-
碳水化合物是光合作用的最终产物,不仅为植物体的生长发育和生理代谢提供能量,同时也作为信号分子在物质运输、渗透调节、抵抗胁迫、基因表达等方面起重要作用[1]。樱桃番茄Lycopersicum esculentum var. cerasiforme果实在发育成熟过程中,蔗糖被不断分解,而葡萄糖和果糖逐渐积累[2]。对温州蜜柑Citrus unshiu研究发现[3],蜜柑果实成熟过程中可食组织中糖不断增加,而果糖激酶活性不断下降。拟南芥Arabidopsis thaliana中编码淀粉降解相关基因的表达受光照时间和生物钟调控,持续黑暗条件下,碳水化合物水平、转录水平和蛋白质水平相互协调,糖促进拟南芥下胚轴伸长[4-5]。海藻糖可以诱导光合器官中调控碳水化合物合成酶的激活[6],高浓度海藻糖抑制拟南芥根中碳水化合物分配,抑制根的伸长[7];逆境条件下植物体内海藻糖含量增加以抵抗胁迫[8]。WINGLER等[9]发现海藻糖通过调节糖调控基因的表达影响拟南芥幼苗的生长代谢。海藻糖磷酸合成酶(trehalose-6-phosphate synthase, TPS1)作为一种信号来调控海藻糖-6-磷酸(T6P)的合成,T6P通过磷酸海藻糖磷酸酶(TPP)转化为海藻糖,从而促进植物的生长发育[10]。对水稻Oryza sativa[11],烟草Nicotiana tabacum[12]和小麦Triticum aestivum[13]等植物幼苗研究发现:植物体通过调控TPS1基因的表达来增加体内海藻糖质量分数,从而提高其抗逆性。植物蔗糖非发酵-1-型相关蛋白激酶1(sucrose non-fermenting-1(SNF1)-related kinase 1, SnRK1)是植物中糖信号调控的一种关键激酶,广泛参与植物的细胞周期调控、生长发育、病虫害防御、激素信号传导和非生物胁迫等各种信号的应答反应[14]。能量匮乏条件下,拟南芥SNF1相关蛋白激酶催化亚基KIN10和KIN11促进合成代谢基因的表达,抑制分解代谢基因的表达以响应胁迫[15]。反义表达SnRK1马铃薯Solanum tuberosum叶片丧失蔗糖合成酶的转录功能[16];对水稻和拟南芥研究发现:SnRK1活性的高低严重影响着胁迫诱导型基因的表达,从而增强植物抗逆性[17]。植物中可溶性糖和SnRK1一同作为生物发育的糖信号调控物质,与糖信号途径相互作用。能量缺乏时,SnRK1抑制植物体生长,T6P通过抑制SnRK1的表达来调控基因的表达,保证植物在营养缺乏逆境条件下能够存活生长[18]。ZHANG等[19]研究发现,微摩尔浓度的T6P就可以抑制拟南芥幼苗及其他植物幼嫩组织SnRK1活性。葡萄糖和蔗糖可以缓解高浓度海藻糖对植物生长的抑制作用,蔗糖和海藻糖在糖感受调控基因的表达中有相似的作用,海藻糖能代替蔗糖,调控碳水化合物的代谢[20]。蔗糖调控基因SnRK1与海藻糖相互作用,调控植物碳代谢、基因表达,为植物的生长发育及其代谢提供保证[21]。毛竹Phyllostachys edulis是重要的经济资源、造园材料,关于毛竹的研究目前主要集中在茎秆解剖结构[22]、不同生长期茎秆色素含量[23]、快速生长期水势变化[24]、基因组学及快速生长期节间伸长相关蛋白的表达[25-26]等方面,尚未有关于毛竹快速高生长过程中糖代谢的研究。本研究以快速生长期毛竹笋竹为实验材料,分析毛竹中可溶性糖质量分数及PeSnRK1,PeTPS1基因的表达情况,研究其表达差异性,以期探索毛竹生长过程中糖调控基因如何调控碳水化合物来指导幼笋的快速生长,为毛竹及其他树种的快速生长机制的阐述提供新的理论依据。
HTML
-
供试材料毛竹采自浙江农林大学毛竹示范基地,地理位置为29°56′~30°23′ N,118°51′~119°52′ E,属中亚热带季风气候区,四季分明,温暖湿润,年平均气温为16.4 ℃,气候特点为春多雨,夏湿热,秋气爽,冬干冷,年平均降水量为1 628.6 mm,年平均日照时数1 847.3 h。森林覆盖率为76.5%。
-
2015年4月,在浙江农林大学毛竹试验基地挑选生长健壮的2 m高毛竹笋竹,以18:00为黄昏时,分别于黄昏后0,4,8 h取材。选取3株生长健壮的笋竹3株·次-1,从基部将其伐倒,挖出竹蔸,将地上部分平均分成3段,各段取中间1节记为上部、中部、下部,并对竹蔸中间位置进行取样,将样品迅速放进液氮中冷冻,存于-80 ℃备用。
-
葡萄糖、果糖和蔗糖质量分数测定:称取0.5 g笋竹于研钵中研磨,加蒸馏水8.0 mL,80 ℃恒温水浴30 min,冷却,定容10.0 mL。离心(3 000 g,5 min),上清液为可溶性糖提取液。葡萄糖、果糖和蔗糖质量分数采用可溶性糖试剂盒(南京建成科技有限公司)测定。重复5次·样品-1。
海藻糖质量分数测定:参考苏州科铭生物技术有限公司海藻糖试剂盒,加入5.0 mL提取液,称取0.5 g笋竹于研钵中冰浴研磨,室温静置45 min,常温下8 000 g离心10 min,取上清。取60 μL样本和240.0 μL工作液至EP管中,95 ℃水浴10 min,自然冷却至室温后,取200.0 μL至96孔板中,620 nm波长下测定吸光度D(λ)值。重复5次·样品-1。
-
称取0.5 g笋竹,使用改进Trizol法进行总核糖核酸(RNA)提取。使用分光光度计检测样品RNA的纯度,并用琼脂糖电泳检测RNA的完整性。以上述RNA为模板,冰上配置10.0 μL实时荧光定量聚合酶链式反应(qRT-PCR)体系:包括5×Prime Script RT Master Mix 2.0 μL,总RNA 500 ng,加去RNA酶的水(RNase Free H2O)至总体积10.0 μL。置于PCR仪中,37 ℃孵育15 min,85 ℃加热5 s。反转录得到的cDNA存于-20 ℃用于实时荧光定量分析。
-
根据毛竹基因组数据库中PeTPS1和PeSnRK1基因序列设计基因全长及定量引物,选择毛竹PeNTB基因作为荧光定量的内参基因,引物设计使用Primer 5.0软件,并由上海生工合成以此设计特异性引物(表 1),扩增这2个基因的系列片段。扩增程序为:94 ℃ 5 min;94 ℃ 30 s,60 ℃ 30 s,72 ℃ 30 s,共35个循环;72 ℃ 10 min。质量分数为1.0%的琼脂糖凝胶电泳分离PCR扩增产物。回收纯化目的条带,连接到pMD19-T载体上并转化至大肠埃希菌Escherichia coli(DH5α),菌落PCR鉴定阳性克隆后提取质粒,送往上海生工生物工程服务有限公司测序。
基因名称 序列 用途 PeSnRK1-F ATGGAGGGAGCCGGCAGAGATGCGA 基因开放阅读框(ORF)扩增 PeSnRK1-R TCAAAGGACTCTCAGCTGAGTTAGA PeSnRK1-F AGCTCGACGATGAAACCCTT 荧光定量PCR PeSnRK1-R TTCCATAGAACCGTACTGCCTA PeTPS1-F ATGGACACCTACGCCGCGGAGCCCGCCTC 基因开放阅读框(ORF)扩增 PeTPS1-R TTAATCAGCAGTGCTAGACTGGAAGCCAGT PeTPS1-F ACTCCCTAGTCGGACGGCAA 荧光定量PCR PeTPS1-R CATGCTCTGCCGCCAACCAC PeNTB-F TCTTGTTTGACACCGAAGAGGAG 荧光定量PCR PeNTB-R AATAGCTGTCCCTGGAGGAGTTT Table 1. PCR primers used in this study
-
采用TaKaRa公司SYBR Premix Ex TaqTM(perfect real time)试剂盒,20.0 μL反应体系中包含10.0 μL SYBR Premix Ex TaqTM,0.8 μL正向引物,0.8 μL反向引物,2.0 μL反转录cDNA模版,6.4 μL灭菌蒸馏水。反应于Bio-Rad CFX manager 3.1 PCR仪上进行,以内参为对照,平行反应做5次·样品-1。采用两步法扩增标准程序:95 ℃预变性3 min,95 ℃ 10 s,60 ℃ 30 s,39次循环。反应完成后,得到含所有样品的记录点曲线,得出循环阈值(Ct值)。
-
所得初始数据均经软件进行整理,荧光定量数据按照公式计算:相对表达量=2ΔΔCt[27],使用内参基因校正拷贝数,利用Origin 9.0软件进行统计分析和作图。