-
植物中的Shaker家族是迄今为止研究最深入的钾转运家族之一,被认为在植物钾离子(K+)吸收以及转运方面起到至关重要的作用[1-2]。最早报道的拟南芥Arabidopsis thaliana内向整流K+通道AKT1属于Shaker家族,它具有双亲和钾吸收特性,主要在拟南芥根部表皮细胞和皮层细胞中表达,在拟南芥吸收K+过程中起到关键作用。随后已陆续从其他植物中克隆得到该基因,均表现出明显的组织特异性表达,如OsAKTl主要在水稻Oryza sativa根中表皮和维管组织中表达[3];ZMK1主要在玉米Zea mays胚芽鞘皮层中表达[4];SeAKT1在盐角草Salicornia europaea成苗的根和冠中均有表达,但在根中表达量略高[5];GkKT2在三叶期棉花Gossypium hirsutum根、茎、叶和顶芽等各部位均有表达,但在叶中表达量较大[6]等。Shaker通道家族也包括外整流K+通道,但目前针对它的研究较少。SKOR与AKT1在跨膜区具有很高的同源性,但C端比AKT1多约200个氨基酸及6个锚蛋白重复基序(ankyrin repeat motif,AR)[7-8]。据报道[9]:胞内K+浓度可以调节SKOR活性,而对K+的感受性就是依赖C端结构域部分感应细胞内外电压差而实现的,AKT1对于细胞内的K+却没有响应。GAYMARD等[10]首次从拟南芥中克隆到编码外整流K+通道的基因SKOR,并发现它在根中柱组织特异表达,且能被脱落酸(ABA)抑制,其介导根细胞中的K+向木质部外流的转运。在玉米根皮层及中柱细胞中也检测到了外整流K+通道,并确定其介导K+从中柱细胞外排到木质部汁液中,外整流K+通道基因的这一功能在大麦Hordeum vulgare中也得到了验证[11-12]。另外,Shaker钾离子通道的孔结构域和蛋白质氨基酸序列上的组氨基酸残基高度保守,这决定了其通道活性在很大程度上受细胞内外酸碱度调节,比如,KAT1活性在细胞膜内外低pH值的情况下被激活[13],SKOR的活性受酸碱度影响较大[14-16]。小白菜Brassica chinensis花粉质膜外整流K+通道受细胞内外pH值的影响,从而影响花粉萌发和花粉管的伸长[17]。黑果枸杞Lycium ruthenicum为茄科Solanaceae枸杞属Lycium多年生野生盐生类灌木,主要生长在中国西北青海、新疆、甘肃等地的荒漠地区,不但具有极强的耐旱、耐盐碱性,还具有重要的经济价值和药用价值,在生态建设和经济发展中有巨大的应用前景,也是研究多年生植物抗逆机制的优良植物材料。已有研究结果表明[18]:与宁夏枸杞Lycium barbarum相比,黑果枸杞具有更强的耐盐能力。在盐分胁迫下,黑果枸杞各器官中钠离子(Na+)和氯离子(Cl-)相对含量均增加,叶片中积累最多,K+/Na+比均下降,在根中比值比地上部分高。但与宁夏枸杞相比,黑果枸杞各器官中的K+含量下降相对较少,积累的Na+和Cl-含量也相对较少,甚至在450 mmol·L-1氯化钠高盐胁迫下,各器官中K+/ Na+比下降的幅度仍小于宁夏枸杞,其中叶片组织中K+/ Na+比值显著高于同浓度胁迫下的宁夏枸杞,但与拟南芥等传统植物相比,黑果枸杞耐盐碱基因尤其是钾吸收相关基因的鉴定未见报道。为进一步深入研究黑果枸杞的耐盐机制,本研究采用反转录聚合酶链式反应(reverse transcription PCR,RT-PCR)方法克隆了黑果枸杞SKOR基因并分析其序列特征,研究了不同pH值的高盐环境对SKOR基因表达丰度的影响,为以后研究外整流K+通道SKOR在黑果枸杞体内能否维系高K+/Na+比,进而在提高植株耐盐性中发挥重要作用而奠定基础。
HTML
[1] | XU Jiang, LI Haodong, CHEN Liqing. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis[J]. Cell, 2006, 125(7): 1347-1360. doi: 10.1016/j.cell.2006.06.011 | |
[2] | LUAN Sheng. The CBL-CIPK network in plant calcium signaling[J]. Trends Plant Sci, 2009, 14(1): 37-42. doi: 10.1016/j.tplants.2008.10.005 | |
[3] | 龙雨. 水稻钾离子通道OsAKT1生理功能及其调控机制的电生理学研究[D]. 北京: 中国农业大学, 2014. | LONG Yu. Electrophsiological Analysis of Function Molecular Regulatory Mechanism for Rice Potassium Channel OsAKT1 [D]. Beijing: China Agricultural University, 2014. |
[4] | 闵水珠. 植物钾离子通道的分子生物学研究进展[J]. 浙江农业学报, 2005, 17(3): 163-169. doi: 10.3969/j.issn.1004-1524.2005.03.014 | MING Shuizhu. The progress on the molecular biology of the K+ channels in plants[J]. Acta Agric Zhejiang, 2005, 17(3): 163-169. doi: 10.3969/j.issn.1004-1524.2005.03.014 |
[5] | 商玲. 盐角草钾离子通道蛋白基因SeAKT1的克隆与表达[D]. 大连: 大连理工大学, 2013. | SHANG Ling. Cloning and Expression of A K+ Channel Gene SeAKT1 from Salicornia europaea [D]. Dalian: Dalian University of Technology, 2013. |
[6] | 徐娟. 棉花钾离子通道基因GhAKT1和转运体基因GhKT2的克隆及功能分析[D]. 北京: 中国农业大学, 2014. | XU Juan. Cloning and Functional Characterizition of Potassium Channel Gene GhAKT1 and Potassium Transporter Gene GhKT2 from Cotton (Gossypium hirsutum L. ) [D]. Beijing: China Agricultural University, 2014. |
[7] | MÄSER P, THOMINE S, SCHROEDER J I. Phylogenetic relationships within cation transporter families of Arabidopsis[J]. Plant Physiol, 2001, 126(4): 1646-1667. doi: 10.1104/pp.126.4.1646 | |
[8] | ZIMMERMANN S, SENTENAC H. Plant ion channels:from molecular structures to physiological functions[J]. Curr Opin Plant Biol, 1999, 2(6): 477-482. doi: 10.1016/S1369-5266(99)00020-5 | |
[9] | LIU Kun, LI Legong, LUAN Sheng. Intracellular K+ sensing of SKOR, a shaker-type K+ channel from Arabidopsis[J]. Plant J Cell Mol Biol, 2006, 46(2): 260-268. doi: 10.1111/tpj.2006.46.issue-2 | |
[10] | GAYMARD F, PILOT G, LACOMBE B. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap[J]. Cell, 1998, 94(5): 647-655. doi: 10.1016/S0092-8674(00)81606-2 | |
[11] | ROBERTS S K, TESTER M. Inward and outward K+-selective currents in the plasma membrane of protoplasts from maize root cortex and stele[J]. Plant J, 1995, 8(6): 811-825. doi: 10.1046/j.1365-313X.1995.8060811.x | |
[12] | ROBERTS S K, TESTER M. Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells[J]. J Exp Bot, 1997, 48(309): 839-846. | |
[13] | HOTH S, HEDRICH R. Distinct molecular bases for pH sensitivity of the guard cell K+ channels KST1 and KAT1[J]. J Biol Chem, 1999, 274(17): 11599-11603. doi: 10.1074/jbc.274.17.11599 | |
[14] | LACOMBE B, PILOT G, GAYMARD F. pH control of the plant outwardly-rectifying potassium channel SKOR[J]. FEBS Lett, 2000, 466(2/3): 351-354. | |
[15] | GEIGER D, BECKER D, VOSLOH D. Heteromeric AtKC1· AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions[J]. J Biol Chem, 2009, 284(32): 21288-21295. doi: 10.1074/jbc.M109.017574 | |
[16] | HOTH S, DREYER I, HEDRICH R. Mutational analysis of functional domains within plant K+ uptake channels[J]. J Exp Bot, 1997, 48(): 415-420. doi: 10.1093/jxb/48.Special_Issue.415 | |
[17] | FAN Liumin, WANG Yongfei, WU Weihua. Outward K+ channels in Brassica chinensis pollen protoplasts are regulated by external and internal pH[J]. Protoplasma, 2003, 220(3/4): 143-152. | |
[18] | 王龙强, 米永伟, 蔺海明. 盐胁迫对枸杞属两种植物幼苗离子吸收和分配的影响[J]. 草业学报, 2011, 20(4): 129-136. doi: 10.11686/cyxb20110416 | WANG Longqiang, MI Yongwei, LIN Haiming. Effect of salt stress on ion absorption and distribution of two Lycium seedlings[J]. Acta Pratac Sin, 2011, 20(4): 129-136. doi: 10.11686/cyxb20110416 |
[19] | ZENG Shaohua, LIU Yongliang, WU Min. Identification and validation of reference genes for quantitative real-time PCR normalization and its applications in Lycium[J]. PLoS One, 2014, 9(5): e97039-. doi: 10.1371/journal.pone.0097039 | |
[20] | LI Junlin, ZHANG Huanhao, LEI Han. Functional identification of a GORK potassium channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f[J]. Plant Cell Rep, 2016, 35(4): 803-815. doi: 10.1007/s00299-015-1922-6 | |
[21] | ROBERTS S K, TESTER M. Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells[J]. J Exp Bot, 1997, 48(4): 839-846. doi: 10.1093/jxb/48.4.839 | |
[22] | WEGNER L H, de BOER A H. Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in K+ homeostasis and long-distance signaling[J]. Plant Physiol, 1997, 115(4): 1707-1719. doi: 10.1104/pp.115.4.1707 | |
[23] | HU Jing, MA Qing, KUMAR T. ZxSKOR is important for salinity and drought tolerance of Zygophyllum xanthoxylum by maintaining K+ homeostasis[J]. Plant Growth Regul, 2016, 80(2): 195-205. doi: 10.1007/s10725-016-0157-z | |
[24] | WANG Chunmin, ZHANG Jinlin, LIU Xuesong. Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+[J]. Plant Cell Environ, 2009, 32(5): 486-496. doi: 10.1111/pce.2009.32.issue-5 | |
[25] | 王茜, 王沛, 王锁民. 盐生植物小花碱茅外整流K+通道SKOR基因片段的克隆及序列分析[J]. 草业科学, 2012, 29(8): 1218-1223. | WANG Qian, WANG Pei, WANG Suomin. Cloning and sequence analysis of outward-rectifying potassium channel SKOR gene fragment from halophyte Puccinellia tenuiflora[J]. Pratac Sci, 2012, 29(8): 1218-1223. |
[26] | 王龙强. 盐生药用植物黑果枸杞耐盐生理生态机制研究[D]. 兰州: 甘肃农业大学, 2011. | WANG Longqiang. The Physio-ecological Mechanism of Salt Tolerance of Medicinal Halophyte Lycium ruthenieum[D]. Lanzhou: Gansu Agricultural University, 2011. |
[27] | 刘贯山, 王元英, 孙玉合. 高等植物钾转运蛋白[J]. 生物技术通报, 2006, (5): 13-18. | LIU Guanshan, WANG Yuanying, SUN Yuhe. Proteins for transport of potassium in higher plants[J]. Biotechnol Bull, 2006, (5): 13-18. |