Volume 38 Issue 6
Dec.  2021
Turn off MathJax
Article Contents

XU Huozhong, WU Dongtao, LI Guisong, WU Lintu, YE Chunfu, GUO Bin, MA Jiawei, YE Zhengqian, LIU Dan. Input and output balance of cadmium (Cd) in cultivated land with moderate pollution in Songyang County[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1231-1237. doi: 10.11833/j.issn.2095-0756.20200728
Citation: XU Huozhong, WU Dongtao, LI Guisong, WU Lintu, YE Chunfu, GUO Bin, MA Jiawei, YE Zhengqian, LIU Dan. Input and output balance of cadmium (Cd) in cultivated land with moderate pollution in Songyang County[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1231-1237. doi: 10.11833/j.issn.2095-0756.20200728

Input and output balance of cadmium (Cd) in cultivated land with moderate pollution in Songyang County

doi: 10.11833/j.issn.2095-0756.20200728
  • Received Date: 2020-11-24
  • Rev Recd Date: 2021-03-15
  • Available Online: 2021-12-08
  • Publish Date: 2021-12-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(5)

Article views(452) PDF downloads(22) Cited by()

Related
Proportional views

Input and output balance of cadmium (Cd) in cultivated land with moderate pollution in Songyang County

doi: 10.11833/j.issn.2095-0756.20200728

Abstract:   Objective  This study is aimed at an accurate interpretation of the source of Cd pollution in farmland soil so as to put forward relevant suggestions for soil heavy metal remediation.  Method  An investigation was conducted of the input and output of heavy metal Cd in a typical piece of cultivated land in Songyang County of Zhejiang Province for three consecutive years by collecting local inputs and crops.   Result  During the period time from 2017 to 2019, fertilizer and atmospheric deposition were the main agricultural pollution sources of Cd, accounting for 49.78% and 40.16%, 50.20% and 39.14%, 34.04% and 48.09% respectively whereas the total input of Cd accounted for 0.18%、0.17% and 0.14% of the total soil Cd, respectively. The total output of Cd from rice, rape and tea were 2820.00, 2706.00 and 2629.50 mg·hm−2·a−1, respectively, with an average of 2718.50 mg·hm−2·a−1 and a relatively stable overall annual average output and the annual input and output decreased year by year, but the annual output was greater than the annual input, which may attribute to the enrichment of plant species.  Conclusion  It is advisable to devote efforts in the continuous implementation of long-term supervision over the atmospheric deposition in the region, the avoidance of direct return of straws to the field, the effective utilization of resources, and the timely restoration of the local contaminated soil and plants. [Ch, 1 fig. 5 tab. 25 ref.]

XU Huozhong, WU Dongtao, LI Guisong, WU Lintu, YE Chunfu, GUO Bin, MA Jiawei, YE Zhengqian, LIU Dan. Input and output balance of cadmium (Cd) in cultivated land with moderate pollution in Songyang County[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1231-1237. doi: 10.11833/j.issn.2095-0756.20200728
Citation: XU Huozhong, WU Dongtao, LI Guisong, WU Lintu, YE Chunfu, GUO Bin, MA Jiawei, YE Zhengqian, LIU Dan. Input and output balance of cadmium (Cd) in cultivated land with moderate pollution in Songyang County[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1231-1237. doi: 10.11833/j.issn.2095-0756.20200728
  • 近年来,中国部分区域重金属污染日趋严重,耕地土壤点位超标率达19.4%[1-3],约0.1亿hm2农田受到了污染[4],基本丧失农作物生产的能力[5]。重金属污染已经成为影响产地环境质量,农产品安全的突出问题[6]。农田生态系统中土壤重金属主要的输入途径包括大气降尘[7]、有机或无机肥[8]、畜禽粪便[9]、农药[10]、污水灌溉[11]等;主要的输出途径包括地表径流[12]、土壤渗流[13]和作物收获[14]。因此利用重金属输入输出平衡方法分析农田土壤中重金属输入、输出途径,并进行量化分析[15],及时了解农田土壤中重金属污染及平衡情况,掌握重金属元素的积累趋势,对农田土壤污染风险评估和质量管理具有重要意义[16]。该方法通过收集和计算不同来源的排放因子和活动水平,估算各类污染源的排放量,从而计算其贡献率[17-18]。本研究以浙江省丽水市松阳县某典型耕地为例,连续3 a开展农田土壤中镉(Cd)的输入输出平衡研究,为进一步开展农田重金属污染控制提供数据支持。

  • 研究区位于浙江省丽水市松阳县靖居包村,28°14′~28°37′N,119°10′~119°42′E。该区域属于亚热带季风气候,年平均气温为14.2~17.7 ℃,≥10 ℃的年活动积温为4 453~5 634 ℃,全年无霜期为206~236 d,年平均降水量为1 511~1 844 mm,年平均雨日为171 d。其农业基础设施条件较好,主要种植作物为水稻Oryza sativa和茶Camellia sinensis,其中,稻田水稻季肥料施用情况为450 kg·hm−2尿素+过磷酸钙300 kg·hm−2+复合肥300 kg·hm−2;稻田油菜Brassica napus季肥料施用情况为尿素300 kg·hm−2+复合肥750 kg·hm−2;茶园施用尿素600 kg·hm−2+复合肥750 kg·hm−2。该研究区稻田与茶园种植面积比约4∶6。

  • 在靖居包村划定的耕地范围,采用网格法定点采集耕层土壤样品,根据具体地形、作物布局、土地利用状况对土壤采样布点进行疏密调整,利用全球定位系统(GPS)对采样点坐标定位。通过梅花点法采集周围半径约5 m区域内的5个采样点,深度为0~20 cm的表层土壤,各约1.0 kg。将5个采样点土壤样品进行混合装袋,并且利用GPS获取采样点的经纬度坐标,做好采样记录,共采集土壤样品37份。测定土壤化学性质与重金属镉(Cd)、铅(Pb)和砷(As)全量。

  • 在研究区域内布设观测点,在距离研究区较远处设置对照点,收集大气干湿沉降样品。降尘缸固定放置于距地面5 m处,采样点附近无高大建筑物,并避开局部污染源。前期准备集成缸(内径20 cm,高50 cm的圆筒形玻璃集尘缸)。将集尘缸带到指定地点收集样品,记录放缸时间、地点、序号(雨季及时更换新缸)。隔2个月定期更换降尘缸1次,取缸时核对地点、缸号、时间,罩上塑料袋带回实验室。自2017年1月初开始采集,周期3 a。

  • 在每季作物种植前和种植过程中,在当地农户家收集或去市场购买当地常用的化肥与农药,各10个样品,记录收集到的样品品牌、生产地等。每份样品1.0~1.5 kg。

  • 先用该地的水样冲洗塑料瓶3次,再用塑料瓶伸入取样点水面以下0.1 m处釆集1 L水样。2017−2019年,每年定期采集灌溉水20个样品。

  • 由于收割时水稻、油菜的根部仍留在土中,因此未取植物根部。采集稻米与稻秆、油菜籽与油菜秆、茶叶与茶枝条。每个样品约1.0 kg。

  • 土壤样品风干后,剔除残渣及可见侵入体,过2 mm筛后研磨,再过100目筛,装入样品袋备用。分析样品的理化性质,利用氟化氢-硝酸-高氯酸的混合物消化土壤样品,测定重金属全量,同时使用标准样品,每种元素标准误差小于10%时结果可信。大气降尘样品参照GB/T 15265−1994《环境空气降尘的测定 重量法》测定湿沉降和干沉降。肥料中重金属测定参考GB/T 23349−2009《肥料中砷、镉、铅、铬、汞生态指标》。农药中重金属测定参考GB/T 20770−2008《粮谷中46种农药及相关化学品残留量的测定》中的液相色谱串联质谱法。灌溉水样品采用硝酸消解,消解方法参考HJ 677−2013《水质 金属总量的消解 硝酸消解法》,消解后混合液体待测。植物样品经过研磨后加入硝酸、过氧化氢的混合酸液,静置过夜后消解10 h,冷却定容待测,通过石墨炉原子吸收光谱法(GFAAS,PerkinElmer AA800,美国)分析测定镉质量浓度。大气降尘、肥料、农药、稻米和稻秆、茶叶和茶枝条的加标回收率均小于10%。

  • 该地区大气干湿沉降、肥料和农药投入、灌溉水是该地区农田土壤重金属的主要输入源。各污染源输入农田土壤重金属的计算公式如下:${A}_{\rm{a}}={A}_{\rm{d}}+{C}_{\rm{w}}\times {S}$${A}_{\rm{f}}={C}_{\rm{f}}\times {N}_{\rm{f}}$${A}_{\rm{i}}={C}_{\rm{i}}\times {W}$${A}_{\rm{p}}={C}_{\rm{p}}\times {N}_{\rm{p}}$${A}_{{\rm{t}}{\rm{o}}{\rm{t}}{\rm{a}}{\rm{l}}}={A}_{\rm{a}}+{A}_{\rm{f}}+{A}_{\rm{i}}+{A}_{\rm{p}}$。其中,${A}_{{\rm{t}}{\rm{o}}{\rm{t}}{\rm{a}}{\rm{l}}}$为总输入量,${A}_{\rm{a}}$${A}_{\rm{f}}$${A}_{\rm{i}}$${A}_{\rm{p}}$分别为大气沉降、肥料、灌溉水和农药4种投入品的Cd输入量,${A}_{\rm{d}}$为干沉降Cd输入量;S为年降水量,W为灌溉水施用量,${N}_{\rm{p}}$为施肥量或施用农药量;${C}_{\rm{w}}$为湿沉降时Cd的质量浓度,${C}_{\rm{f}}$${C}_{\rm{i}}$${C}_{\rm{p}}$分别为肥料中Cd质量分数、灌溉水中Cd质量浓度和农药中的Cd质量分数。

  • 选择农作物收获和秸秆移除计算农田土壤Cd的输出量。该研究区稻田与茶园种植面积比约4∶6,所以按下列公式进行计算:$ {{O}}_{\rm{r}}=({{W}}_{\rm{r}}\times {{C}}_{\rm{r}}+{{W}}_{\rm{r}\rm{s}}\times {{C}}_{\rm{r}\rm{s}})\times $40%;$ {{O}}_{\rm{v}}=({{W}}_{\rm{v}}\times {{C}}_{\rm{v}}+{{W}}_{\rm{v}\rm{s}}\times {{C}}_{\rm{v}\rm{s}})\times $40%;$ {{O}}_{\rm{t}}={({W}}_{\rm{t}}\times {{C}}_{\rm{t}}+{{W}}_{\rm{t}\rm{s}}\times {{C}}_{\rm{t}\rm{s}})\times $60%;$ {{O}}_{\rm{t}\rm{o}\rm{t}\rm{a}\rm{l}}={{O}}_{\rm{r}}+{{O}}_{\rm{v}}+{{O}}_{\rm{t}} $。其中,$ {O}_{\mathbf{t}\rm{o}\rm{t}\rm{a}\rm{l}} $为总输出量,$ {O}_{\rm{r}} $$ {O}_{\rm{v}} $$ {O}_{\rm{t}} $分别为水稻、油菜和茶叶的Cd输出量;$ {W}_{\rm{r}} $$ {W}_{\rm{r}\rm{s}} $分别为稻米和稻秆的年产量,$ {W}_{\rm{v}} $$ {W}_{\rm{v}\rm{s}} $为油菜籽和油菜秆的年产量,$ {W}_{\rm{t}} $$ {W}_{\rm{t}\rm{s}} $为茶叶和茶枝条的年产量;$ {C}_{\rm{r}} $$ {C}_{\rm{r}\rm{s}} $分别为稻米和稻秆中Cd的平均质量分数,$ {C}_{\rm{v}} $$ {C}_{\rm{v}\rm{s}} $分别为油菜籽和油菜秆中Cd的平均质量分数,$ {C}_{\rm{t}} $$ {C}_{\rm{t}\rm{s}} $分别为茶叶和茶枝条中Cd的平均质量分数。

  • 采用Excel 2010进行监测数据的预处理,用SPSS 16.0分析数据。

  • 研究区土壤pH为4.11~6.59,有机质质量分数为6.77~27.49 g·kg−1,碱解氮为63.00~206.96 mg·kg−1,有效磷为12.5~49.5 mg·kg−1,速效钾为37.5~112.5 mg·kg−1,土壤Cd、Pb和As质量分数均值分别为0.31、70.31、3.41 mg·kg−1。根据GB 15618−2018《农用地土壤污染风险管控标准》中Cd、Pb、As的风险筛选值进行计算,该区域表层土壤污染重金属Pb与As均未超标,Cd属于轻度污染范围。

  • 根据松阳县的年平均降水量(1 650 mm)计算大气干湿沉降输入(表1)。2017−2019年,Cd的干湿沉降年输入量分别为502.95、451.95、484.50 mg·hm−2·a−1

    年份降水中Cd质量浓度/(mg·L−1·a−1)Cd年输入量/(mg·hm−2·a−1)总计/(mg·hm−2·a−1)
    湿沉降干沉降
    20170.02±0.00 a308.55±56.30 a194.40±14.00 a502.95±63.30 a
    20180.02±0.00 a268.95±16.86 a183.00±12.52 a451.95±29.38 a
    20190.02±0.00 a343.20±18.28 a141.30±12.62 a484.50±30.90 a
      说明:不同小写字母表示在0.05水平上差异显著

    Table 1.  Cd input of atmospheric dry and wet deposition in 2017−2019

  • 依据GB 38400−2019《肥料中有毒有害物质的限量要求》中,Cd的限量标准值(10 mg·kg−1),研究区的肥料均未超出标准值。其中2017−2019年尿素Cd的质量分数平均值分别为0.01、0.07和0.04 mg·kg−1,过磷酸钙中的Cd分别为2.77、0.40和0.22 mg·kg−1,复合肥中的Cd分别为0.33、0.56和0.33 mg·kg−1。根据稻田和茶园种植面积比例进行计算,该地区2017−2019年肥料Cd的年输入量分别为623.49、579.57、342.99 mg·hm−2·a−1(表2)。总体来说,由肥料带来的Cd年输入量逐年降低。

    年份类别Cd年输入量/(mg·hm−2·a−1)合计/(mg·hm−2·a−1)总计/(mg·hm−2·a−1)
    尿素过磷酸钙复合肥
    2017稻田3.00±0.23 b332.40±47.20 a137.34±25.60 a472.74±59.13 a623.49±102.35 a
    茶园3.60±0.32 b0147.15±30.26 a150.75±38.80 a
    2018稻田19.95±1.93 a48.48±3.20 b235.20±54.60 a303.63±44.96 ab579.57±65.05 a
    茶园23.94±3.72 a0252.00±58.50 a275.94±42.26 a
    2019稻田12.00±2.01 ab26.88±3.20 b139.86±23.60 a178.74±57.48 b342.99±37.26 a
    茶园14.40±1.80 ab0149.85±16.00 a164.25±34.84 a
      说明:不同小写字母表示在0.05水平上差异显著

    Table 2.  Cd annual chemical fertilizer input of paddy field and tea garden in demonstration area from 2017 to 2019

  • 2017−2019年的灌溉水Cd输入见表3。依据GB 5084−2021《农田灌溉水质标准》,采集的水样数据均没有超过国家标准值,属清洁水平。根据2017年采集20份灌溉水样的结果,未检出Cd的有9份,其他11份Cd镉质量浓度平均值为0.21 μg·L−1;2018年采集的20份灌溉水样Cd镉质量浓度平均值为0.21 μg·L−1;2019年只有1份水样检测出Cd,质量浓度为0.30 μg·L−1。根据风险评估标准,将唯一检测值作为平均质量浓度,根据当地实际情况,年均灌溉水量为6 000 m3·hm−2·a−1,则2017−2019年,灌溉水Cd年输入量分别为126.00、123.00和180.00 mg·hm−2·a−1

    年份灌溉水农药
    平均质量浓度/(μg·L−1)年输入量/(mg·hm−2·a−1)平均质量分数/(mg·kg−1)年输入量/(mg·hm−2·a−1)
    20170.21±0.04 a126.00±14.60 a0.07±0.01 a0.05±0.01 a
    20180.21±0.02 a123.00±19.90 a0.09±0.01 a0.06±0.01 a
    20190.30±0.02 a180.00±6.00 a0.06±0.03 a0.05±0.00 a
      说明:不同小写字母表示在0.05水平上差异显著

    Table 3.  Cd content of irrigation water and pesticides from 2017−2019

  • 表3可见:2017−2019年,农药中Cd的平均质量分数分别为0.07、0.09、0.06 mg·kg−1,均小于国家标准值(10 mg·kg−1)。依据农药年均用量0.75 mg·hm−2计算输入量,则2017−2019年农药Cd的年输入量分别为0.05、0.06和0.05 mg·hm−2·a−1

  • 表4可见:2017−2019年研究区Cd年总输出量分别为2 820.00、2 706.00和2 629.50 mg·hm−2·a−1,Cd的总输出量随着年份的增加逐年下降,但总体较平稳,平均值为2718.50 mg·hm−2·a−1

    年份水稻油菜Cd总输出量/
    (mg·hm−2·a−1)
    Cd质量分数/(mg·kg−1)Cd输出量/
    (mg·hm−2·a−1)
    Cd质量分数/(mg·kg−1)Cd输出量/
    (mg·hm−2·a−1)
    Cd质量分数(mg·kg−1)Cd输出量/
    (mg·hm−2·a−1)
    稻米稻秆油菜籽油菜秆茶叶茶枝条
    20170.12±0.02 a0.21±0.03 a1026.00±93.27 a0.13±0.03 a0.63±0.06 a723.00±82.70 a0.09±0.02 a0.66±0.13 a1 071.00±299.08 a2 820.00±335.05 a
    20180.10±0.01 a0.21±0.02 a943.50±62.90 a0.15±0.04 a0.63±0.08 a750.00±92.41 a0.05±0.01 b0.21±0.05 b1012.50±99.69 a2 706.00±235.04 b
    20190.09±0.01 a0.22±0.04 a985.50±75.59 a0.05±0.01 b0.63±0.06 a622.50±59.32 b0.06±0.01 b0.21±0.07 b1021.50±98.61 a2 629.50±223.52 b
      说明:不同小写字母表示在0.05水平上差异显著

    Table 4.  Concentration and total output of Cd in different plant parts of demonstration area from 2017−2019

  • 对2017−2019年研究区Cd输入输出平衡估算(图1)发现:肥料和大气沉降是Cd主要的输入方式,灌溉水和农药占比较小。对3 a的投入品输入分析进行比较发现:大气沉降、灌溉水的Cd输入比例呈现逐渐上升的趋势,肥料的占比是下降的趋势,农药基本保持不变;2017−2019年,肥料和大气沉降是农业污染源重要的污染方式。按照耕层土壤为2 250 t·hm−2、土壤总Cd质量分数为0.31 mg·kg−1计算,2017−2019年Cd的年输入量分别占土壤总Cd量的0.18%、0.17%和0.14%,因此研究区周围环境及农投品均属清洁水平。表5结果表明:2017−2019年间,Cd年输入量和输出量均逐年降低,但年输出量均要大于年输入量。

    Figure 1.  Comparison of input analysis results of demonstration area in 2017−2019

    年份Cd输入/(mg·hm−2)Cd输出/(mg·hm−2)
    大气沉降肥料灌溉水农药总量水稻油菜总量
    2017502.95±63.30 a623.49±102.35 a126.00±34.60 a0.05±0.01 a1 252.50±153.37 a1 026.00±93.27 a723.00±83.70 a0.66±0.13 a2820.00±335.05 a
    2018451.95±29.38 a579.57±65.05 a123.00±29.90 a0.06±0.02 a1 154.58±108.72 a943.50±62.9 a750.00±92.41 a0.21±0.05 b2706.00±235.04 b
    2019484.50±30.90 a342.99±37.26 a180.00±6.00 a0.05±0.02 a1 007.57±63.20 b985.50±75.59 a622.50±59.32 b0.21±0.07 b2629.50±223.52 b
      说明:不同小写字母表示在0.05水平上差异显著

    Table 5.  Comparison of Cd input and output from 2017−2019

  • 不同输入源对不同重金属污染的贡献存在一定的差异。本研究发现:2017−2019年研究区农田土壤重金属污染主要途径是肥料与大气沉降,分别占比34.04%~50.20%和39.14%~48.09%,而灌溉水仅占10.06%~17.87%,农药仅占0%~0.01%。

    LIU等[19]研究中发现:大气沉降是农田系统Cd污染的主要来源,大气沉降进入土壤中又会降低土壤pH,会进一步导致Cd的有效态含量增加[20]。本研究区内无工厂、高铁或高速公路等明显的污染源,因此重金属污染主要受到气候的影响[21]。有研究指出:大气沉降通量具有明显的季节变化,通常在冬春季最大[22],可能与地区的冬季供暖、燃煤等人为活动密切相关[23]。本研究区域大气沉降通量存在明显的季节变化规律,夏季湿沉降普遍高于其他季节,冬春季节干沉降较高。可能是本研究区处于亚热带季风气候,夏季充沛的降雨导致空气中的重金属通过降雨被带入农田系统中,而冬春季受供暖等活动影响Cd干沉降较高。

    本研究区肥料投入主要以化肥为主,有研究表明:施用过磷酸钙会导致土壤中Cd的积累,过磷酸钙中Cd含量远高于其他磷肥,而尿素和复合肥中Cd含量均低于磷肥[24],这和本研究结果一致,本研究区投入品中肥料对Cd贡献比例较高,是Cd输入的主要来源之一。

    本研究区施用农药所导致的Cd的输入占比仅为0.01%,可忽略不计。施加的农药均为有机农药,生产过程中不涉及重金属。此外,农田年均施用量也较少,所以土壤中Cd含量较低。这与童文彬等[25]结果基本一致。

    本研究区中农田系统Cd的输出主要通过作物收获,作物收获引起的Cd输出量高于Cd输入量。3种作物Cd输出量从大到小依次为茶叶、水稻、油菜,且茎秆Cd含量远高于其他部位,因而在制定土壤污染防治措施时,可以将茎秆移除,减少还田,从而达到减少Cd的净输入量。

    综上,肥料与大气沉降是投入品主要污染来源,但肥料与大气沉降总体处于安全级别。由于年沉降量呈现上升趋势,仍然建议需要继续监控大气沉降。虽然农产品为可食用级别,但仍然需要避免秸秆直接还田,并进行有效资源化利用,集中收集枝条也是修复污染土壤的过程,可以达到边生产边修复的目的。

  • 本研究区中2017−2019年Cd的年输入量分别占土壤总Cd量的0.18%、0.17%和0.14%,占比小,表明投入品属清洁水平。投入品输入具体表现为肥料中Cd的年输入量呈现降低的趋势,大气沉降和灌溉水的年输入量呈现上升的趋势,农药占比可忽略不计。其中施用磷肥导致土壤中Cd的含量降低,大气沉降主要源于气候。2017−2019年研究区内的Cd年输出量总体比较平稳,平均为2 718.50 mg·hm−2·a−1。其中,茶叶Cd年输出量最高,为1 012.50~1 071.00 mg·hm−2·a−1,水稻Cd年输出量居中,为943.50~1026.00 mg·hm−2·a−1,油菜Cd年输出量最低,为622.50~750.00 mg·hm−2·a−1。2017−2019年间Cd年输入量和输出量均逐年降低,说明对农投品的监控存在一定的作用,但各年输出量均大于年输入量,其原因可能是Cd在植物中出现了富集情况,因此需及时对植物进行修复。

Reference (25)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return