-
种子活力(seed vigor)是判定种子质量的重要依据,与农、林、园艺等生产息息相关,对农林业发展具有重要意义[1]。19世纪的德国种子检查方法中已经有发芽速度、发芽速力、发芽力、生长力、种子大小等表示种子活力高低的检测项目。1950年,国际种子检验协会(International Seed Testing Association, ISTA)和北美官方种子分析家协会(North American Association of Official Seed Analysts, AOSA)组织成立了ISTA活力测定委员和AOSA活力委员会,这两大委员会负责总结全世界国家的种子活力测定成果。1980年发行的《种子活力测定方法手册》概述了低温测定方法、电导率测定等8种种子活力测定方法[2]。1982年中国学者[3]开始了种子活力的探索,通过发芽生理法测定白菜Brassica pekinensis、菜豆Phaseolus vulgaris、萝卜 Raphanus sativus等种子的活力。1996年,通过电导率等多项指标对湿地种子进行活力探测[4]。2001年第1次将机器视觉技术[5]引入农作物种子质量检验中,开启了无损检测的尝试。在之后的10 a里,种子活力检测研究逐步引入激光散斑技术、超微弱发光法、高光谱成像技术、电导法检测技术、电子鼻探测技术等新型技术。这些检测方法具有操作简单、检测速度快、准确率高和无损等优势,随着种子检测技术领域的不断拓展,将成为种子活力测定的新方向。
HTML
[1] | GUAN Y J, HU J, WANG Z F. Time series regression analysis between changes in kernel size and seed vigor during developmental stage of sh2 weet corn (Zea mays L.) seeds[J]. Sci Hortic, 2013, 154(): 25-30. | |
[2] | CAMPBELL M R, SYKES J, GLOVER D V. Classification of single-and double-mutant corn endosperm genotypes by near-infrared transmittance spectroscopy[J]. Cereal Chem, 2000, 77(6): 774-778. | |
[3] | 顾增辉, 徐本美, 郑光华. 测定种子活力方法之探讨(Ⅱ)发芽的生理测定法[J]. 种子, 1982, 1(3): 11-17. | GU Zenghui, XU Benmei, ZHENG Guanghua. Discussion on the method of measuring seed vigor (Ⅱ) physiological determination of germination[J]. Seed, 1982, 1(3): 11-17. |
[4] | 李淑娴, 陈幼生, 吴琼美. 湿地松种子活力测定方法的研究[J]. 南京林业大学学报, 1996, 20(3): 16-19. | LI Shuxian, CHEN Yousheng, WU Qiongmei. A study on seed vigor index of slash pine[J]. J Nanjing For Univ, 1996, 20(3): 16-19. |
[5] | 成芳, 应义斌. 机器视觉技术在农作物种子质量检验中的应用研究进展[J]. 农业工程学报, 2001, 17(6): 175-179. | CHENG Fang, YING Yibin. Application of machine vision to quality evaluation of agricultural seed resources[J]. Transac CSAE, 2001, 17(6): 175-179. |
[6] | 林敏, 吕进. 基于神经网络与近红外光谱的玉米成分检测方法[J]. 红外技术, 2004, 26(3): 78-81. | LIN Min, LÜ Jin. Determination on components of corns based on neural networks and near infrared spectrum[J]. Infrared Technol, 2004, 26(3): 78-81. |
[7] | ALAMERY M, GENEVE R L, SANCHES M F. Near-infrared spectroscopy used to predict soybean seed germination and vigour[J]. Seed Sci Res, 2018, 28(3): 245-252. | |
[8] | 尹淑欣, 杨冬风, 汪秀志. 近红外光谱技术在玉米种子活力检测中的应用研究[J]. 现代农业科技, 2015, (13): 20-21. | YIN Shuxin, YANG Dongfeng, WANG Xiuzhi. Application study of near infrared spectroscopy technology in maize seed vigor detection[J]. Modern Agric Technol, 2015, (13): 20-21. |
[9] | 李晋华, 杨志良, 王召巴. 近红外漫透射技术检测玉米成分[J]. 红外技术, 2013, 35(11): 732-736. | LI Jinhua, YANG Zhiliang, WANG Zhaoba. The corn content measurement with near infrared diffuse transmission[J]. Infrared Technol, 2013, 35(11): 732-736. |
[10] | 时伟芳, 谢宗铭, 杨丽明. 基于近红外光谱技术的春小麦单粒种子活力鉴定[J]. 麦类作物学报, 2016, 36(2): 200-205. | SHI Weifang, XIE Zongming, YANG Liming. Identification of single seed vigor of spring wheat based on near-infrared spectroscopy[J]. J Triticeae Crops, 2016, 36(2): 200-205. |
[11] | 白京, 彭彦昆, 王文秀. 基于可见近红外光谱玉米种子活力的无损检测方法[J]. 食品安全质量检测学报, 2016, 7(11): 4472-4477. | BAI Jing, PENG Yankun, WANG Wenxiu. Discrimination of vitality of maize seeds based on near visible infrared spectroscopy[J]. J Food Saf Qual, 2016, 7(11): 4472-4477. |
[12] | 李武, 李妍, 李高科. 高温老化下甜玉米种子活力近红外光谱检测技术研究[J]. 核农学报, 2018, 32(8): 1611-1618. | LI Wu, LI Yan, LI Gaoke. Seed vigor detection of sweet corn by near infrared spectroscopy under high temperature stress[J]. J Nucl Agric Sci, 2018, 32(8): 1611-1618. |
[13] | 洪添胜, 乔军, WANGNing. 基于高光谱图像技术的雪花梨品质无损检测[J]. 农业工程学报, 2007, 23(2): 151-155. | HONG Tiansheng, QIAO Jun, WANG Ning. Non-destructive inspection of Chinese pear quality based on hyperspectral imaging technique[J]. Transac CSAE, 2007, 23(2): 151-155. |
[14] | ALEXANDRE J, DRANSKI J A L, de MALAVASI M M. Carbon dioxide quantified by the infrared in evaluation of respiratory activity of wheat seeds[J]. Revista Ceres, 2017, 64(5): 507-515. | |
[15] | 李美凌, 邓飞, 刘颖. 基于高光谱图像的水稻种子活力检测技术研究[J]. 浙江农业学报, 2015, 27(1): 1-6. | LI Meiling, DENG Fei, LIU Ying. Study on detection technology of rice seed vigor based on hyperspectral image[J]. Acta Agric Zhejiang, 2015, 27(1): 1-6. |
[16] | 许思, 赵光武, 邓飞. 基于高光谱的水稻种子活力无损分级检测[J]. 种子, 2016, 35(4): 34-40. | XU Si, ZHAO Guangwu, DENG Fei. Research on detection technology of rice seed vigor based on hyperspectral[J]. Seed, 2016, 35(4): 34-40. |
[17] | 吴小芬, 赵光武, 祁亨年. 高光谱技术在常规水稻种子活力检测中的应用[J]. 安徽农业科学, 2017, 45(29): 12-14. | WU Xiaofen, ZHAO Guangwu, QI Hengnian. Inspect rice seed bigor of conventional rice by hyperspectral imaging with chemometric methods[J]. J Anhui Agric, 2017, 45(29): 12-14. |
[18] | 彭彦昆, 赵芳, 白京. 基于图谱特征的番茄种子活力检测与分级[J]. 农业机械学报, 2018, 49(2): 327-333. | PENG Yankun, ZHAO Fang, BAI Jing. Detection and classification of tomato seed vitality based on image processing[J]. Trans Chin Soc Agric Mach, 2018, 49(2): 327-333. |
[19] | 尤佳.基于高光谱图像的脱绒棉种活力检测方法研究[D].石河子: 石河子大学, 2017. | YOU Jia. The Detection Method Research on Delinted Cotton Seeds' Vigorbased on Hyperspectral Imaging[D]. Shihezi: Shihezi University, 2017. |
[20] | LI Huanhuan, LU Wei, DU Changwen. Study on rapid nondestructive detection of rice vigor based on photoacoustic spectroscopy combined with LS-SVR[J]. China Laser, 2015, 42(11): 1-10. | |
[21] | 吴德新, 沈锡华. 激光散斑无损检测技术的研究[J]. 机电产品开发与创新, 2008, 21(2): 125-126. | WU Dexin, SHEN Xihua. The research of laser shearography in NDT[J]. Develop Innov Mach Electr Prod, 2008, 21(2): 125-126. |
[22] | BRAGA R A, FABBRO I M D, BORÉM F M. Assessment of seed viability by laser speckle techniques[J]. Biosyst Eng, 2003, 86(3): 287-294. | |
[23] | 冯能云.激光散斑信号处理方法研究[D].武汉: 华中科技大学, 2012. | FENG Nengyun. Research on the Laser Speckle Signal Processing Method[D]. Wuhan: Huazhong University of Science and Technology, 2012. |
[24] | MOREIRA J, CARDOSO R R, BRAGA R A. Quality test protocol to dynamic laser speckle analysis[J]. Opt Lasers Eng, 2014, 61(): 8-13. | |
[25] | 王凤鹏, 曾全荣, 叶尚臣. 基于激光散斑的大豆活力检测实验研究[J]. 应用激光, 2013, 33(4): 452-455. | WANG Fengpeng, ZENG Qianrong, YE Shangchen. Experiments of soybean vitality detection using laser speckle[J]. Appl Laser, 2013, 33(4): 452-455. |
[26] | 赵瑛琦, 肖江. 基于时间对比分析法的散斑种子活力检测[J]. 南方农业, 2017, 11(24): 116-120. | ZHAO Yingqi, XIAO Jiang. Speckle seed vigor detection based on time contrast analysis[J]. South China Agric, 2017, 11(24): 116-120. |
[27] | JALINK H, LIMARE A, van der SCHOOR R. Chlorophyll fluorescence of the testa of brassica oleracea seeds as an indicator of seed maturity and seed quality and seed quality[J]. Sci Agric, 1998, 55(): 88-93. | |
[28] | JALINK H, van der SCHOOR R, LIMARE A. Chlorophyll fluorescence of Brassica oleracea seeds as a non-destructive marker for seed maturity and seed performance[J]. Seed Sci Res, 1998, 8(4): 7-. doi: 10.1017/S0960258500004402 | |
[29] | KENANOLU B B. Chloriphyll fluorescence sorting metheod to improve quality of capsicum pepper seed lost produced from different maturity fruits[J]. HortScience, 2013, 48(8): 965-968. | |
[30] | DELEURAN L, OLESEN M H, BOELT B. Spinach seed quality: potential for combining seed size grading and chlorophyll fluorescence sorting[J]. Seed Sci Res, 2013, 23(4): 271-278. | |
[31] | 丁晶, 周志尊, 李帅三. 医用红外线热成像技术的物理学原理探析[J]. 中国医疗设备, 2010, 25(7): 68-70. | DING Jing, ZHOU Zhizun, LI Shuaisan. Analysis to the physics theory of medical infrared thermal imaging technology[J]. China Med Devices, 2010, 25(7): 68-70. |
[32] | KRANNER I, KASTBERGER G, HARTBAUER M. Noninvasive diagnosis of seed viability using infrared thermography[J]. Proc Nat Acad Sci, 2010, 107(8): 3912-3917. | |
[33] | 杨冬风. 基于软X-射线造影和机器智能的玉米种子活力检测方法研究[J]. 作物杂志, 2013, (3): 136-140. | YANG Dongfeng. Research on detection method of maize vigor based on soft X-ray and computer intelligence[J]. Crops, 2013, (3): 136-140. |
[34] | 李勤. 生物系统的发光原理及其应用[J]. 生命科学仪器, 2004, 2(4): 33-37. | LI Qin. Principle of bioloum in escence and its application[J]. Life Sci Instrum, 2004, 2(4): 33-37. |
[35] | 章华仙.水稻种子活力、生活力检测方法及计算机视觉的应用研究[D].杭州: 浙江大学, 2007. | ZHANG Huaxian. Research on Vigor, Viability Testing Methods of Rice(Oryza sativa L.) Seed and Computer Vision Application[D]. Hangzhou: Zhejiang University, 2007. |
[36] | 陈文利, 邢达, 何永红. 用超弱化学发光法快速测定不同老化程度水稻种子的活力[J]. 植物学报, 2002, 44(11): 1376-1379. | CHEN Wenli, XING Da, HE Yonghong. Determination the vigor of rice seed with different degrees of aging with ulltraweak chemiluminescence during early imbibition[J]. Actor Bot Sin, 2002, 44(11): 1376-1379. |
[37] | 张婷婷, 赵宾, 杨丽明. 基于电子鼻技术的小麦种子活力鉴别[J]. 中国农业大学学报, 2018, 23(9): 123-130. | ZHANG Tingting, ZHAO Bin, YANG Liming. Determination of wheat seeds vigor based on electronic[J]. J China Agric Univ, 2018, 23(9): 123-130. |
[38] | 伟利国, 张小超, 赵博. 电子鼻技术及其在小麦活性检测中的应用[J]. 农机化研究, 2010, 32(6): 150-152. | WEI Liguo, ZHANG Xiaochao, ZHAO Bo. The network architecture of farm management system based on RFID & WSN integration[J]. J Agric Mech Res, 2010, 32(6): 150-152. |
[39] | ZHANG Tingting, SUN Qun, YANG Lei. Vigor detection of sweet corn seeds by optimal sensor array based on electronic nose[J]. Trans Chin Soc Agric Eng, 2017, 33(21): 275-281. | |
[40] | SILVA S S D, VIEIRA R D, de GRZYBOWSKI C R S. Electrical conductivity of different common bean seeds genotypes[J]. J Seed Sci, 2012, 35(2): 216-224. | |
[41] | MONCALEANO-ESCANDON J, SILVA B C F, SANTOS S R. Germination responses of Jatropha curcas L. seeds to storage and aging[J]. Ind Crops Prod, 2013, 44(): 684-690. | |
[42] | 张文明, 郑文寅, 任冲. 电导法测定大豆种子活力的初步研究[J]. 种子, 2003, 22(2): 34-38. | ZHANG Wenming, ZHENG Wenyin, REN Chong. Study on testing method of seed vigor by electrical conductivity in soybean[J]. Seed, 2003, 22(2): 34-38. |
[43] | 段永红, 李小湘, 李卫红. 利用电导法测定杂交水稻种子活力的探讨[J]. 湖南农业科学, 2010, (23): 17-19. | DUAN Yonghong, LI Xiaoxiang, LI Weihong. Determination of seed activity of hybrid rice by conductivity method[J]. Hunan Agri Sci, 2010, (23): 17-19. |
[44] | 朱银, 颜伟, 杨欣. 电导法测定小麦种子活力[J]. 江苏农业科学, 2014, 42(9): 78-80. | ZHU Yin, YAN Wei, YANG Xin. Determination of vigor of wheat seed by conductance method[J]. Jiangsu Agric Sci, 2014, 42(9): 78-80. |
[45] | RAO R G S, SINGH P M, RAI M. Storability of onion seeds and effects of packaging and storage conditions on viability and vigour[J]. Sci Hortic, 2006, 110(1): 1-6. | |
[46] | DEMIRKAYA M. Relationships between antioxidant enzymes and physiological variationsoccur during ageing of pepper seeds[J]. Hortic Environ Biotechnol, 2013, 54(2): 97-102. | |
[47] | 李俊周, 李梦琪, 刘磊. 水稻种子H2O2流速和种子活力的关系研究[J]. 华北农学报, 2017, 32(4): 189-194. | LI Junzhou, LI Mengqi, LIU Lei. Study on the relationship between H2O2 velocity and seed vigor of rice seeds[J]. Acta Agric Boreali-Sin, 2017, 32(4): 189-194. |
[48] | AGELET L E, HURBURGH C R. Limitations and current applications of near infrared spectroscopy for single seed analysis[J]. Talanta, 2014, 121(): 288-299. | |
[49] | 潘霞, 谭会君. 计算机视觉技术在玉米种子自动检测中的应用[J]. 农机化研究, 2019, 41(3): 228-231. | PAN Xia, TAN Huijun. Application of computer vision technology in maize seed automatic detection[J]. J Agric Mech Res, 2019, 41(3): 228-231. |
[50] | 彭顺正, 尤佳, 李景彬. 脱绒棉种活力检测系统的设计与实现[J]. 农机化研究, 2017, 39(8): 66-71. | PENG Shunzheng, YOU Jia, LI Jingbin. Software design of the testing system for the dynamic test of the cotton seed[J]. J Agric Mech Res, 2017, 39(8): 66-71. |
[51] | 全胜.基于机器视觉的蔬菜种子质量检测系统的设计与实现[D].长沙: 湖南大学, 2017. | QUAN Sheng. Design and Realization of Vegetable Seed Quality Inspection System Based on Machine Vision [D]. Changsha: Hunan University, 2017. |
[52] | 叶凤林, 李琳, 杨丽明. 基于机器视觉的黄芩种子精选技术研究[J]. 种子, 2016, 35(11): 100-104. | YE Fenglin, LI Lin, YANG Liming. Scutellaria baicalensis Georgi seeds selection based on machine vision[J]. Seed, 2016, 35(11): 100-104. |
[53] | 刘敏洁, 许昍, 王建华. 基于人工神经网络和二元逻辑回归的甜玉米种子生活力检测模型研究[J]. 中国农业大学学报, 2018, 23(7): 1-10. | LIU Minjie, XU Xuan, WANG Jianhua. Seed viability testing model of sweet corn based on artificial neural network and binary logistic regression[J]. J China Agric Univ, 2018, 23(7): 1-10. |
[54] | 李振, 廖同庆, 冯青春. 基于图像处理技术的黄瓜种子活力指数检测系统设计[J]. 种子, 2015, 34(6): 111-115. | LI Zhen, LIAO Tongqing, FENG Qingchun. A system design on cucumber seed vigor index detection based on image processing[J]. Seed, 2015, 34(6): 111-115. |
[55] | 李振, 廖同庆, 冯青春. 基于机器视觉的蔬菜种子活力指数检测算法研究及系统实现[J]. 浙江农业学报, 2015, 27(12): 2218-2224. | LI Zhen, LIAO Tongqing, FENG Qingchun. Study on vegetable seed vigor index detection algorithm and system realization based on machine vision[J]. Acta Agric Zhejiang, 2015, 27(12): 2218-2224. |
[56] | 余波, 杜尚广, 罗丽萍. 种子活力测定方法[J]. 中国科学:生命科学, 2015, 45(7): 709-713. | YU Bo, DU Shangguang, LUO Liping. Progress in determinations of seed vigor[J]. Sci Sin Vitae, 2015, 45(7): 709-713. |
[57] | 宋乐, 王琦, 王纯阳. 基于近红外光谱的单粒水稻种子活力快速无损检测[J]. 粮食储藏, 2015, 44(1): 20-23. | SONG Le, WANG Qi, WANG Chunyang. Qualitative analysis of single rice seed vigor using near infrared reflectance spectroscopy[J]. Grain Storage, 2015, 44(1): 20-23. |
[58] | 陈兵旗, 吴召恒, 李红业. 机器视觉技术的农业应用研究进展[J]. 科技导报, 2018, 36(11): 54-65. | CHEN Bingqi, WU Zhaoheng, LI Hongye. Research of machine vision technology in agricultural application: today and the future[J]. Sci Technol Rev, 2018, 36(11): 54-65. |
[59] | 王佩斯, 毕昆. 基于激光散斑检测玉米种子活力方法的研究[J]. 应用激光, 2011, 31(6): 473-477. | WANG Peisi, BI Kun. Researching about the corn dynamic information by laser speckle[J]. Appl Laser, 2011, 31(6): 473-477. |
[60] | 杨冬风, 尹淑欣, 姜丽. 玉米种子活力近红外光谱智能检测方法研究[J]. 核农学报, 2013, 27(7): 957-961. | YANG Dongfeng, YIN Shuxin, JIANG Li. Research on maize vigor intelligent detection based on near infrared spectroscopy[J]. J Nucl Agric Sci, 2013, 27(7): 957-961. |
[61] | 沈广辉, 刘贤, 张月敬. 基于在线近红外光谱快速检测玉米籽粒主要品质参数的研究[J]. 中国畜牧杂志, 2017, 53(1): 105-109. | SHEN Guanghui, LIU Xian, ZHANG Yuejing. Rapid determination of main grain quality parameters of maize based on online near infrared spectroscopy[J]. Chin J Anim Sci, 2017, 53(1): 105-109. |
[62] | 杜尚广.基于近红外光谱技术快速评价芸苔属种子活力[D].南昌: 南昌大学, 2014. | DU Shangguang. Rapid Assessment of Seed Vigor of Brassica Based on Near Infrared Spectroscopy[D]. Nanchang: Nanchang University, 2014. |
[63] | 韩亮亮, 毛培胜, 王新国. 近红外光谱技术在燕麦种子活力测定中的应用研究[J]. 红外与毫米波学报, 2008, 27(2): 86-89. | HAN Liangliang, MAO Peisheng, WANG Xinguo. Study on vigour test of oat seeds with near infrared reflectance spectroscopy[J]. J Infrared Millim Waves, 2008, 27(2): 86-89. |
[64] | 潘雪峰.基于光学无损检测的蔬菜种子分选系统研究与设计[D].太原: 太原理工大学, 2017. | PAN Xuefeng. Reseach and Design of Vegetable Seeds Sorting System Based on Optical Nondestructive Testing[D]. Taiyuan: Taiyuan University of Technology, 2017. |