的提高呈先显著升高后显著下降的趋势。钙离子能显著抑制盐胁迫下翠竹Arundinaria pygmaea var.disticha体内丙二醛积累,提高并保持一定水平的过氧化物歧化酶和过氧化物酶活性,减轻膜脂化氧化程度,对盐害起到缓解作用[33-34]。以上研究结果均体现出钙离子对竹子环境胁迫下的重要抗逆作用。

  • 大量研究表明:环境胁迫对竹子的光合生理会产生明显的影响。酸雨胁迫下,髯毛箬竹Indocalamus barbatu光合“午休”现象加重,净光合速率(Pn)降低的非气孔因素贡献提高[35-36]。夏季高温强光是引起人面竹Phyllostachys aurea出现光合“午休”的主要原因[37],强光、高温、低湿会导致雷竹叶片光合“午睡”[38-40]。麻竹轻度水分亏缺下[18]和毛竹低空气湿度[41]条件下,气孔导度(Gs)下降是净光合速率降低的主要原因。麻竹在严重水分亏缺条件下,非气孔因素是净光合速率下降的决定因素[18]。温度升高会使毛竹净光合速率降低[42-43]。低温条件下,毛竹不仅酶反应速度慢,而且光合膜系统的功能和结构也会发生不利于光合作用的变化[44]。盐分胁迫下,绿竹光呼吸速率和暗呼吸速率随胁迫程度的增强总体上呈下降趋势[45]等。当然这并不意味着环境胁迫对竹子的光合生理都产生负效应。短期的高二氧化碳浓度对缺苞箭竹Fargesia denudata[46],厚壁毛竹Phyllostachys edulis ‘Pachyloen’[47]和毛竹[48]的光合作用具有明显的促进作用,主要表现在净光合速率、水分利用效率(EWU)升高,气孔导度、蒸腾速率(Tr)和暗呼吸速率下降[49]。但长期的高二氧化碳浓度产生的“温室效应”会使大气相对湿度降低,竹子叶面温度升高、气孔灵敏度降低和活化的1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)数量减少,净光合速率和水分利用效率减弱,抑制竹子的光合作用[50-51]。而且,二氧化碳浓度和温度升高对竹子的光合生理会产生交互作用,短期二氧化碳浓度升高的正效应一定程度上可抵消温度升高的负效应[52-53]。上述众多研究表明:在环境胁迫条件下,竹子光合生理总体上会受到严重伤害,不同竹种间也会表现出一定的差异性,而且环境胁迫对竹子光合生理的影响与胁迫类型和胁迫程度密切相关,与环境胁迫直接作用于竹子叶绿体,使细胞色素系统遭到破坏,叶绿素酶活性提高,叶绿素合成受阻和分解,叶绿素含量降低等有关[54-58]

  • 虽然目前已开展了较多的多类型环境胁迫对竹子生理的影响研究,但存在着一些相互矛盾的结论,如一些抗氧化酶活性和渗透调节物质含量等在不同竹种或同一竹种不同环境胁迫条件下变化规律并不一致,甚至呈相反的变化规律,说明竹子应对环境胁迫的生理适应与响应机制极为复杂,需要深入地开展多类型竹种在干旱、水涝、低温、高温、臭氧、二氧化碳、盐渍和酸雨等当前易于发生的单一胁迫和多重胁迫条件下的生理可塑性系统研究,而且在研究中应很好地结合分子生物学,探索竹子抗逆基因的克隆与表达途径,摸清竹子的主要抗性生理机制。

  • 许多研究表明:竹子耐受环境胁迫的能力存在种间差异,这就给抗逆竹种的筛选提供了基础,这在全球气候变化背景下实现竹林可持续经营利用上显得尤为重要。鉴于不同竹种或同一竹种在不同环境胁迫条件下的生理可塑性反应存在差异,为此,需通过大量的相关性试验研究,找出能包含多类型环境胁迫条件下的竹子生理可塑性主要敏感指标,构建出抗逆竹种筛选的多因子综合评价体系。

  • 在环境胁迫越趋频繁的背景下,尤其是大区域气象灾害发生,会对竹子的更新生长产生极大的影响,也可能会对竹子的潜在分布区域产生影响。目前,这方面研究极为薄弱,需开展现实胁迫环境和人工模拟环境胁迫条件相结合的竹子生长发育、生态适应性等研究,特别是温度升高、干旱等气候条件下的相关研究,从大尺度范围分析竹子迁移扩张或区域消亡的可能性。中国竹子资源丰富,而且竹子更新生长快,碳同化能力强,在吸收大气二氧化碳上起到重要的作用,但环境胁迫会直接影响到竹子的光合作用,这就给区域环境的碳平衡造成了不确定性,为此,需着重开展长期环境胁迫条件下中国重要竹种的光合效率、碳平衡等变化规律研究。

Reference (58)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return