CHEN Wenbo, WANG Xudong, SHI Sibo, et al. Effects of long-term combined application of fungus residue and chemical fertilizer on soil enzyme activities in paddy field[J]. Journal of Zhejiang A&F University, 2021, 38(1): 21-30. DOI: 10.11833/j.issn.2095-0756.20200139
Citation: CHEN Ting, SHI Yongjun, ZHOU Guomo, et al. Interannual variation characteristics for stand structures in the early stages of new moso bamboo carbon sink stands[J]. Journal of Zhejiang A&F University, 2015, 32(2): 181-187. DOI: 10.11833/j.issn.2095-0756.2015.02.003

Interannual variation characteristics for stand structures in the early stages of new moso bamboo carbon sink stands

DOI: 10.11833/j.issn.2095-0756.2015.02.003
  • Received Date: 2014-07-26
  • Rev Recd Date: 2014-08-28
  • Publish Date: 2015-04-20
  • To determine a rule for interannual variation characteristics in non-spatial, structural stands of new moso bamboo (Phyllostachys edulis) based on carbon sink (1-5 a). An 80 m 100 m fixed plot was established at a long-term, afforestation, fixed observation research site for carbon sequestration. Linear regression and correlation were used for the analysis. Results showed that 1) stand density, DBH, and culm height were the dominating factors for interannual component changes, and these increased with bamboo age. 2) In the young stand, stand density (N) increased with stand year (y) with a fitted regression equation of: N=17.214y2+309.21y- 217.4, R2=0.981 1. 3) The allometric equation for mean DBH and stand year (y) fitted with linear regression was DBH=0.015 7y2+0.727 9y+1.598 0, R2=0.756 5 The linear regression for the relationship between culm height (H) and stand year (y) was projected to be H=0.108 5y2+0.429 9y+2.155 3, R2=0.723 2. Therefore, in the young moso bamboo stand, stand density, DBH, and culm height all had a positive relationship with age. [Ch, 4 fig. 8 tab. 20 ref.]
  • [1] LAN Jie, XIAO Zhongqi, LI Jimei, ZHANG Yutao.  Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains . Journal of Zhejiang A&F University, 2020, 37(3): 416-423. doi: 10.11833/j.issn.2095-0756.20190384
    [2] MAO Guangxian, TAN Wei, CHAI Zongzheng, ZHAO Yang, YANG Shenjun.  Diameter-height model for Pinus massoniana plantations based on BP neural network . Journal of Zhejiang A&F University, 2020, 37(4): 752-760. doi: 10.11833/j.issn.2095-0756.20190486
    [3] WANG Ke, TAN Wei, QI Yujiao.  Initial effects of close-to-nature thinning on a natural secondary Pinus massoniana pure forest in central Guizhou . Journal of Zhejiang A&F University, 2019, 36(5): 886-893. doi: 10.11833/j.issn.2095-0756.2019.05.006
    [4] JIA Penggang, XIA Kai, DONG Chen, FENG Hailin, YANG Yinhui.  Predicting DBH of a single Ginkgo biloba tree based on UAV images . Journal of Zhejiang A&F University, 2019, 36(4): 757-763. doi: 10.11833/j.issn.2095-0756.2019.04.016
    [5] TAO Jiangyue, LIU Lijuan, PANG Yong, LI Dengqiu, FENG Yunyun, WANG Xue, DING Youli, PENG Qiong, XIAO Wenhui.  Automatic identification of tree species based on airborne LiDAR and hyperspectral data . Journal of Zhejiang A&F University, 2018, 35(2): 314-323. doi: 10.11833/j.issn.2095-0756.2018.02.016
    [6] LUO Hengchun, ZHANG Chao, WEI Anchao, ZHANG Yi, HUANG Tian, YU Zhexiu.  Average DBH growth model of a stand with environmental parameters for Pinus yunnanensis in central Yunnan, China . Journal of Zhejiang A&F University, 2018, 35(6): 1079-1087. doi: 10.11833/j.issn.2095-0756.2018.06.011
    [7] LEI Zeyong, HAN Yangang, ZHAO Guojun, ZHOU Yanping, ZHANG Yansong, YU Deliang.  Growth of Mongolian pine in Zhanggutai of Liaoning Province . Journal of Zhejiang A&F University, 2018, 35(2): 324-330. doi: 10.11833/j.issn.2095-0756.2018.02.017
    [8] WANG Mingchu, SUN Yujun.  Based on mixed-effects model and empirical best linear unbiased predictor predicting growth profile of height for Chinese fir . Journal of Zhejiang A&F University, 2017, 34(5): 782-790. doi: 10.11833/j.issn.2095-0756.2017.05.003
    [9] LIU Weiyi, DENG Huafeng, RAN Qixiang, HUANG Guosheng, WANG Xuejun.  Compatibility of height-diameter curve equations for Cunninghamia lanceolata stands in Hunan Province . Journal of Zhejiang A&F University, 2017, 34(6): 1051-1058. doi: 10.11833/j.issn.2095-0756.2017.06.012
    [10] ZHENG Zerui, SHI Yongjun, ZHOU Guomo, CHEN Ting, YANG Yi, PEI Jingjing.  Planting pattern's influence for characteristics of variation of spatial distribution pattern in the early stages of moso bamboo carbon sink stands . Journal of Zhejiang A&F University, 2017, 34(3): 395-405. doi: 10.11833/j.issn.2095-0756.2017.03.003
    [11] ZHAO Saisai, TANG Mengping, TANG Sijia, ZHANG Jun, LI Lan, PANG Chunmei, ZHAO Mingshui.  Visualization for a Phyllostachys edulis stands . Journal of Zhejiang A&F University, 2016, 33(5): 826-833. doi: 10.11833/j.issn.2095-0756.2016.05.014
    [12] YU Shuhong, ZHOU Guomo, SHI Yongjun, LÜ Yulong, SHEN Zhenming.  Net carbon sinks in the initial stages of moso bamboo stands . Journal of Zhejiang A&F University, 2016, 33(5): 807-815. doi: 10.11833/j.issn.2095-0756.2016.05.012
    [13] YAO Zhi, ZHANG Xiaoli.  Based on WebGIS platform developing remote sensing information systems of forest canopy density inversion . Journal of Zhejiang A&F University, 2015, 32(3): 392-398. doi: 10.11833/j.issn.2095-0756.2015.03.009
    [14] LI Meng, SHI Yongjun, ZHOU Guomo, ZHOU Dayong, ZHANG Jiao, ZHANG Yinghai.  Measurement of carbon sequestration of highway afforestation in Jiaxing, Zhejiang, China . Journal of Zhejiang A&F University, 2014, 31(3): 329-335. doi: 10.11833/j.issn.2095-0756.2014.03.001
    [15] WU Aibin, YOU Xianxiang, ZHAO Yanxia, QIN Yanjie, LIU Xin.  Acquisition and analysis spatial structure of Platycladus orientalis plantations based on 3S . Journal of Zhejiang A&F University, 2014, 31(1): 57-63. doi: 10.11833/j.issn.2095-0756.2014.01.009
    [16] LI Cuiqin, ZHOU Yufeng, GU Lei, SHI Yongjun, SHEN Zhenming, XU Xiaojun, LI Ruijun.  Carbon transfer of Phyllostachys edulis filar products . Journal of Zhejiang A&F University, 2013, 30(1): 63-68. doi: 10.11833/j.issn.2095-0756.2013.01.009
    [17] SHANG Zhenzhen, ZHOU Guomo, DU Huaqiang.  Relationship between above-ground biomass and DBH for Phyllostachys edulis stands based on fractal theory . Journal of Zhejiang A&F University, 2013, 30(3): 319-324. doi: 10.11833/j.issn.2095-0756.2013.03.002
    [18] WEI Xiao-hui, SUN Yu-jun, MA Wei.  A height growth model for Cunninghamia lanceolata based on Richards’ equation . Journal of Zhejiang A&F University, 2012, 29(5): 661-666. doi: 10.11833/j.issn.2095-0756.2012.05.004
    [19] YANG Qian-yu, XIE Jin-zhong, ZHANG Wei, LIN Zhen-qing.  Biomass models for Bambusa textilis var. tasca . Journal of Zhejiang A&F University, 2011, 28(3): 519-526. doi: 10.11833/j.issn.2095-0756.2011.03.027
    [20] MA Feng-feng, JIA Li-ming.  Outside and inside bark diameter at breast height for Platycladus orientalis and Pinus tabulaeformis in the Beijing area . Journal of Zhejiang A&F University, 2009, 26(1): 13-16.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.1 %FULLTEXT: 14.1 %META: 83.1 %META: 83.1 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.4 %其他: 11.4 %其他: 2.0 %其他: 2.0 %Adrian: 0.1 %Adrian: 0.1 %Austin: 0.3 %Austin: 0.3 %Brazil: 0.0 %Brazil: 0.0 %Canada: 0.1 %Canada: 0.1 %Canton: 0.1 %Canton: 0.1 %Carrboro: 0.1 %Carrboro: 0.1 %Chile: 0.0 %Chile: 0.0 %China: 0.7 %China: 0.7 %Egypt: 0.0 %Egypt: 0.0 %France: 0.0 %France: 0.0 %Germany: 0.0 %Germany: 0.0 %Italy: 0.0 %Italy: 0.0 %Japan: 0.2 %Japan: 0.2 %Lafayette: 0.0 %Lafayette: 0.0 %Malvern: 0.0 %Malvern: 0.0 %Mexico: 0.2 %Mexico: 0.2 %Norman: 0.2 %Norman: 0.2 %Pecos: 0.1 %Pecos: 0.1 %Poland: 0.1 %Poland: 0.1 %Raeford: 0.1 %Raeford: 0.1 %Rochester: 0.3 %Rochester: 0.3 %Russian Federation: 0.0 %Russian Federation: 0.0 %Spain: 0.1 %Spain: 0.1 %Switzerland: 0.0 %Switzerland: 0.0 %Turkey: 0.0 %Turkey: 0.0 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 5.1 %United States: 5.1 %Wixom: 0.0 %Wixom: 0.0 %[]: 3.6 %[]: 3.6 %上海: 3.7 %上海: 3.7 %临汾: 0.1 %临汾: 0.1 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %休斯敦: 0.1 %休斯敦: 0.1 %伦敦: 0.1 %伦敦: 0.1 %伯明翰: 0.3 %伯明翰: 0.3 %佛森: 0.0 %佛森: 0.0 %佛罗里达: 0.1 %佛罗里达: 0.1 %俄亥俄: 0.0 %俄亥俄: 0.0 %保定: 0.1 %保定: 0.1 %兰州: 0.0 %兰州: 0.0 %凤凰城: 0.1 %凤凰城: 0.1 %加利福尼亚: 0.3 %加利福尼亚: 0.3 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %加拿大多伦多: 0.1 %加拿大多伦多: 0.1 %加拿大魁北克: 0.0 %加拿大魁北克: 0.0 %北京: 9.1 %北京: 9.1 %匹兹堡: 0.3 %匹兹堡: 0.3 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %南昌: 0.0 %南昌: 0.0 %南通: 0.0 %南通: 0.0 %南阳: 0.1 %南阳: 0.1 %博伊西: 0.2 %博伊西: 0.2 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %印度: 0.0 %印度: 0.0 %台州: 0.0 %台州: 0.0 %合肥: 0.3 %合肥: 0.3 %吕梁: 0.2 %吕梁: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %坦佩: 0.0 %坦佩: 0.0 %堪萨斯城: 0.0 %堪萨斯城: 0.0 %塔拉哈西: 0.0 %塔拉哈西: 0.0 %大克罗伊茨: 0.0 %大克罗伊茨: 0.0 %大急流城: 0.0 %大急流城: 0.0 %天津: 0.3 %天津: 0.3 %太原: 0.1 %太原: 0.1 %奥地利维也纳: 0.0 %奥地利维也纳: 0.0 %娄底: 0.0 %娄底: 0.0 %安大略: 0.0 %安大略: 0.0 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.9 %密蘇里城: 0.9 %布鲁克林区: 0.1 %布鲁克林区: 0.1 %广州: 0.6 %广州: 0.6 %开封: 0.0 %开封: 0.0 %张家口: 1.1 %张家口: 1.1 %成都: 0.1 %成都: 0.1 %扬州: 0.1 %扬州: 0.1 %抚州: 0.0 %抚州: 0.0 %拉斯维加斯: 0.1 %拉斯维加斯: 0.1 %新乡: 0.0 %新乡: 0.0 %新里奇港: 0.3 %新里奇港: 0.3 %日本东京: 0.1 %日本东京: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普雷斯科特山谷: 0.0 %普雷斯科特山谷: 0.0 %杭州: 2.3 %杭州: 2.3 %格兰特县: 0.0 %格兰特县: 0.0 %森尼韦尔: 0.3 %森尼韦尔: 0.3 %榆林: 0.0 %榆林: 0.0 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.0 %沧州: 0.0 %河源: 0.1 %河源: 0.1 %泰勒: 0.0 %泰勒: 0.0 %泰州: 0.0 %泰州: 0.0 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.0 %洛阳: 0.0 %海口: 0.2 %海口: 0.2 %淄博: 0.1 %淄博: 0.1 %淮南: 0.0 %淮南: 0.0 %淮安: 0.0 %淮安: 0.0 %深圳: 0.4 %深圳: 0.4 %温州: 0.3 %温州: 0.3 %湖州: 0.1 %湖州: 0.1 %湛江: 0.0 %湛江: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.0 %漳州: 0.0 %潍坊: 0.0 %潍坊: 0.0 %石家庄: 0.9 %石家庄: 0.9 %石河子: 0.1 %石河子: 0.1 %福州: 0.0 %福州: 0.0 %穆列塔: 0.0 %穆列塔: 0.0 %纽瓦克: 0.4 %纽瓦克: 0.4 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.0 %绍兴: 0.0 %绍姆堡: 0.1 %绍姆堡: 0.1 %绍曾德奥克斯: 0.1 %绍曾德奥克斯: 0.1 %罗利: 0.1 %罗利: 0.1 %美国: 0.4 %美国: 0.4 %美国弗吉尼亚阿什本: 0.1 %美国弗吉尼亚阿什本: 0.1 %美国德克萨斯圣安东尼奥: 0.1 %美国德克萨斯圣安东尼奥: 0.1 %美国怀俄明夏延: 0.1 %美国怀俄明夏延: 0.1 %美国爱荷华得梅因: 0.2 %美国爱荷华得梅因: 0.2 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 6.1 %芒廷维尤: 6.1 %芝加哥: 0.6 %芝加哥: 0.6 %芬兰赫尔辛基: 0.1 %芬兰赫尔辛基: 0.1 %苏州: 0.4 %苏州: 0.4 %萨默维尔: 0.1 %萨默维尔: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 31.6 %西宁: 31.6 %西安: 0.1 %西安: 0.1 %西雅图: 0.0 %西雅图: 0.0 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.0 %贵阳: 0.0 %运城: 1.5 %运城: 1.5 %郑州: 0.6 %郑州: 0.6 %都伯林: 0.1 %都伯林: 0.1 %重庆: 0.1 %重庆: 0.1 %金华: 0.3 %金华: 0.3 %铜仁: 0.1 %铜仁: 0.1 %长沙: 0.2 %长沙: 0.2 %长治: 0.1 %长治: 0.1 %阜新: 0.0 %阜新: 0.0 %阿什本: 0.0 %阿什本: 0.0 %阿克苏: 0.2 %阿克苏: 0.2 %阿布奎基: 0.2 %阿布奎基: 0.2 %随州: 0.0 %随州: 0.0 %青岛: 0.1 %青岛: 0.1 %鞍山: 0.0 %鞍山: 0.0 %韦科: 0.0 %韦科: 0.0 %韩国釜山: 0.0 %韩国釜山: 0.0 %香港: 0.0 %香港: 0.0 %马德里: 0.1 %马德里: 0.1 %马鞍山: 0.0 %马鞍山: 0.0 %其他其他AdrianAustinBrazilCanadaCantonCarrboroChileChinaEgyptFranceGermanyItalyJapanLafayetteMalvernMexicoNormanPecosPolandRaefordRochesterRussian FederationSpainSwitzerlandTurkeyUnited KingdomUnited StatesWixom[]上海临汾丽水乌鲁木齐休斯敦伦敦伯明翰佛森佛罗里达俄亥俄保定兰州凤凰城加利福尼亚加利福尼亚州加拿大多伦多加拿大魁北克北京匹兹堡十堰南京南昌南通南阳博伊西博阿努瓦印度台州合肥吕梁呼和浩特哈尔滨哥伦布嘉兴圣彼得堡坦佩堪萨斯城塔拉哈西大克罗伊茨大急流城天津太原奥地利维也纳娄底安大略宣城密蘇里城布鲁克林区广州开封张家口成都扬州抚州拉斯维加斯新乡新里奇港日本东京昆明晋城普雷斯科特山谷杭州格兰特县森尼韦尔榆林武汉沈阳沧州河源泰勒泰州洛杉矶洛阳海口淄博淮南淮安深圳温州湖州湛江漯河漳州潍坊石家庄石河子福州穆列塔纽瓦克纽约绍兴绍姆堡绍曾德奥克斯罗利美国美国弗吉尼亚阿什本美国德克萨斯圣安东尼奥美国怀俄明夏延美国爱荷华得梅因舟山芒廷维尤芝加哥芬兰赫尔辛基苏州萨默维尔衢州西宁西安西雅图诺沃克贵阳运城郑州都伯林重庆金华铜仁长沙长治阜新阿什本阿克苏阿布奎基随州青岛鞍山韦科韩国釜山香港马德里马鞍山Highcharts.com
  • Cited by

    Periodical cited type(21)

    1. 吴思蕊,尚幸甜,李雪丽,李慧莹,徐悦,王晶,郭美霞. 生物炭固定化菌剂的制备及其多环芳烃降解性能研究. 化学研究. 2025(01): 65-72 .
    2. 魏雅冬,郭海滨. 平菇菌渣与化肥配施对番茄产量、土壤团聚体结构及腐殖质组分的影响. 江苏农业科学. 2025(02): 199-205 .
    3. 叶子壮,王松燕,陆潇,史多鹏,吕慎强,李嘉,杨泽宇,王林权. 秸秆还田、覆膜和施氮对旱地麦田土壤质量的影响. 环境科学. 2024(04): 2292-2303 .
    4. 黄文洁,李明. 广藿香-薄荷轮作和广藿香连作对其品质及其根际土壤微生态的影响. 西南农业学报. 2024(02): 276-285 .
    5. 张娜娜,龚雪梅,刘明广,王文丽. 阜阳地区砂姜黑土耕作层土壤肥力调查与评价. 现代园艺. 2024(16): 1-4 .
    6. 张发丽,王沁,曾涛,蒋明金,何志旺,张恒栋. 施用菌渣对水稻产量、直链淀粉和氨基酸含量的影响. 中国稻米. 2024(06): 55-59 .
    7. 高佩,李希来,柴瑜,王朝慧,李成一,杨鹏年. 羊板粪与枯草芽孢杆菌配施对退化高寒草甸土壤养分及酶活性的影响. 中国土壤与肥料. 2024(11): 29-36 .
    8. 翟挺楷,储玉凡,林碧英,钟路明,林黄昉. 食用菌菌渣在蔬菜基质化利用中的研究进展. 中国蔬菜. 2023(03): 29-36 .
    9. 徐爽. 香菇菌渣对不同质地土壤团聚体组成的影响. 生态与农村环境学报. 2023(04): 540-546 .
    10. 张传梅. 长期施肥对土壤微生态及作物生长和光合的影响. 四川农业科技. 2023(03): 63-66 .
    11. 徐爽,阚雨晨. 食(药)用菌菌糠对砂壤土团聚体性状的影响. 农学学报. 2023(05): 58-65 .
    12. 杨海滨,李中林,徐泽,盛忠雷,胡方洁,邓敏. 不同施肥措施对重庆茶园土壤微生物学特性的影响. 中国土壤与肥料. 2023(08): 59-66 .
    13. 洪琦,赵勇,陈明杰,黄建春,冯志勇,陈辉,张津京. 大球盖菇菌渣原位还田对土壤有机质、酶活力及细菌多样性的影响. 食用菌学报. 2022(01): 27-35 .
    14. 刘志平,周怀平,解文艳,杨振兴,马晓楠,胡雪纯. 长期氮磷配施对褐土细菌多样性及土壤酶活性的影响. 干旱地区农业研究. 2022(02): 163-171 .
    15. 陈云,刘昆,李婷婷,李思宇,李国明,张伟杨,张耗,顾骏飞,刘立军,杨建昌. 结实期干湿交替灌溉对水稻根系、产量和土壤的影响. 中国水稻科学. 2022(03): 269-277 .
    16. 张翰林,郭惠宝,杨业凤,施俭,陆利民,吕卫光. 化肥有机肥配施对稻麦轮作系统作物产量和土壤肥力的影响. 上海农业学报. 2022(03): 48-53 .
    17. 张涵苡,张敏,王静,王澄宇,周伟,邓良基. 不同菌渣配施化肥对土壤肥力和酶活性的影响. 水土保持学报. 2022(06): 364-370 .
    18. 刘唯佳,毛昆明,唐祺超,杨元智,邓良基. 菌渣替代部分化肥养分施用对土壤养分含量及稻麦产量的影响. 四川农业大学学报. 2021(03): 323-330+340 .
    19. 饶中秀,李龙涛,黄凤球,孙继民. 菇渣与菌肥配施对百合鳞茎的增产提质效果. 湖南农业科学. 2021(12): 51-54 .
    20. 何强,王宇莹,王雪艳,颜杰,龚会蝶,刘耘华,陈波浪,张凯,盛建东. 有机肥、有机酸配施化肥对绿洲棉田土壤微生物生物量和酶活性的影响. 新疆农业大学学报. 2021(06): 436-442 .
    21. 吴彪,柯智,陈喜蓉,钟剑锋,林芳能,阳记萍. 不同肥料对无籽青柠檬种植地土壤肥效、微生物与酶活性的影响. 热带林业. 2020(04): 20-24 .

    Other cited types(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(2471) PDF downloads(534) Cited by(39)

Related
Proportional views

Interannual variation characteristics for stand structures in the early stages of new moso bamboo carbon sink stands

doi: 10.11833/j.issn.2095-0756.2015.02.003

Abstract: To determine a rule for interannual variation characteristics in non-spatial, structural stands of new moso bamboo (Phyllostachys edulis) based on carbon sink (1-5 a). An 80 m 100 m fixed plot was established at a long-term, afforestation, fixed observation research site for carbon sequestration. Linear regression and correlation were used for the analysis. Results showed that 1) stand density, DBH, and culm height were the dominating factors for interannual component changes, and these increased with bamboo age. 2) In the young stand, stand density (N) increased with stand year (y) with a fitted regression equation of: N=17.214y2+309.21y- 217.4, R2=0.981 1. 3) The allometric equation for mean DBH and stand year (y) fitted with linear regression was DBH=0.015 7y2+0.727 9y+1.598 0, R2=0.756 5 The linear regression for the relationship between culm height (H) and stand year (y) was projected to be H=0.108 5y2+0.429 9y+2.155 3, R2=0.723 2. Therefore, in the young moso bamboo stand, stand density, DBH, and culm height all had a positive relationship with age. [Ch, 4 fig. 8 tab. 20 ref.]

CHEN Wenbo, WANG Xudong, SHI Sibo, et al. Effects of long-term combined application of fungus residue and chemical fertilizer on soil enzyme activities in paddy field[J]. Journal of Zhejiang A&F University, 2021, 38(1): 21-30. DOI: 10.11833/j.issn.2095-0756.20200139
Citation: CHEN Ting, SHI Yongjun, ZHOU Guomo, et al. Interannual variation characteristics for stand structures in the early stages of new moso bamboo carbon sink stands[J]. Journal of Zhejiang A&F University, 2015, 32(2): 181-187. DOI: 10.11833/j.issn.2095-0756.2015.02.003

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return