-
放牧是草地利用的主要方式之一。过度放牧会导致草地发生不同程度的退化[1]。土壤微环境的退化伴随着不同程度的土壤微生物数量的减少和酶活性的下降[2]。土壤微生物和酶是土壤养分转化和循环的动力,参与有机质分解和腐殖质的形成等各个生化过程,能敏感地反映土壤中各种微环境的变化[3-5]。根际是植物根系、土壤、微生物形成的动态微域。植被的生长能有效维持土壤生态系统的动态平衡[6-7]。研究表明:根际土壤微生物数量普遍高于非根际土壤[8]。随放牧强度的增加,土壤中纤维素酶、多酚氧化酶、脲酶、蛋白酶、碱性磷酸酶和蔗糖酶活性逐渐降低[9];土壤微生物量碳、氮等与脲酶活性呈负相关,与蔗糖酶和碱性磷酸酶活性呈正相关[10];目前,关于放牧对根际土壤微生物及酶活性的影响研究较少,多集中在放牧对土壤养分、土壤微生物功能及遗传多样性的影响等方面[11-12]。内蒙古典型草原是中国西北地区重要的生态屏障,其功能的正常发挥对维持全球及区域性生态系统平衡具有极其重要的作用。由于长期过度放牧和刈割等人类活动的强烈干扰,草原生态环境恶化,退化现象日趋严重[13]。冷蒿Artemisia frigida是菊科Asteraceae蒿属Artemisia多年生草本植物,广布于草原带或荒漠草原带,具有耐旱耐寒、耐践踏、耐土壤贫瘠,生根萌蘖的再生生长能力强等特性[14-15],特别在重度放牧时,即使经过家畜强烈啃食后,仍然能够继续更新繁殖使植株丛扩大,保持一定的生产力水平[16],是过度放牧引起草原退化的指示植物,伴随着草原退化演替的各个阶段。目前,对于冷蒿繁殖特性、构件变化[17-18],及其挥发物和浸提液对牧草的影响等已有相关报道[19],然而关于放牧对其根际土壤微生物数量及酶活性的影响研究还鲜见报道。本研究通过小区控制放牧试验对锡林浩特毛登牧场不同放牧强度处理下冷蒿根际土壤与非根际土壤微生物区系和酶活性进行研究,探讨草原生态系统冷蒿根际土壤微生物和酶活性对放牧扰动的响应机制,为研究冷蒿阻击草原进一步退化的机理提供土壤学方面的理论基础和参考依据。
HTML
-
图 1显示:土壤类型与放牧及其交互作用对细菌、放线菌、真菌的影响均呈极显著差异。冷蒿根际土壤细菌数量随放牧强度增加先增加后减少,轻度放牧后细菌数量为22.78×106菌落形成单位·g-1显著高于对照和重度放牧,分别高22.0%和37.0%;轻度、重度放牧后非冷蒿根际土壤细菌数量分别比对照降低45.7%和55.7%;各处理均表现为冷蒿根际土壤细菌数量极显著高于非冷蒿根际土壤(图 1A)。轻度放牧和对照冷蒿根际土壤放线菌数量分别为17.74×105菌落形成单位·g-1和17.32×105菌落形成单位·g-1显著高于重度放牧,分别高72.5%和76.7%,且极显著高于非冷蒿根际土壤;各处理间非冷蒿根际土壤放线菌数量变化不明显(图 1B)。冷蒿根际土壤真菌数量随放牧强度增加先增加后减少,轻度放牧后真菌数量为17.30×103菌落形成单位·g-1,显著高于对照和重度放牧,分别高60.3%和29.4%;轻度放牧、重度放牧后非冷蒿根际土壤真菌数量分别比对照降低47.3%和44.2%;除对照外,轻度放牧、重度放牧冷蒿根际土壤真菌数量均极显著高于非冷蒿根际土壤,分别高2.5倍和1.5倍(图 1C)。
-
放牧对土壤中5种微生物生理类群数量变化的影响差异极显著(表 1);土壤类型对硝化细菌数量变化的影响不明显,对反硝化细菌数量变化的影响差异显著,而对其他3种菌数量变化的影响差异极显著;放牧和土壤类型的交互作用除对氨化细菌、反硝化细菌数量的变化无明显影响外,对其他3种菌数量变化的影响差异极显著。冷蒿根际土壤轻度放牧后,除反硝化细菌、好氧纤维素分解菌数量与对照差异不明显外,氨氧化细菌、硝化细菌数量与对照相比显著降低,分别降低56.5%和41.0%,而氨化细菌数量与对照相比显著增加了1.1倍;重度放牧后,除氨氧化细菌数量与对照差异不显著外,氨化细菌、反硝化细菌数量与对照相比显著增加,分别增加69.0%和46.8%,而硝化细菌、好氧纤维素分解菌数量与对照相比显著降低,分别降低37.5%和57.5%。非冷蒿根际土壤轻度放牧后,除反硝化细菌数量与对照相比差异不显著外,氨化细菌、硝化细菌数量与对照相比增加显著,分别增加1.32和1.54倍,氨氧化细菌、好氧纤维素分解菌数量与对照相比显著降低,分别降低112.0%和64.3%;重度放牧后,除了好氧纤维素分解菌数量与对照相比显著降低了82.0%外,其他4种菌数量与对照相比均显著增加,分别增加101.5%,32.8%,468.1%和54.2%。
土壤类型 处理 氨化细菌/(×102
菌落形成单位·
g-1)氨氧化细菌/(×
102菌落形成单
位·g-1)硝化细菌/(×102
菌落形成单位·
g-1)反硝化细菌/(×
102菌落形成单
位·g-1)好氧纤维素分解
菌/(×102菌落形
成单位·g-1)对照处理 14.63 ± 3.53 B 1.68 ± 0.06 A 9.44 ± 2.94 A 3.89 ± 0.50 B 2.59 ± 0.29 A 冷蒿根际土壤 轻度放牧 30.71 ± 6.64 A 0.73 ± 0.06 B 5.57 ± 1.66 B 3.45 ± 0.51 B 2.93 ± 0.28 A 重度放牧 24.73 ± 8.71 A 1.41 ±0.24 A 5.90 ± 1.32 B 5.71 ± 1.35 A 1.10 ± 0.12 B 变异来源 组间(自由度为2) 792.47 2.899 55.47 17.123 11.336 组内(自由度为24) 529.80 0.311 52.66 11.667 0.881 对照处理 6.18 ± 1.94 b 1.95 ± 0.23 b 2.32 ± 0.91 c 4.87 ± 0.29 b 3.00 ± 0.29 a 非冷蒿根际土壤 轻度放牧 14.39 ± 2.88 a 0.92 ± 0.23 c 5.90 ± 2.10 b 4.24 ± 0.29 b 1.07 ± 0.11b 重度放牧 12.45 ± 3.49 a 2.59 ± 0.57 a 13.18 ± 3.06 a 7.51 ± 0.57 a 0.54 ± 0.12 c 变异来源 组间(自由度为2) 221.23 8.505 367.68 36.015 20.073 组内(自由度为24) 96.93 2.170 58.29 2.437 0.558 P:Fs ** ** 无显著差异 * ** P:Fg ** ** ** ** ** P:Fs×Fg 无显著差异 ** ** 无显著差异 ** 说明:数值均为平均值±标准误。根据最小显著性差异法测验,不同大写字母表示冷蒿根际土壤的差异显著性,不同小写字母表示非冷蒿根际土壤的差异显著性。Fs.土壤类型的影响;Fg.放牧的影响;Fs×Fg.土壤类型与放牧的交互作用。 Table 1. Variation of soil microbial population of A. frigida rhizosphere under different grazing intensity
-
由表 2可知:与对照相比放牧后7种酶活性的变化均表现为冷蒿根际土壤高于非冷蒿根际土壤。土壤类型及其与放牧的交互作用对土壤酶活性的影响差异极显著;放牧除对淀粉酶、转化酶、蛋白酶活性的影响差异显著外,对其他4种酶活性的影响差异极显著。冷蒿根际土壤酶活性在不同放牧强度之间有显著差异;蛋白酶对照区较高,重牧区较低;硝酸还原酶、淀粉酶、转化酶活性对照区较低,放牧区较高;碱性磷酸酶、脱氢酶、脲酶活性轻牧区较高(表 2)。非冷蒿根际土壤酶活性在不同放牧强度之间有显著差异;淀粉酶、蛋白酶活性均表现出对照区较高,重牧区较低;转化酶、脲酶活性轻牧区较低;碱性磷酸酶、脱氢酶、硝酸还原酶活性放牧区较高。
土壤类型 处理 碱性磷酸酶/
(mg·g-1·h-1)脱氢酶/(μL·
g-1·h-1)淀粉酶/(mg·
g-1·h-1)转化酶/(mg·
g-1·h-1蛋白酶/(μg·
g-1·h-1)脲酶/(mg·g-1·
h-1)硝酸还原酶/
(mg·g-1·h-4)冷蒿根际土壤 对照处理 10.22 ± 0.94 B 0.54 ± 0.05 C 0.76 ± 0.17 B 6.39 ± 0.47 B 2.90 ± 0.07 A 2.71 ± 0.08 B 2.25 ± 0.12 C 轻度放牧 15.34 ± 1.01 A 1.85 ± 0.31 A 0.84 ± 0.19 A 7.01 ± 0.23 A 13.93 ± 1.45 B 17.21 ± 0.71 A 14.66 ± 1.94 B 重度放牧 7.95 ± 0.74 C 1.29 ± 0.25 B 0.87 ± 0.10 A 6.97 ± 0.09 A 0.07 ± 0.01 B 0.10 ± 0.01 A 0.09 ± 0.01 A 变异来源 组间(自由度为2) 257.569 7.863 0.060 2.148 2.031 53.532 0.004 组内(自由度为24) 19.519 1.319 0.594 2.239 0.207 50.780 0.004 非冷蒿根际土壤 对照处理 4.72 ± 0.92 b 0.25 ± 0.02 c 0.60 ± 0.04 a 5.42 ± 0.35 a 2.53 ± 0.12 a 14.87 ± 0.75 a 0.03 ± 0.01 c 轻度放牧 5.16 ± 0.67 ab 0.66 ± 0.14 a 0.48 ± 0.09 b 4.47 ± 0.23 c 2.36 ± 0.09 b 10.65 ± 1.53 b 0.08 ± 0.01 a 重度放牧 5.50 ± 0.33 a 0.39 ± O.11 b 0.40 ± 0.12 c 4.91 ± 0.13 b 2.03 ± 0.06 c 11.33 ± 1.12 b 0.05 ± 0.01 b 变异来源 组间(自由度为2) 2.7462 0.777 0.178 4.089 1.162 92.409 0.008 组内(自由度为24) 11.208 0.273 0.195 1.559 0.196 33.211 0.004 P:Fs ** ** ** ** ** ** ** P:Fg ** ** * * * ** ** P:Fs×Fg ** ** ** ** ** ** ** 说明:数值均为平均值±标准误。根据最小显著性差异法测验,不同大写字母表示冷蒿根际土壤的差异显著性,不同小写字母表示非冷蒿根际土壤的差异显著性。Fs.土壤类型的影响;Fg.放牧的影响;Fs×Fg.土壤类梨与放牧的交互作用。 Table 2. Effect of soil enzyme activites of Artemisia frigida rhizosphere under different grazing intensity
-
表 3显示:放牧扰动下氨化细菌与碱性磷酸酶、脱氢酶、淀粉酶、转化酶、硝酸还原酶活性呈极显著正相关(P<0.01),与脲酶活性呈显著正相关(P<0.05);氨氧化细菌与土壤脱氢酶、硝酸还原酶活性呈极显著负相关(P<0.01),与碱性磷酸酶、淀粉酶活性呈显著负相关(P<0.05);反硝化细菌与蛋白酶活性呈极显著负相关(P<0.01),与碱性磷酸酶、淀粉酶活性呈显著负相关(P<0.05);好氧纤维素分解菌与蛋白酶、脲酶呈极显著正相关(P<0.01),与碱性磷酸酶、淀粉酶呈显著正相关(P<0.05);真菌与硝酸还原酶活性呈极显著正相关(P<0.01),与脱氢酶、淀粉酶活性呈显著正相关(P<0.05)。
微生物 碱性磷酸酶 脱氢酶 淀粉酶 转化酶 蛋白酶 脲酶 硝酸还原酶 氨化细菌 0.795** 0.936** 0.660** 0.714** 0.141 0.505* 0.883** 氨氧化细菌 -0.539* -0.698** -0.504* -0.342 -0.421 -0.326 -0.775** 硝化细菌 -0.013 -0.198 -0.351 -0.182 -0.295 -0.415 -0.061 反硝化细菌 -0.552* -0.400 -0.486* -0.347 -0.836** -0.454 -0.442 好氧纤维素分解菌 0.499* 0.172 0.475* 0.442 0.842** 0.702** -0.015 真菌 0.166 0.476* 0.496* 0.386 0.006 0.012 0.742** 放线菌 0.010 -0.015 0.458 0.426 0.170 -0.008 0.279 说明:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。 Table 3. Correlation analysis between soil microbial and soil enzyme activity