Volume 36 Issue 6
Oct.  2019
Turn off MathJax
Article Contents

HE Guoqing, YU Chunlian, RAO Ying, ZHANG Fuyang, SHEN Xiaofei, HUANG Jianqin, LIU Li, XIA Guohua. Dynamic changes in composition of mineral elements and fatty acids for hickory nuts (Carya cathayensis) during maturity[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1208-1216. doi: 10.11833/j.issn.2095-0756.2019.06.019
Citation: HE Guoqing, YU Chunlian, RAO Ying, ZHANG Fuyang, SHEN Xiaofei, HUANG Jianqin, LIU Li, XIA Guohua. Dynamic changes in composition of mineral elements and fatty acids for hickory nuts (Carya cathayensis) during maturity[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1208-1216. doi: 10.11833/j.issn.2095-0756.2019.06.019

Dynamic changes in composition of mineral elements and fatty acids for hickory nuts (Carya cathayensis) during maturity

doi: 10.11833/j.issn.2095-0756.2019.06.019
  • Received Date: 2018-11-21
  • Rev Recd Date: 2019-03-15
  • Publish Date: 2019-12-20
  • To clarify changes in composition of mineral elements, oil content, and fatty acid content of kernels during maturity of the hickory (Carya cathayensis) nut, the contents of N, P, K, Ca, and Mg in kernels and pericarps, as well as oil content and fatty acid composition of kernels during the late development and maturation periods of fruits with 40-year-old mature hickory trees were measured. A correlation analysis of these components was also conducted. Results showed that during the maturity period (from August 5th to September 6th), dry matter of total fruits did not increase (P>0.05). The fast accumulation phase of the kernel was from August 5th to August 20th with dry matter of the kernel increasing 116.1% from 0.62 g per nut to 1.34 g per nut), and an amount of organic matter was transferred from the pericarp to the kernel. K was transferred from kernel to pericarp with K in kernels decreasing from August 5th to September 6th from 11.71 mg·kg-1 to 3.44 mg·kg-1; whereas, in pericarps it was increasing from 5.70 mg·kg-1 to 9.18 mg·kg-1(P < 0.05). Contents of N, P, and Mg in the kernel was higher than the pericarp. Contents of the main mineral elements in the kernel and pericarp had some correlation. Total oil content increased quickly and then slowed during maturity with the fast accumulation phase from August 5th to August 20th where total oil content went from 243.20 mg·g-1 to 586.02 mg·g-1(P < 0.05). Oleic, linoleic, and palmitic were the main fatty acids comprising approximately 92.33% to 97.50% of the total fatty acids in the kernel. The oil content was significantly and positively correlated with the contents of palmitic (r=-0.855, P < 0.01) and linolenic (r=-0.931, P < 0.01), and was significantly correlated with the content of oleic (r=0.783, P < 0.05). Fatty acids which had near or the same number of carbons tended to have a highly positive correlation. The content of oleic was also significantly and positively correlated with the content of linoleic (r=-0.966, P < 0.01) and linolenic (r=-0.854, P < 0.01). In general, N and K were the key mineral elements for fruit development, N and K contents in the kernel had a high correlation to fatty acid compounds, and it was a suggested that fertilizing in the early kernel filling period was key to achieving high yield and high quality cultivation.
  • [1] XU Ya’ nan, SONG Chengwei, ZHANG Lixia, GUO Lili, DUAN Xiangguang, LIU Shuguang, HOU Xiaogai.  Dynamic analysis of mineral elements across the growth cycle of Paeonia ostii ‘Feng Dan’ . Journal of Zhejiang A&F University, 2021, 38(1): 128-137. doi: 10.11833/j.issn.2095-0756.20200303
    [2] LI Zuyao, ZHANG Yanhua, ZHANG Lei, LI Yuan, SUN Yadong.  Endogenous hormones in young bamboo development of Phyllostachys edulis 'Pachyloen' . Journal of Zhejiang A&F University, 2018, 35(6): 1107-1114. doi: 10.11833/j.issn.2095-0756.2018.06.014
    [3] LIANG Fang, WEI Xufang, BAI Yongchao, HOU Zhixia.  Mineral elements for new shoot development in Xanthoceras sorbifolia new shoots . Journal of Zhejiang A&F University, 2018, 35(4): 624-634. doi: 10.11833/j.issn.2095-0756.2018.04.007
    [4] CAI Zhoufei, CHEN Yaqi, XU Xinlu, WANG Xiaodong, WANG Junyu, ZHANG Rumin, GAO Yan.  Changes of volatile organic compounds released during flowering in four Osmanthus fragrans cultivar groups . Journal of Zhejiang A&F University, 2017, 34(4): 608-619. doi: 10.11833/j.issn.2095-0756.2017.04.006
    [5] HUANG Yinzhi, ZENG Yanru, ZHOU Qin, XIA Guohua, HUANG Youjun.  Analysis of ESTs associated with oil metabolism in seeds of Carya cathayensis . Journal of Zhejiang A&F University, 2015, 32(2): 229-236. doi: 10.11833/j.issn.2095-0756.2015.02.009
    [6] LI Guanghui, GUO Sujuan, XIE Peng.  Seasonal changes of mineral nutrients and difference analysis with chestnut leaves for different-age plantations . Journal of Zhejiang A&F University, 2014, 31(1): 37-43. doi: 10.11833/j.issn.2095-0756.2014.01.006
    [7] LIU Mengmeng, ZENG Yanru, JIANG Jianbin, HAN Jiong, YU Weiwu.  Mineral elements in leaves and seeds of Torreya grandis ‘Merrillii’ during seed development . Journal of Zhejiang A&F University, 2014, 31(5): 724-729. doi: 10.11833/j.issn.2095-0756.2014.05.010
    [8] YANG Xihong, HUANG Youjun, CHEN Fangfang, HUANG Jianqin.  Identification and expression of FLOWERING LOCUS C homologous genes in Carya cathayensis . Journal of Zhejiang A&F University, 2013, 30(1): 1-8. doi: 10.11833/j.issn.2095-0756.2013.01.001
    [9] LU Guo-fu, DU Hua-qiang, ZHOU Guo-mo, Lü Yu-long, GU Cheng-yan, SHANG Zhen-zhen.  Dynamic change of Phyllostachys edulis forest canopy parameters and their relationships with photosynthetic active radiation in the bamboo shooting growth phase . Journal of Zhejiang A&F University, 2012, 29(6): 844-850. doi: 10.11833/j.issn.2095-0756.2012.06.007
    [10] HUANG Yin-zhi, ZHOU Qin, HUANG You-jun, ZENG Yan-ru.  Construction of a fat metabolism-related cDNA library in Carya cathayensis . Journal of Zhejiang A&F University, 2011, 28(1): 80-85. doi: 10.11833/j.issn.2095-0756.2011.01.013
    [11] CHEN Shi-quan, HUANG Jian-qin, HUANG Xing-zhao, LOU Zhong3, LV Jian-quan, XIA Guo-hua, WU Jia-sen.  Nutrient elements in soil and Carya cathayensis leaves from four parent rock materials . Journal of Zhejiang A&F University, 2010, 27(4): 572-578. doi: 10.11833/j.issn.2095-0756.2010.04.016
    [12] ZHENG Bing-song, CHEN Miao, CHU Huai-liang, AI Xue, HUANG You-jun, LI Xue-qin, HUANG Jian-qin.  Auxin response factor fragments cloned by cDNA-AFLP during Carya cathayensis grafting process . Journal of Zhejiang A&F University, 2009, 26(4): 467-472.
    [13] HUANG You-jun, ZHOU Li, CHEN Fang-fang, ZHOU Qin, HUANG Jian-qin, HUANG Min-ren, WANG ming-xiu.  Gene expression with cDNA-AFLP (amplified fragment length polymorphism) during flowering of Carya cathayensis . Journal of Zhejiang A&F University, 2009, 26(3): 297-301.
    [14] WAN Jun-li, HUANG Jian-qin, XIA Guo-hua, ZHANG Qi-xiang, HUANG Li-chun.  Adventitious bud induction with immature embryo of Carya cathayensis . Journal of Zhejiang A&F University, 2009, 26(5): 762-766.
    [15] GUO Jin-jian, CHI Wei, ZHAO Xin-zhu, WANG Li, ZENG Yan-ru, ZHANG Qiu-yue.  An AFLP analysis system for Carya cathayensis . Journal of Zhejiang A&F University, 2008, 25(4): 532-537.
    [16] XIE Hong-en, HUANG You-jun, XUE Xia-ming, XU Chang-shou, LIU Li.  Growth and development of the Carya cathayensis nut . Journal of Zhejiang A&F University, 2008, 25(4): 527-531.
    [17] WANG Rong-ping, LI Shu-yi, WU Tao, QIN Xing-hua, LIAO Xin-rong, LAN Pei-ling.  Seasonal variation of leaf mineral nutrient concentrations in seedless wampee (Clausena lansium ‘Yunan Seedless’) . Journal of Zhejiang A&F University, 2008, 25(2): 200-205.
    [18] JIN Ya-qin, HUANG Xue-fang, LI Dong-lin, XIANG Qi-bai.  Variation of endogenous polyamines concentrations in Lycoris chinensis bulbs during reproductive period . Journal of Zhejiang A&F University, 2007, 24(4): 419-423.
    [19] HUANG You-jun, WANG Zheng-jia, ZHENG Bing-song, HUANG Xiao-min, HUANG Jian-qin.  Anatomy of stamen development on Carya cathayensis . Journal of Zhejiang A&F University, 2006, 23(1): 56-60.
    [20] HUANG Jian-qin, ZHANG Bin-sen, LU Jian-wei, FU Gan-wei.  Anatomical observation in graft union of Carya cathayenisis . Journal of Zhejiang A&F University, 2001, 18(2): 111-114.
  • [1]
    ZHANG Ruohui, LU Anming. A study of the genus Carya Nutt. in China[J]. Acta Phytotaxon Sin, 1979, 17(2):40-44.
    [2]
    WANG Jiping, LI Yanan, MA Jianwei. Study on the main nutrients of kernel of Carya cathayensis Sarg[J]. Food Sci, 1998, 19(4):44-46.
    [3]
    ZHONG Shanmin, CHANG Yinzi, ZHONG Yi, et al. Optimization of extraction of oil from Chinese walnut by supercritical CO2 fluid extraction technology[J]. J Chin Cereals Oils Association, 2013, 28(8):37-40.
    [4]
    ZHOU Yongjun, GAO Haiyan, FANG Xiangjun, et al. Separation and identification of volatile compounds of processed Carya cathayensis by gas chromatography-mass spectrometry[J]. J Chin Cereals Oils Association, 2012, 27(6):115-119.
    [5]
    LIU Li, GONG Ning, XIA Guohua, et al. Analysis on the protein and amino acids contents in hickory (Carya cathayensis Sarg.) kernel and their variations[J]. For Res, 2006, 19(3):376-378.
    [6]
    LU Hao, YANG Huifang, BI Yanlan, et al. Physicochemical properties and fatty acid composition of pecan oil[J]. China Oils Fats, 2010, 35(5):73-76.
    [7]
    JIAO Jiejie, LI Shaojin, HUANG Jianqin, et al. Meteorological impact on the yield of Carya cathayensis[J]. J Fruit Sci, 2012, 29(5):877-882.
    [8]
    ZHANG Chunmiao, ZHANG Youzhen, YAO Fang, et al. Temporal and spatial variation of soil pH and nutrient availability for Carya cathayensis orchards in Lin'an[J]. J Zhejiang A&F Univ, 2011, 28(6):845-849.
    [9]
    DONG Jianhua, ZHAO Weiming, ZHOU Jianjin, et al. Soil fertility of Carya cathayensis plantations on different geological strata[J]. J Zhejiang For Sci Technol, 2017, 37(2):10-16.
    [10]
    CHEN Shiquan, HUANG Jianqin, HUANG Xingzhao, et al. Nutrient elements in soil and Carya cathayensis leaves from four parent rock materials[J]. J Zhejiang For Coll, 2010, 27(4):572-578.
    [11]
    LIU Genhua, HUANG Jianqin, PAN Chunxia, et al. Analysis of nitrogen levels in leaves of hickory seedling by reflectance spectra[J]. Sci Silv Sin, 2011, 47(1):165-170.
    [12]
    JIN Songheng, HUANG Jianqin, LI Xueqin, et al. Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis[J]. Tree Physiol, 2011, 31(10):1142-1151.
    [13]
    XIA Guohua, HUANG Jianqin, XIE Hong'en, et al. Dynamic changes of mineral elements in different organs of hickory(Carya cathayensis)[J]. J Fruit Sci, 2014, 31(5):854-862.
    [14]
    YAN Daoliang, HUANG Youjun, JIN Shuihu, et al. Temporal variation of C, N, P stoichiometric in functional organs rootlets, leaves of Carya cathayensis and forest siol[J]. J Soil Water Conserv, 2013, 27(5):255-259.
    [15]
    TIAN Jingxiang, WU Meichun, ZHONG Shanmin. A study on the fat conversion of Carya cathayensis in the course of maturity[J]. J Zhejiang For Coll, 1986, 3(2):53-57.
    [16]
    XU Yanan, ZHOU Wei, YE Xiaoming, et al. Dynamic changes of oil content and fatty acids in seeds of Carya cathayensis at different growth stage[J]. J Zhejiang For Sci Technol, 2017, 37(2):10-16.
    [17]
    HUANG Jianqin, ZHANG Tong, ZHANG Qixiang, et al. The mechanism of high contents of oil and oleic acid revealed by transcriptomic and lipidomic analysis during embryogenesis in Carya cathayensis Sarg.[J]. BMC Genomics, 2016, 17:113.
    [18]
    ZHANG Zhihua, GAO Yi, WANG Wenjiang, et al. Changes of main nutrients during the fruit ripening of walnut[J]. Acta Hortic Sin, 2001, 28(6):509-511.
    [19]
    HU Zhiwei, LI Baoguo, QI Guohui, et al. Changes of main mineral elements content in leaves and fruits during the kernel-filling period of 'Lüling' walnut[J]. Sci Silv Sin, 2011, 47(8):82-87.
    [20]
    CHEN Hong, PAN Cunde, WANG Bei, et al. The relationship among nutrients' accumulation and dynamic changes of fatty acids in seed development of walnut[J]. J Agric Univ Hebei, 2016, 39(1):57-62, 74.
    [21]
    JIA Xiaodong, LUO Huiting, ZHAI Min, et al. Dynamic changes and correlation analysis of nutrient contents in 'Pawnee' pecan (Carya illinoinensis)[J]. J Fruit Sci, 2016, 33(9):1120-1130.
    [22]
    LING Hongyou, ZHENG Deyong. Changes of the functional components in Camellia oleifera seed during mature process[J]. J Fujian Coll For, 2012, 32(1):89-92.
    [23]
    BOUALI I, TRABELSI H, ABDALLAH I B, et al. Changes in fatty acid, tocopherol and xanthophyll contents during the development of Tunisian-Grown pecan nuts[J]. J Am Oil Chem Soc, 2013, 90(12):1869-1876.
    [24]
    XU Jie, HU Guohua, ZHANG Dayong, et al. Dynamic accumulation of fatty acids in grain maturing process of soybean[J]. Acta Agron Sin, 2006, 32(11):1759-1763.
    [25]
    MA Shuying, LIANG Qi, YIN Tianfu, et al. Analysis of the fatty acids composition during the development of soybean seed[J]. Soybean Sci, 1999, 18(2):124-129.
    [26]
    LI Xiaodan, CAO Yinglong, HU Yaping, et al. Fatty acid accumulation pattern in developing seeds of peanut[J]. Chin J Oil Crop Sci, 2009, 31(2):157-162.
    [27]
    UZUN B, ARSLAN C, FURAT S. Variation in fatty acid compositions, oil content and oil yield in a germplasm collection of sesame (Sesamum indicum L.)[J]. J Am Oil Chem Soc, 2008, 85(12):1135-1142.
    [28]
    KODAD O, ESTOPANáN G, JUAN T, et al. Oil content, fatty acid composition and tocopherol concentration in the Spanish almond genebank collection[J]. Sci Hortic, 2014, 177:99-107.
    [29]
    PENG Futian, JIANG Yuanmao, GU Manru, et al. Effect of nitrogen on apple fruit hormone changing trends and development[J]. Plant Nutr Fert Sci, 2003, 9(2):208-213.
    [30]
    HU Chunmei, WANG Xiufeng, JI Junjie. Effects of potassium on photosynthesis and endospermous carbohydrates contents of Guar[Cyamposis Tetragonoloba (L.) Taub.] [J]. Plant Nutr Fert Sci, 2006, 12(6):858-863.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(4)

Article views(2494) PDF downloads(51) Cited by()

Related
Proportional views

Dynamic changes in composition of mineral elements and fatty acids for hickory nuts (Carya cathayensis) during maturity

doi: 10.11833/j.issn.2095-0756.2019.06.019

Abstract: To clarify changes in composition of mineral elements, oil content, and fatty acid content of kernels during maturity of the hickory (Carya cathayensis) nut, the contents of N, P, K, Ca, and Mg in kernels and pericarps, as well as oil content and fatty acid composition of kernels during the late development and maturation periods of fruits with 40-year-old mature hickory trees were measured. A correlation analysis of these components was also conducted. Results showed that during the maturity period (from August 5th to September 6th), dry matter of total fruits did not increase (P>0.05). The fast accumulation phase of the kernel was from August 5th to August 20th with dry matter of the kernel increasing 116.1% from 0.62 g per nut to 1.34 g per nut), and an amount of organic matter was transferred from the pericarp to the kernel. K was transferred from kernel to pericarp with K in kernels decreasing from August 5th to September 6th from 11.71 mg·kg-1 to 3.44 mg·kg-1; whereas, in pericarps it was increasing from 5.70 mg·kg-1 to 9.18 mg·kg-1(P < 0.05). Contents of N, P, and Mg in the kernel was higher than the pericarp. Contents of the main mineral elements in the kernel and pericarp had some correlation. Total oil content increased quickly and then slowed during maturity with the fast accumulation phase from August 5th to August 20th where total oil content went from 243.20 mg·g-1 to 586.02 mg·g-1(P < 0.05). Oleic, linoleic, and palmitic were the main fatty acids comprising approximately 92.33% to 97.50% of the total fatty acids in the kernel. The oil content was significantly and positively correlated with the contents of palmitic (r=-0.855, P < 0.01) and linolenic (r=-0.931, P < 0.01), and was significantly correlated with the content of oleic (r=0.783, P < 0.05). Fatty acids which had near or the same number of carbons tended to have a highly positive correlation. The content of oleic was also significantly and positively correlated with the content of linoleic (r=-0.966, P < 0.01) and linolenic (r=-0.854, P < 0.01). In general, N and K were the key mineral elements for fruit development, N and K contents in the kernel had a high correlation to fatty acid compounds, and it was a suggested that fertilizing in the early kernel filling period was key to achieving high yield and high quality cultivation.

HE Guoqing, YU Chunlian, RAO Ying, ZHANG Fuyang, SHEN Xiaofei, HUANG Jianqin, LIU Li, XIA Guohua. Dynamic changes in composition of mineral elements and fatty acids for hickory nuts (Carya cathayensis) during maturity[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1208-1216. doi: 10.11833/j.issn.2095-0756.2019.06.019
Citation: HE Guoqing, YU Chunlian, RAO Ying, ZHANG Fuyang, SHEN Xiaofei, HUANG Jianqin, LIU Li, XIA Guohua. Dynamic changes in composition of mineral elements and fatty acids for hickory nuts (Carya cathayensis) during maturity[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1208-1216. doi: 10.11833/j.issn.2095-0756.2019.06.019
  • 山核桃Carya cathayensis是中国特有的高档干果和木本油料树种[1],种仁营养丰富,富含氨基酸、脂肪酸、蛋白质、维生素、矿物质和生物活性物质[2-3]。坚果炒制过程中产生杂环类化合物、萜烯类化合物和醛化合物等芳香挥发性物质,它们共同作用构成了独特的风味[4]。山核桃是木本植物中种仁含油率最高的树种之一,其中脂肪酸组成以易于被人体吸收的油酸、亚油酸等不饱和脂肪酸为主,不饱和脂肪酸占总脂肪酸的88.38%~95.78%[3]。矿质营养是果树生长发育、产量形成和品质提高的基础,合理施肥是果树优质高产的关键技术措施。山核桃种仁矿质元素、脂肪含量和脂肪酸组成是决定其营养品质的关键要素。山核桃产量和品质形成的机理复杂,受众多因素控制。前人对山核桃种仁的营养进行了比较全面的评价[2-6],对影响山核桃产量和品质的气象因子[7]、土壤肥力特性和有效养分时空变化[8-9]、叶片养分状况[10-12]、叶片和果实矿质养分的动态变化[13]、生态化学计量学[14]以及山核桃成熟过程中油脂和脂肪酸变化[15-16]、高油和高油酸机制[17]的研究已有报道。HUANG等[17]通过转录组学和脂质组学分析研究了山核桃胚胎发育过程中高油和高油酸形成的机制。以上研究主要集中在土壤和树体叶片矿质营养,很少涉及到果实成熟过程中矿质营养、脂肪和脂肪酸组成的动态变化。鉴于此,本研究通过测定山核桃果实成熟过程中果皮和种仁中氮、磷、钾、钙、镁等主要矿质元素质量分数以及种仁脂肪和脂肪酸组成质量分数,分析了主要矿质元素、种仁脂肪和脂肪酸组成的动态变化以及它们之间的相关关系,以期为合理施肥和科学采收提供参考。

  • 试验地位于浙江省杭州市临安区板桥镇罗塘村(30°11′14.68″N,119°44′52.28″E),该区海拔为50~200 m,年降水量为1 400.0 mm,年平均气温为15.8 ℃,7月平均气温为28.1 ℃,1月平均气温为3.4 ℃,日照时数为1 939.0 h,无霜期为234.0 d。山核桃树龄约40 a。母岩为石灰岩,土壤为岩性土,土壤全氮为(3.88±0.42)g·kg-1,全磷为(1.72±0.28)g·kg-1,速效钾为(146.40±3.60)mg·kg-1,交换性钙为(46.17±1.97)mg·kg-1,交换性镁为(4.37±0.38)mg·kg-1

  • 在林地中选取生长健康的山核桃标准树6株。取样时,在树冠中部外围,按东、南、西、北4个方位采样,每次采集约200粒果实,混合均匀,封口袋封装后立即带回实验室,将种仁、果皮(外果皮为青皮,内果皮为硬壳)分开后分别烘干并用封口袋密封,置干燥器中保存备用。根据山核桃果实膨大规律,在果实停止膨大期开始取样,取样时间依次为8月5日、8月10日、8月17日、8月20日、8月23日、8月27日、8月31日和9月6日。

  • 种仁和果皮样品经硫酸-高氯酸消煮后,全氮采用凯式定氮法测定,全磷采用钼锑钪比色法测定,钾、钙、镁采用原子吸收分光光度计测定。

  • 粗脂肪测定按照GB/T 14488.1-2008《植物油料含油量测定》索氏抽提法进行测定,抽提剂为石油醚。脂肪酸测定采用岛津GC-2014气相色谱仪测定,AccuStandard公司生产的AOCS007脂肪酸作为标样。索氏抽提法提取的山核桃油按照GB/T 17376-2008《动植物油脂脂肪酸甲酯制备》中的酯交换法进行甲酯化,酯化完全后取2 μL注入色谱柱进行分析。气相色谱条件:毛细管色谱柱(30 m × 0.32 mm × 0.25 μm);火焰离子化检测器(FID);进样器温度235 ℃;检测器温度240 ℃;程序升温:起始温度150 ℃,保持2 min,以5 ℃·min-1升至200 ℃,保持10 min,2.5 ℃·min-1升至240 ℃,保持10 min;载气为氮气(N2);分流比为40:1;用面积归一化法定量。

  • 数据用平均值±标准误表示,百分率经过反正弦平方根转换后采用PASW Statistics 18.0进行Duncan多重比较和相关性分析。

  • 山核桃果实成熟过程中果实干物质缓慢增加,从8月5日的5.00 g·粒-1增加到至9月6日的5.15 g·粒-1P>0.05)。种仁干物质在8月5-20日快速增加,从0.62 g·粒-1增加到1.34 g·粒-1,增长了116.13%,此后缓慢增加。果皮干物质在8月5-17日明显下降,从4.38 g·粒-1降到3.82 g·粒-1,之后缓慢下降(P<0.05)。说明该阶段(8月5-17日)是果皮和种仁间储藏物质代谢转换和转移的旺盛期,是种仁干物质积累的关键期(图 1)。

    Figure 1.  Dynamic change of mass and mineral element contents in kernel and pericarp during the maturity of hickory nuts

    种仁氮质量分数呈持续下降,其中8月5-20日,下降较快;果皮氮质量分数约为种仁的1/3。种仁磷质量分数呈不规则波动,在8月10达最高值,为3.41 mg·kg-1;果皮磷质量分数远低于种仁磷,但相对稳定(P>0.05)。种仁钾质量分数先上升,在8月10日达最高值,为12.40 mg·kg-1,此后迅速下降,至8月20日停止下降,之后又略微上升;果皮钾质量分数与种仁钾变化趋势相反,钾在种仁和果皮间存在明显的消长变化。种仁钙质量分数呈先上升,后下降,再上升的趋势,变化幅度较小,为1.91~2.06 mg·kg-1;果皮钙质量分数呈先下降后上升,在8月17-20日维持在一个较低的水平,此后又上升到3.36 mg·kg-1左右。种仁镁质量分数呈逐渐下降的趋势;果皮镁质量分数低于种仁,为0.43~0.64 mg·kg-1

    相关性分析(表 1)表明:果皮和种仁矿质元素质量分数有一定的相关性,相关系数达显著水平以上的有6对。种仁氮和果皮氮质量分数呈极显著正相关关系,相关系数为0.879,与果皮磷、钾、钙、镁质量分数相关性均不显著。种仁氮与种仁钾、镁质量分数呈极显著正相关关系,相关系数分别为0.909和0.880。果皮氮与种仁钾、镁质量分数呈显著正相关和极显著正相关关系,相关系数分别为0.801和0.859。种仁钾与种仁镁质量分数极显著正相关,相关系数为0.842。

    项目种仁氮果皮氮种仁磷果皮磷种仁钾果皮钾种仁钙果皮钙种仁镁果皮镁
    种仁氮1
    果皮氮0.879**1
    种仁磷0.4720.2101
    果皮磷0.1140.1180.1301
    种仁钾0.909**0.801*0.6560.2901
    果皮钾-0.633-0.412-0.1400.203-0.5251
    种仁钙0.024-0.1160.3040.2570.0010.4161
    果皮钙-0.335-0.0570.024-0.110-0.0930.443-0.4681
    种仁镁0.880**0.859**0.5500.1980.842**-0.3440.257-0.2741
    果皮镁0.3190.5510.1410.1250.4480.2630.0960.4840.3601
    说明:*表示在5%水平上差异显著,**表示在1%水平上差异极显著

    Table 1.  Correlative analysis on N, P, K, Ca and Mg content of kernel and pericarp during the maturity of hickory nuts

  • 表 2可见:种仁脂肪质量分数逐渐上升,8月5-10日是脂肪快速积累期,从243.20 mg·g-1升高到586.02 mg·g-1,升高了1.4倍;之后缓慢上升,至9月6日达最高值,为665.24 mg·g-1

    日期
    (月-日)
    粗脂肪/
    (mg·g-1
    饱和脂肪酸(SFA)相对含量/% 单不饱和脂肪酸(MUFA)相对含量/% 多不饱和脂肪酸(PUFA)相对含量/% 不饱和脂肪酸(UFA)相对含量合计/% SFA/PUFA
    棕榈酸 硬脂酸 花生酸 小计 油酸 反-11-二十碳烯酸 小计 亚油酸 亚麻酸 小计
    8月5日 243.20±12.72 c 6.68±0.25 a 2.00±0.14 ab 0.26±0.02 b 9.44±0.52 a 59.79±1.72 c 0.19±0.01 d 60.93±1.64 c 25.86±0.69 a 5.26±0.47 a 29.63±0.72 a 90.56±1.08 b 0.32±0.02 c
    8月10日 586.02±11.24 b 5.66±0.22 bc 2.27±0.21 a 0.36±0.03 a 8.06±0.41 b 74.62±2.03 b 0.17±0.01 d 74.52±2.17 b 13.49±0.52 b 2.82±0.22 d 17.42±0.87 c 91.94±1.14 a 0.46±0.03 a
    8月17日 584.82±21.78 b 5.94±0.17 b 2.11±0.19 ab 0.23±0.01 b 7.98±0.36 b 74.14±2.18 b 0.24±0.01 bc 74.65±2.66 b 15.28±0.65 c 2.51±0.20 b 17.37±0.84 c 92.02±1.63 a 0.46±0.03 a
    8月20日 612.37±13.52 b 4.97±0.24 cd 0.85±0.07 e 0.12±0.01 e 5.94±0.29 d 81.78±1.86 a 0.22±0.02 c 82.00±2.14 a 10.75±0.55 e 1.22±0.12 d 11.96±0.76 d 93.96±1.59 a 0.50±0.02 a
    8月23日 625.84±21.38 ab 5.28±0.29 bc 1.29±0.12 d 0.19±0.01 c 6.76±0.48 c 79.11±1.65 a 0.39±0.03 a 79.49±1.85 a 12.14±0.61 e 1.20±0.15 d 13.34±0.83 d 92.84±1.86 a 0.51±0.03 a
    8月27日 634.28±14.09 ab 5.21±0.24 c 1.59±0.11 c 0.16±0.01 d 6.96±0.35 c 74.68±2.21 b 0.26±0.02 b 74.93±2.42 b 16.58±0.48 c 1.13±0.10 d 17.70±0.69 c 92.64±1.74 a 0.39±0.03 b
    8月31日 647.37±18.17 a 5.08±0.32 cd 1.88±0.12 b 0.15±0.01 d 7.10±0.46 c 72.38±1.78 b 0.27±0.02 b 72.65±2.43 b 18.43±0.73 b 1.62±0.13 c 20.06±0.94 b 92.70±2.03 a 0.35±0.01 b
    9月6日 665.24±17.66 a 4.43±0.36 d 2.09±0.10 ab 0.35±0.03 a 6.87±0.51 c 70.78±1.98 b 0.34±0.03 a 71.12±2.42 b 20.24±0.82 b 1.77±0.17 c 22.01±1.02 b 93.13±2.16 a 0.31±0.02 c
    说明:同列不同小写字母表示差异显著(P<0.05);脂肪酸相对含量以总脂肪酸含量100%计

    Table 2.  Changes in oil contents and fatty acids composition during the maturity of hickory nut

    种仁中饱和脂肪酸相对含量先下降后上升,不饱和脂肪酸相对含量先上升后下降,其中单不饱和脂肪酸先上升后下降,多不饱和脂肪酸先下降后上升。饱和脂肪酸中棕榈酸相对含量持续下降(从8月5日的6.68%降至9月6日的4.43%);硬脂酸相对含量先降低(从8月5日的2.00%降低至8月20日的0.85%)后升高(9月6日达到2.09%);花生酸相对含量变化不规则,在8月20日最低,为0.12%,8月10日和9月6日均较高,分别为0.36%和0.35%。

    单不饱和脂肪酸中油酸相对含量先快速升高(从8月5日的59.79%升高至8月10日的74.62%),再缓慢升高(8月20日达81.78%),最后下降(9月6日降至70.78%);反-11-二十碳烯酸变化不规则,8月10日最低,为0.17%,8月23日最高,达0.39%。多不饱和脂肪酸中亚油酸相对含量先快速下降(从8月5日的25.86%下降至8月20日的10.75%)后升高(9月6日达20.24%);亚麻酸相对含量与亚油酸相似,先降低(从8月5日的5.26%降至8月27日的1.13%)后升高(9月6日至1.77%),但最低值出现的时间滞后于亚油酸。在山核桃果实成熟过程中,油酸、亚油酸、棕榈酸是种仁脂肪酸的主要成分,三者占脂肪酸总量的92.33%~97.50%;8月5-10日果实脂肪和脂肪酸组分变化最大,主要表现在油酸相对含量的快速增加和亚油酸的快速降低。

    表 3表明:脂肪与棕榈酸和亚麻酸极显著负相关,相关系数分别为-0.855和-0.931,与油酸显著正相关,相关系数为0.783。脂肪酸中具有相近或相同碳链长度的脂肪酸相关性较高,棕榈酸与亚麻酸极显著正相关,相关系数为0.842;硬脂酸与花生酸显著正相关,相关系数为0.765;油酸与亚油酸和亚麻酸极显著负相关,相关系数分别为-0.966和-0.854。

    脂肪棕榈酸硬脂酸花生酸油酸反-11-二十碳烯酸亚油酸亚麻酸
    脂肪1
    棕榈酸-0.855**1
    硬脂酸-0.2160.3241
    花生酸-0.1600.1080.765*1
    油酸0.783*-0.586-0.627-0.4161
    反-11-二十碳烯酸0.494-0.572-0.266-0.1240.2991
    亚油酸-0.6620.3950.5430.319-0.966**-0.1491
    亚麻酸-0.931**0.842**0.5300.444-0.854**-0.5660.7061
    说明:*表示在5%水平上差异显著,**表示在1%水平上差异极显著

    Table 3.  Correlative analysis on oil contents and fatty acids composition during the maturity of hickory nuts

  • 表 4可见:果皮氮与种仁脂肪、脂肪酸的相关性最高,其中与种仁饱和脂肪酸总量、棕榈酸和亚麻酸极显著正相关,相关系数分别为0.863,0.877和0.940;与种仁脂肪和不饱和脂肪酸极显著负相关,相关系数分别为-0.976和-0.861。种仁氮与饱和脂肪酸总量、棕榈酸和亚麻酸极显著正相关,相关系数分别为0.873,0.939和0.883;与种仁脂肪和不饱和脂肪酸总量极显著负相关,相关系数分别为-0.836和-0.747。种仁钾与种仁饱和脂肪酸总量和亚麻酸极显著正相关,相关系数分别为0.855和0.836,与棕榈酸显著正相关,相关系数为0.796,与不饱和脂肪酸总量和反-11-二十碳烯酸显著负相关,相关系数分别为-0.815和-0.748。果皮钾、种仁和果皮钙与种仁脂肪和脂肪酸相关性均未达到显著性水平。种仁镁与种仁和果皮中磷以及果皮镁相关性达到显著性水平的均仅有1对。

    脂肪酸种仁氮果皮氮种仁磷果皮磷种仁钾果皮钾种仁钙果皮钙种仁镁果皮镁
    脂肪-0.836**-0.976**-0.119-0.110-0.6940.3300.0120.157-0.859**-0.485
    棕榈酸0.939**0.877**0.2470.2040.796*-0.613-0.145-0.3130.767*0.239
    硬脂酸0.3960.2870.6950.4870.5770.2340.3350.2340.3990.543
    花生酸0.3560.2520.727*-0.0130.5340.1510.4070.2660.3950.676
    饱和脂肪酸0.873**0.863**0.4670.3320.853**-0.2500.055-0.0190.805*0.566
    油酸-0.557-0.758*-0.265-0.350-0.552-0.233-0.181-0.218-0.695-0.697
    反-11-二十碳烯酸-0.670-0.527-0.605-0.448-0.748*0.464-0.1650.392-0.792*0.077
    单不饱和脂肪酸-0.551-0.749*-0.289-0.361-0.561-0.242-0.182-0.237-0.694-0.703
    亚油酸0.3390.6030.1330.3350.3280.4460.2210.2920.5440.649
    亚麻酸0.883**0.940**0.3710.2870.836**-0.2390.179-0.1270.908**0.619
    多不饱和脂肪酸0.4760.7000.2570.3630.4930.3280.2250.2610.6580.707*
    不饱和脂肪酸-0.847**-0.861**-0.406-0.281-0.815*0.2750.085-0.057-0.746*-0.538
    说明:*表示在5%水平上差异显著,**表示在1%水平上差异极显著

    Table 4.  Correlative analysis on oil contents, fatty acids composition and mineral elements content of kernel and pericarp during the maturity of hickory nuts

  • 山核桃果实成熟过程中果实干物质总量增加缓慢,种仁干物质显著增加,且8月5-17日是果皮干物质大量向种仁中转移,种仁干物质快速积累期;种仁和果皮钾质量分数从8月5日至9月6日存在明显的消长变化。表明核桃类坚果果实成熟过程中果皮也是代谢活跃的器官[18]。种仁氮、磷、镁质量分数均高于果皮,种仁氮/果皮氮最为稳定,为2.90~3.28,果皮钙质量分数均高于种仁。核桃种仁充实期种仁和青皮氮、磷质量分数均逐渐下降,种仁钾先快速下降,之后缓慢下降,青皮钾均呈先升高后下降,种仁钙、镁总体呈先快速下降,之后趋于稳定,青皮钙先升高后降低[19]。核桃Juglans regia和山核桃果实成熟过程中种仁和果皮矿质元素的变化存在较大差异。

    油料作物籽粒成熟过程中有机物质的积累以脂肪为中心。山核桃果实成熟过程中的脂肪质量分数先快速上升后缓慢上升,但仅有1个增长高峰,脂肪质量分数从8月5日的243.20 mg·g-1升高到586.02 mg·g-1;脂肪酸的主要成分是油酸、亚油酸、棕榈酸,三者占脂肪酸总量的92.33%~97.50%,与核桃、薄壳山核桃Carya illinoinensis脂肪酸的主要成分一致[20-21]。山核桃种仁脂肪和脂肪酸组分相对含量在8月5-10日变化最大,主要表现在油酸的快速增加和亚油酸的快速降低,这与油茶Camellia oleifera和薄壳山核桃籽粒成熟过程中的变化一致[22-23]。不同物种、品种间籽粒发育过程中脂肪酸的变化规律不同。大豆Glycine max籽粒发育过程中随着棕榈酸、亚麻酸的下降,硬脂酸、油酸和亚油酸上升[24];棕榈酸与亚油酸极显著负相关,与亚麻酸显著正相关,硬脂酸与亚油酸极显著负相关,与亚麻酸显著正相关,亚油酸与油酸、亚油酸极显著负相关[25]。而在花生Arachis hypogaea种子发育过程中,棕榈酸与亚麻酸极显著负相关,油酸与亚油酸极显著正相关[26]。此外,种子含油率和脂肪酸组分的变化受遗传因子与环境互作的影响[27-28]

    氮是植物必需矿质元素中的核心元素,具有重要的生理功能[29],也是储藏物质转化代谢酶的重要组成部分。本研究发现:山核桃种仁和果皮中矿质元素间存在一定的相关性,氮与其他元素的相关性最高;矿质元素与脂肪和脂肪酸的相关性分析也表明:氮与脂肪和脂肪酸组分的相关性最高,种仁和果皮氮均与脂肪和多不饱和脂肪酸总量极显著负相关,而与棕榈酸、饱和脂肪酸总量和亚麻酸均极显著正相关。钾与种仁脂肪和脂肪酸组分的相关性仅次于氮,在脂肪积累高峰期,种仁钾质量分数升高,但随后迅速下降,核桃种仁充实期也有类似现象[16]。种仁钾与饱和脂肪酸总量极显著正相关,这也与核桃的研究相似[18]。山核桃种仁高油脂特性与喜钾的特性有一定关系,钾能显著提高叶片的净光合速率[12],提高功能叶中磷酸蔗糖合成酶的活性,增加可溶性糖的供应,加速糖类物质向果实中的运转[30]。氮、钾是山核桃果实发育过程中最重要的矿质营养,种仁氮、钾与脂肪酸组分的相关性最高;丰产优质栽培建议施好果实膨大肥。

Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return