-
自工业革命以来,人类大量使用化石燃料及改变土地利用方式等过程驱动大气二氧化碳(CO2)不断升高,导致大气CO2由280 μmol·mol−1上升至目前410 μmol·mol−1,涨幅约46%。按照这一涨幅,预计21世纪末大气CO2将超过700 μmol·mol−1[1]。大气CO2等气体的持续升高将会对各个生态系统产生深远影响,尤其是全球碳的转化与平衡。陆地土壤碳库是地球表面最大的碳储存场所,比植被和大气碳库的总和还要多,其有机碳的储存量约1 200~1 600 Pg,全球0~30 cm土层的有机碳为684~724 Pg,0~1 m土层碳为1 462~1 548 Pg[2]。土壤有机碳(SOC)能够提供植物生长需要的营养元素,有效改善土壤的质量和提高土壤的蓄水保肥能力,因此,SOC是土壤质量和农艺可持续性的重要指标。根据土壤有机碳库的周转速度及对外界因素的敏感程度,可将其分为惰性有机碳库和活性有机碳库,其中活性有机碳库包括可溶性碳(DOC)、微生物量碳(MBC)、轻组有机碳(LFOC)和可矿化碳(MC)等[3]。评价SOC的指标包括碳含量、化学结构组成、分解速率、SOC稳定性等[4],其中碳含量、化学组成结构等目前已有精准的检测方法,分解速率的测定由于高空间异质性、高背景水平、土壤采样策略、采样后处理和较短的实验时间等原因,并不十分准确。SOC稳定性取决于SOC不同组分的构成及其与环境的相互作用,不同土壤中的SOC组分和来源不尽相同且变数很大。目前,有关SOC稳定性的研究逐渐增多,但大气CO2升高对SOC稳定性的影响及其机制研究相对较少。土壤有机碳稳定性指SOC的可矿化性[5],是SOC结构和特定环境的综合反应,是在当前条件下抵抗干扰和恢复原有水平的能力。它是由土壤的理化生物性质所决定的,是自然和人为因素共同作用的结果[6]。大气中CO2与SOC间的转化与平衡是相互影响的,CO2是植物光合作用的原料,大气CO2升高,植物的光合作用会相应地增强,改变植物的生长发育过程,植物地上地下部分的生物量增加,从而提高了土壤中光合有机碳的输入,使土壤成为潜在的碳汇[7]。此外,植物地下部分增加分泌的生物量也会为微生物的生长提供能量,使微生物的活动更加活跃,呼吸作用增强,可能会导致SOC含量有所下降[8]。大气CO2升高改变SOC含量的同时,还可能改变SOC的可矿化性,从而间接影响植物的生长。然而,目前的相关研究主要关注大气CO2升高对SOC储量、化学结构组成、分解速率等的影响,较少涉及其对稳定性的影响研究。因此,本研究基于现有的研究成果,利用多种有机碳稳定性指标来讨论大气CO2升高以及CO2和外源氮交互作用对SOC稳定性的影响,探讨大气CO2升高对SOC稳定性影响的主要机制及时间尺度效应,以期对相关领域的研究起到一定的推动作用。
HTML
[1] | IPCC. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2013. | |
[2] | BATJES N H. Total carbon and nitrogen in the soils of the world [J]. Eur J Soil Sci, 1996, 47(2): 151 − 163. | |
[3] | 何姗, 刘娟, 姜培坤, 等. 经营管理对森林土壤有机碳库影响的研究进展[J]. 浙江农林大学学报, 2019, 36(4): 818 − 827. | HE Shan, LIU Juan, JIANG Peikun, et al. Effects of forest management on soil organic carbon pool: a review [J]. J Zhejiang A&F Univ, 2019, 36(4): 818 − 827. |
[4] | CARRILLO C, DIJKSTRA F, LECAIN D, et al. Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria [J]. Ecol Lett, 2018, 21(11): 1639 − 1648. | |
[5] | PLANTE A F, FERNÁNDEZ J M, HADDIX M L, et al. Biological, chemical and thermal indices of soil organic matter stability in four grassland soils [J]. Soil Biol Biochem, 2011, 43(5): 1051 − 1058. | |
[6] | 吴庆标, 王效科, 郭然. 土壤有机碳稳定性及其影响因素[J]. 土壤通报, 2005, 36(5): 743 − 747. | WU Qingbiao, WANG Xiaoke, GUO Ran. Soil organic carbon stability and influencing factors [J]. Chin J Soil Sci, 2005, 36(5): 743 − 747. |
[7] | 邢军会, 倪红伟, 王建波. 二氧化碳浓度升高与氮沉降对三江平原小叶章群落生物量累积及其分配格局的影响[J]. 中国农学通报, 2011, 27(13): 49 − 54. | XING Junhui, NI Hongwei, WANG Jianbo. Effects of elevated CO2 concentration and N deposition on plant biomass accumulation and allocation in the communities of Deyeuxia angustifolia in Sanjiang Plain [J]. Chin Agric Sci Bull, 2011, 27(13): 49 − 54. |
[8] | FONTAINE S, BARDOUX G, ABBADIE L, et al. Carbon input to soil may decrease soil carbon content [J]. Ecol Lett, 2004, 7(4): 314 − 320. | |
[9] | BHATTACHARYA S S, KIM K H, DAS S, et al. A review on the role of organic inputs in maintaining the soil carbon pool of the terrestrial ecosystem [J]. J Environ Manage, 2016, 167: 214 − 227. | |
[10] | MARHAN S, DEMIN D, ERBS M, et al. Soil organic matter mineralization and residue decomposition of spring wheat grown under elevated CO2 atmosphere [J]. Agric Ecosyst Environ, 2008, 123(1/3): 63 − 68. | |
[11] | 刘娟, 韩勇, 蔡祖聪, 等. FACE系统处理3年后淹水条件下土壤CH4和CO2排放变化[J]. 生态学报, 2007, 27(6): 19 − 20. | LIU Juan, HAN Yong, CAI Zucong, et al. Changes of CH4 and CO2 emissions from soils under flooded condition after exposed to FACE (free-air CO2 enrichment) for three years [J]. Acta Ecol Sin, 2007, 27(6): 19 − 20. |
[12] | 陈栋, 郁红艳, 邹路易, 等. 大气CO2浓度升高对不同层次水稻土有机碳稳定性的影响[J]. 应用生态学报, 2018, 29(8): 2559 − 2565. | CHEN Dong, YU Hongyan, ZOU Luyi, et al. Effects of elevated atmospheric CO2 concentration on the stability of soil organic carbon in different layers of a paddy soil [J]. Chin J Appl Ecol, 2018, 29(8): 2559 − 2565. |
[13] | TANEVA L, GONZALEZ-MELER M A. Decomposition kinetics of soil carbon of different age from a forest exposed to 8 years of elevated atmospheric CO2 concentration [J]. Soil Biol Biochem, 2008, 40(10): 2670 − 2677. | |
[14] | 聂阳意, 王海华, 李晓杰, 等. 武夷山低海拔和高海拔森林土壤有机碳的矿化特征[J]. 应用生态学报, 2019, 28(3): 748 − 756. | NIE Yiyang, WANG Haihua, LI Xiaojie, et al. Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi Mountains, southeastern China [J]. Chin J Appl Ecol, 2019, 28(3): 748 − 756. |
[15] | 康熙龙. 生物质炭施用对土壤有机碳矿化和分配及团聚体组成的影响[D]. 南京: 南京农业大学, 2015. | KANG Xilong. Effects of Bllochar Amendment on Soil Organic Carbon Minerazation and Soil Aggregate Distribution and Organic Carbon Composition[D]. Nanjing: Nanjing Agricultural University, 2015. |
[16] | 龙凤玲, 李义勇, 方熊, 等. 大气CO2浓度上升和氮添加对南亚热带模拟森林生态系统土壤碳稳定性的影响[J]. 植物生态学报, 2014, 38(10): 1053 − 1063. | LONG Fengling, LI Yiyong, FANG Xiong, et al. Effects of elevated CO2 concentration and nitrogen addition on soil carbon stability in southern subtropical experimental forest ecosystems [J]. Chin J Plant Ecol, 2014, 38(10): 1053 − 1063. |
[17] | 赵光影, 刘景双, 王洋, 等. CO2浓度升高对三江平原湿地活性有机碳及土壤微生物的影响[J]. 地理与地理信息科学, 2011, 27(2): 96 − 100. | ZHAO Guangying, LIU Jingshuang, WANG Yang, et al. Effects of elevated CO2 concentration on active carbon in Sanjiang Plain freshwater marsh [J]. Geogr Geo-Inf Sci, 2011, 27(2): 96 − 100. |
[18] | PROCTER A C, GILL R A, FAY P A, et al. Soil carbon responses to past and future CO2 in three Texas prairie soils [J]. Soil Biol Biochem, 2015, 83: 66 − 75. | |
[19] | BUTTERLY C R, PHILLIPS L A, WILTSHIRE J L, et al. Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils [J]. Soil Biol Biochem, 2016, 97: 157 − 167. | |
[20] | XU Qiao, JIN Jian, WANG Xiaojun, et al. Susceptibility of soil organic carbon to priming after long-term CO2 fumigation is mediated by soil texture [J]. Sci Total Environ, 2019, 657: 1112 − 1120. | |
[21] | CHEN Xiaomei, LIU Juxiu, DENG Qi, et al. Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest [J]. Plant Soil, 2012, 357(1/2): 25 − 34. | |
[22] | HOFMOCKEL K S, ZAK D R, MORAN K K, et al. Changes in forest soil organic matter pools after a decade of elevated CO2 and O3 [J]. Soil Bio Biochem, 2011, 43(7): 1518 − 1527. | |
[23] | ZHANG Jing, TANG Xuli, HE Xinhua, et al. Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: potential consequences for soil carbon accumulation [J]. Soil Biol Biochem, 2015, 83: 142 − 149. | |
[24] | KEIDEL L, LENHART K, MOSER G, et al. Depth-dependent response of soil aggregates and soil organic carbon content to long-term elevated CO2 in a temperate grassland soil [J]. Soil Biol Biochem, 2018, 123: 145 − 154. | |
[25] | WU Qicong, ZHANG Congzhi, YU Zhenghong, et al. Effects of elevated CO2 and nitrogen addition on organic carbon and aggregates in soil planted with different rice cultivars [J]. Plant Soil, 2018, 432(1/2): 245 − 258. | |
[26] | 关松, 窦森, 张大军, 等. 土壤腐殖质组成对大气二氧化碳浓度升高的响应[J]. 水土保持学报, 2006, 20(5): 186 − 188. | GUAN Song, DOU Sen, ZHANG Dajun, et al. Responses of fractions of soil humus to free-air CO2 enrichment [J]. J Soil Water Conserv, 2006, 20(5): 186 − 188. |
[27] | HU Zhengkun, ZHU Chunwu, CHEN Xiaoyun, et al. Responses of rice paddy micro-food webs to elevated CO2 are modulated by nitrogen fertilization and crop cultivars [J]. Soil Biol Biochem, 2017, 114: 104 − 113. | |
[28] | 陈婧, 陈法军, 刘满强, 等. 温度和CO2浓度升高下转Bt水稻种植对土壤活性碳氮和线虫群落的短期影响[J]. 生态学报, 2014, 34(6): 1481 − 1489. | CHEN Jing, CHEN Fajun, LIU Manqiang, et al. Short-term effects of CO2 concentration elevation, warming and transgenic Bt rice cropping on soil labile organic carbon and nitrogen, and nematode communities [J]. Acta Ecol Sin, 2014, 34(6): 1481 − 1489. |
[29] | 付琳琳. 生物质炭施用下稻田土壤有机碳组分、腐殖质组分及团聚体特征研究[D]. 南京: 南京农业大学, 2013. | FU Linlin. The Study of Characteristics of Paddy Soil Organic Carbon Fractions, Huminstruvture and Aggregates under Different Biochar Amendments[D]. Nanjing: Nanjing Agricultural University, 2013. |
[30] | 赵亚南. 长期不同施肥下紫色水稻土有机碳变化特征及影响机制[D]. 重庆: 西南大学, 2016. | ZHAO Yanan. Characteristic and Mechanism of Organic Carbon Sequestration of Purple Paddy Soil under Long-Term Fertilization[D]. Chongqing: Southwest University, 2016. |
[31] | 陈栋. 稻田土壤有机碳稳定性对大气CO2浓度升高的响应研究[D]. 无锡: 江南大学, 2018. | CHEN Dong. Response of Soil Organic Carbon Stability under Atmospheric CO2 Concentration in a Paddy Field[D]. Wuxi: Jiangnan University, 2018. |
[32] | CONEN F, ZIMMERMANN M, LEIFELD J, et al. Relative stability of soil carbon revealed by shifts in δ15 N and C∶N ratio [J]. Biogeosciences, 2008, 4(4): 123 − 128. | |
[33] | CLERCQ T D, HEILING M, DERCON G, et al. Predicting soil organic matter stability in agricultural fields through carbon and nitrogen stable isotopes [J]. Soil Biol Biochem, 2015, 88: 29 − 38. | |
[34] | INUBUSHI K, CHENG W, MIZUNO T, et al. Microbial biomass carbon and methane oxidation influenced by rice cultivars and elevated CO2 in a Japanese paddy soil [J]. Eur J Soil Sci, 2011, 62(1): 69 − 73. | |
[35] | AL-MALIKI S, JONES D L, GODBOLD D L, et al. Elevated CO2 and tree species affect microbial activity and associated aggregate stability in soil amended with litter[J]. Forests, 2017, 8(3): 70. doi: 10.3390/f8030070. | |
[36] | YIQI L, BO S, CURRIE W S, et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide [J]. Bioscience, 2004, 54(8): 731 − 739. | |
[37] | CHENG Yi, ZHANG Jinbo, ZHU Jianguo, et al. Ten years of elevated atmospheric CO2 doesn’t alter soil nitrogen availability in a rice paddy [J]. Soil Biol Biochem, 2016, 98: 99 − 108. | |
[38] | 陈娜, 刘毅, 肖谋良, 等. CO2倍增和施氮对水稻不同生长期土壤反硝化细菌丰度的影响[J]. 环境科学研究, 2019, 32(4): 683 − 691. | CHEN Na, LIU Yi, XIAO Mouliang, et al. Effect of elevated CO2 and nitrogen application on the abundance of soil denitrifying bacteria in different growth stages of rice [J]. Res Environ Sci, 2019, 32(4): 683 − 691. |
[39] | USYSKIN-TONNE A, HADAR Y, YERMIYAHU U, et al. Elevated CO2 has a significant impact on denitrifying bacterial community in wheat roots[J]. Soil Biol Biochem, 2019, 142: 107697. doi: 10.1016/j. soilbio. 2019.107697. | |
[40] | 樊后保, 袁颖红, 王强, 等. 氮沉降对杉木人工林土壤有机碳和全氮的影响[J]. 福建林学院学报, 2007, 27(1): 1 − 6. | FAN Houbao, YUAN Yinghong, WANG Qiang, et al. Effects of nitrogen deposition on soil organic carbon and total nitrogen beneath Chinese fir plantations [J]. J Fujian Coll For, 2007, 27(1): 1 − 6. |
[41] | 邵兴华, 王爱斌. 施氮对水田和旱地有机碳和黑炭的影响[J]. 浙江农林大学学报, 2014, 31(4): 554 − 559. | SHAO Xinghua, WANG Aibin. Organic carbon and black carbon with fertilization in paddy and upland soils [J]. J Zhejiang A&F Univ, 2014, 31(4): 554 − 559. |
[42] | YAN Guoyong, XING Yajuan, WANG Jianyu, et al. Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China: effects of nitrogen deposition [J]. Agric For Meteorol, 2018, 248: 70 − 81. | |
[43] | PATERSON E, THORNTON B, MIDWOOD A J, et al. Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources [J]. Soil Biol Biochem, 2008, 40(9): 2434 − 2440. | |
[44] | ZHAO Guangying, LIU Jingshuang. Effects of elevated CO2 concentration on biomass and active organic carbon of freshwater marsh after two growing seasons in Sanjiang Plain, Northeast of China [J]. J Environ Sci, 2009, 21(10): 1393 − 1399. | |
[45] | 寇太记, 朱建国, 谢祖彬, 等. 大气CO2浓度升高和氮肥水平对麦田土壤有机碳更新的影响[J]. 土壤学报, 2009, 46(3): 459 − 465. | KOU Taiji, ZHU Jianguo, XIE Zubin, et al. Effect of elevated atmospheric pCO2 and nitrogen level on replacement rate of soil organic carbon in winter wheat field [J]. Acta Pedol Sin, 2009, 46(3): 459 − 465. |
[46] | WANG Xiaoguo, LI Changsheng, LUO Yong, et al. The impact of nitrogen amendment and crop growth on dissolved organic carbon in soil solution [J]. J Mt Sci, 2016, 13: 95 − 103. | |
[47] | 肖列, 刘国彬, 张娇阳, 等. CO2浓度升高、干旱胁迫和氮沉降对白羊草光响应曲线的影响[J]. 草地学报, 2016, 24(1): 69 − 75. | XIAO Lie, LIU Guobin, ZHANG Jiaoyang, et al. Effects of elevated CO2, drought stress and nitrogen deposition on photosynthesis light response curves of Bothriochloa ischaemum [J]. Acta Agrestia Sin, 2016, 24(1): 69 − 75. |
[48] | 任逸文, 肖谋良, 袁红朝, 等. 水稻光合碳在植物-土壤系统中的分配及其对CO2升高和施氮的响应[J]. 应用生态学报, 2018, 29(5): 1397 − 1404. | REN Yiwen, XIAO Mouliang, YUAN Hongchao, et al. Allocation of rice photosynthates in plant-soil system in response to elevated CO2 and nitrogen fertilization [J]. Chin J Appl Ecol, 2018, 29(5): 1397 − 1404. |
[49] | ZUO Xiaoan, KNOPS J M H. Effects of elevated CO2, increased nitrogen deposition, and plant diversity on aboveground litter and root decomposition[J]. Ecosphere, 2018, 9(2): e02111. doi: 10.1002/ecs2.2111. | |
[50] | BOBBINK R, HICKS K, GALLOWAY J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis [J]. Ecol Appl, 2010, 20(1): 30 − 59. | |
[51] | 张继舟, 倪红伟, 王建波, 等. 模拟氮沉降和CO2浓度增加对三江平原小叶章群落土壤总有机碳和氮素含量的影响[J]. 地球与环境, 2013, 41(3): 216 − 225. | ZHANG Jizhou, NI Hongwei, WANG Jianbo, et al. Effects of simulated nitrogen deposition and elevated CO2 concentration on soil organic carbon and nitrogen of Deyeuxia angustifolia community on the Sanjiang Plain [J]. Earth Environ, 2013, 41(3): 216 − 225. |
[52] | van KESSEL C, HORWATH W R, HARTWIG U, et al. Net soil carbon input under ambient and-elevated CO2 concentrations: isotopic evidence after 4 years [J]. Glob Change Biol, 2000, 6(4): 435 − 444. | |
[53] | SAIYA-CORK K R, SINSABAUGH R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biol Biochem, 2002, 34(9): 1309 − 1315. | |
[54] | OSANAI Y, TISSUE D T, BANGE M P, et al. Plant-soil interactions and nutrient availability determine the impact of elevated CO2 and temperature on cotton productivity [J]. Plant Soil, 2017, 410(1/2): 87 − 102. | |
[55] | BLOOM A J, BURGER M, KIMBALL B A, et al. Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat [J]. Nat Clim Change, 2014, 4(6): 477 − 480. | |
[56] | REICH P B, HOBBIE S E, LEE T D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation [J]. Nat Geosci, 2014, 7(12): 920 − 924. | |
[57] | SCHMIDT M W I, TORN M S, ABOVEN S, et al. Persistence of soil organic matter as an ecosystem property [J]. Nature, 2011, 478(7367): 49 − 56. | |
[58] | 马红亮, 朱建国, 谢祖彬. 植物地上部分对大气CO2浓度升高的响应[J]. 生态环境学报, 2004, 13(3): 390 − 393. | MA Hongliang, ZHU Jianguo, XIE Zubin. Study on response of vegetable aboveground to the elevated atmospheric CO2 [J]. Ecol Environ, 2004, 13(3): 390 − 393. |
[59] | 罗艳. 土壤微生物对大气CO2浓度升高的响应[J]. 生态环境学报, 2003, 12(3): 108 − 111. | LUO Yan. Response of soil microorganism to elevated atmospheric CO2 concentration [J]. Ecol Environ, 2003, 12(3): 108 − 111. |
[60] | ZHU Chunwu, XU Xi, WANG Dan, et al. Elevated atmospheric [CO2] stimulates sugar accumulation and cellulose degradation rates of rice straw [J]. GCB Bioenergy, 2016, 8(3): 579 − 587. | |
[61] | MANZONI S, JACKSON R B, TROFYMOW J A, et al. The global stoichiometry of litter nitrogen mineralization [J]. Science, 2008, 321(5889): 684 − 686. | |
[62] | WANG Yanhong, YU Zhenhua, LI Yansheng, et al. Microbial association with the dynamics of particulate organic carbon in response to the amendment of elevated CO2-derived wheat residue into a mollisol [J]. Sci Total Environ, 2017, 607: 972 − 981. | |
[63] | PHILLIPS R P, FINZI A C, BERNHARDT E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation [J]. Ecol Lett, 2011, 14(2): 187 − 194. | |
[64] | KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates [J]. Nat Clim Chang, 2015, 5(6): 588 − 595. | |
[65] | PUGH T A M, MÜLLER C, ARNETH A, et al. Key knowledge and data gaps in modelling the influence of CO2 concentration on the terrestrial carbon sink [J]. J Plant Physiol, 2016, 203: 3 − 15. | |
[66] | HU Shuijin, CHAPIN F S I, FIRESTONE M K, et al. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2 [J]. Nature, 2001, 409(6817): 188 − 191. | |
[67] | RASMUSSEN C, HECKMAN K, WIEDER W R, et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content [J]. Biogeochemistry, 2018, 137(5): 297 − 306. | |
[68] | von LÜTZOW M, KÖGEL-KGNABNER I, EKSCHMITT K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review [J]. Eur J Soil Sci, 2010, 57(4): 426 − 445. | |
[69] | TFAILY M M, HESS N J, KOYAMA A, et al. Elevated [CO2] changes soil organic matter composition and substrate diversity in an arid ecosystem [J]. Geoderma, 2018, 330: 1 − 8. | |
[70] | QIAO Na, SCHAEFER D, BLAGODATSKAYA E, et al. Labile carbon retention compensates for CO2 released by priming in forest soils [J]. Global Change Biol, 2014, 20(6): 1943 − 1954. | |
[71] | GROENIGEN K J V, QI Xuan, OSENBERG C W, et al. Faster decomposition under increased atmospheric CO2 limits soil carbon storage [J]. Science, 2014, 344(6183): 508 − 509. | |
[72] | YANG Sihang, ZHENG Qiaoshu, YUAN Mengting, et al. Long-term elevated CO2 shifts composition of soil microbial communities in a Californian annual grassland, reducing growth and N utilization potentials [J]. Sci Total Environ, 2019, 652: 1474 − 1481. | |
[73] | 徐乔. 大气CO2浓度升高对稻田土壤有机碳的影响[D]. 北京: 中国科学院大学, 2014. | XU Qiao. Effects of Elevated Atmospheric CO2 on Soil Organic Carbon in Rice Paddy Field[D]. Beijing: University of Chinese Academy of Sciences, 2014. |
[74] | BLACK C K, DAVIS S C, HUDIBURG T W, et al. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem [J]. Global Change Biol, 2017, 23(1): 435 − 445. |