Volume 38 Issue 6
Dec.  2021
Turn off MathJax
Article Contents

WU Jindong, HE Yong, ZHU Zhujun. Effects of partial substitution of chemical fertilizer with organic fertilizer on growth and quality of Solanum melongena in open field[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1195-1202. doi: 10.11833/j.issn.2095-0756.20200767
Citation: WU Jindong, HE Yong, ZHU Zhujun. Effects of partial substitution of chemical fertilizer with organic fertilizer on growth and quality of Solanum melongena in open field[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1195-1202. doi: 10.11833/j.issn.2095-0756.20200767

Effects of partial substitution of chemical fertilizer with organic fertilizer on growth and quality of Solanum melongena in open field

doi: 10.11833/j.issn.2095-0756.20200767
  • Received Date: 2020-12-11
  • Rev Recd Date: 2021-05-13
  • Available Online: 2021-12-08
  • Publish Date: 2021-12-08
  •   Objective  This study aims to explore the effects of partial replacement of chemical fertilizer with organic fertilizer in the production of Solanum melongena.  Method  Taking chemical fertilizer as control (ck), 50% substitution of base nitrogen fertilizer with organic fertilizer (T1) and 100% substitution of base nitrogen fertilizer with organic fertilizer (T2) were set up as two treatments. The effects of different treatments on S.melongena yield, quality and soil fertility were studied in open field.  Result  Compared with ck, soil pH, soil available potassium, organic matter, microbial biomass carbon and nitrogen content increased significantly in both treatments (P<0.05). The fruit weight and fruit number per plant increased significantly (P<0.05), which led to the increase in yield by 13.8%−22.3%, and the yield of T1 was highest, which was 70099.5 kg·hm−2. The anthocyanin mass fraction of S.melongena pericarp increased significantly in both treatments(P<0.05), and thus deepened the fruit color. The mass fraction of magnesium and sulfur in fruits increased significantly (P<0.05), and that of soluble sugars, soluble protein and vitamin C and the molar concentration of amino acid increased in varying degrees, and the comprehensive effect of T1 was better.  Conclusion  Replacing 50% of the base fertilizer with organic fertilizer can effectively improve S. melongena yield, quality and soil fertility. [Ch, 9 tab. 40 ref.]
  • [1] SONG Yandong, PAN Xinhe, YANG Jie, SHI Yongjun.  Content and distribution of the main nutrient elements in aboveground parts of Acidosasa edulis in southwest of Zhejiang Province . Journal of Zhejiang A&F University, 2021, 38(4): 871-877. doi: 10.11833/j.issn.2095-0756.20200646
    [2] JIANG Shikun, ZHOU Yunchao, TAN Wei, CHEN Zhu, HUANG Jianfeng.  Soil fertility of Pinus massoniana forests under different near-natural management measures . Journal of Zhejiang A&F University, 2020, 37(5): 876-882. doi: 10.11833/j.issn.2095-0756.20190549
    [3] WANG Zhen, WANG Jie, XIANG Haiping, FAN Zepeng, SUN Chengman, XING Bingcong, SHAO Qingsong.  Optimization of microwave-assisted extraction of anthocyanins from Bletilla striata flowers . Journal of Zhejiang A&F University, 2020, 37(5): 1020-1026. doi: 10.11833/j.issn.2095-0756.20190581
    [4] LÜ Suhua, XU Meng, ZHANG Xinfeng, LIU Jingjing, SI Jinping.  Polysaccharides, extracts, and amino acids in hybrid Dendrobium officinale flowers . Journal of Zhejiang A&F University, 2016, 33(5): 749-755. doi: 10.11833/j.issn.2095-0756.2016.05.004
    [5] GUO Jing, WANG Guibin, CAO Fuliang.  Photosynthesis and nutrient content with fertilization for Ginkgo biloba leaves . Journal of Zhejiang A&F University, 2016, 33(6): 969-975. doi: 10.11833/j.issn.2095-0756.2016.06.007
    [6] YE Jing, TAO Lihua, KE Hejia, XIANG Tingting, WU Jiasen.  Uptake, accumulation, and distribution of the main elemental nutrients in Dendrocalamopsis oldhami . Journal of Zhejiang A&F University, 2015, 32(4): 545-550. doi: 10.11833/j.issn.2095-0756.2015.04.008
    [7] GUO Shuai, XU Qiufang, SHEN Zhenming, LI Songhao, QIN Hua, LI Yongchun.  Response of soil ammonia-oxidizing organisms on fertilization and mulch in Phyllostachys violascens stands . Journal of Zhejiang A&F University, 2014, 31(3): 343-351. doi: 10.11833/j.issn.2095-0756.2014.03.003
    [8] ZHU Mei-qin, YE Gong-fu, YOU Shui-sheng, YOU Long-hui, BAI Yong-hui, GAO Wei.  Caloric values and correlations of nutrient elements in three forestation species of a coastal sandy land . Journal of Zhejiang A&F University, 2012, 29(6): 829-834. doi: 10.11833/j.issn.2095-0756.2012.06.005
    [9] JIANG Jun-ming, ZHU Wei-shuang, LIU Guo-hua, FEI Shi-ming, CHEN Xiu-ming.  Soil fertility in a Phyllostachys pubescens forest of southern Sichuan . Journal of Zhejiang A&F University, 2008, 25(4): 486-490.
    [10] WU Jia-sen, ZHANG Li-qin, WU Jin-cai, WU Chang-yi, CHEN Rong.  Macronutrients and allocations to different organs in one-to three-year-old Taxus chinensis var. mairei . Journal of Zhejiang A&F University, 2008, 25(2): 195-199.
    [11] LIUKe-lin, SUN Xiang-yang, ZHAO Tie-rui, KANG Xiang-yang.  Leaf nutrients(N, P, K, Ca and Mg)in selected Populus tomentosa triploid clones . Journal of Zhejiang A&F University, 2007, 24(3): 297-301.
    [12] DAI Wen-sheng, LI Zhang-ju, CHENG Xiao-jian, YU Wei-wu, FU Qing-gong.  Mineral elements in Torreya grandis 'Merrillii' seeds and their forest soils . Journal of Zhejiang A&F University, 2006, 23(4): 393-399.
    [13] WU Jia-sen, ZHOU Guo-mo, QIAN Xin-biao, YANG Fang, WU Xue-min.  Distribution of nutrient elements in different organs of Phyllostachys pubescens under different managements . Journal of Zhejiang A&F University, 2005, 22(5): 486-489.
    [14] LIU Li, LIN Xin-chun, JIN Ai-wu, FENG Tian-xi, ZHOU Chang-pin, JI Zong-fu.  Analysis of nutrient elements in various organs of Pleioblastus amarus . Journal of Zhejiang A&F University, 2004, 21(2): 172-175.
    [15] YU Yi-wu, WU Jia-sen, JIANG Pei-kun, WU Xiao-hong.  Analysis on nutrient elements in litter under different forests in Huzhou City . Journal of Zhejiang A&F University, 2002, 19(2): 153-156.
    [16] HE Guang-xun.  Degeneration of soil fertility in pure Chinese fir succession . Journal of Zhejiang A&F University, 2002, 19(1): 100-103.
    [17] CHEN Ai-ling, CHEN Guang-shui, XIE Jing-sheng, YANG Yu-sheng.  On biomass and nutrient distribution of tree rotation of Chinese fir and slender-stalk altingia . Journal of Zhejiang A&F University, 2000, 17(4): 369-372.
    [18] JIANG Pei-kun, YU Yi-wu.  Nutrition elements contained in leafs of Phyllostachys praecox f .preveynalis and soil nutrients . Journal of Zhejiang A&F University, 2000, 17(4): 360-363.
    [19] JIANG Zhi-biao, YU Qin-min.  Effects of fertilization on some physiological traits of Chinese fir seedling and soil nutrient . Journal of Zhejiang A&F University, 1999, 16(4): 365-368.
    [20] Lin Ping, Ye Zhenghuan, Zhu Changle, Hou Jianyu..  Soil Fertility in Repeated Planting Cryptomeria fortunei Land . Journal of Zhejiang A&F University, 1994, 11(2): 138-142.
  • [3]
    LIU Huan. The Effect of Combined Application of Organic and Inorganic Fertilizers on Yield and Quality of Chinese Cabbage [D]. Shenyang: Shenyang Agricultural University, 2016.
    [4]
    MIN Ju, ZHANG Hailin, SHI Weiming. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production [J]. Agric Water Manage, 2012, 111: 53 − 59.
    [5]
    SUN Xiaojun, WU Guoyong, REN Xiu. The impact of chemical fertilizer input changes on grain production efficiency: an empirical analysis based on panel data of counties in Guizhou Province [J]. J Southern Agric, 2019, 50(8): 1869 − 1877.
    [6]
    CHEN Gui, ZHAO Guohua, ZHANG Hongmei, et al. Effect of long-term organic fertilizers application on rice yield, nitrogen and phosphorus use efficiency [J]. Soil Fert Sci China, 2017(1): 92 − 97.
    [7]
    LIU Dan, CUI Yanling, QIAN Zongwei. Research advances in the seed industry and breeding of eggplant [J]. Northern Hortic, 2019(1): 165 − 170.
    [8]
    LU Jiazhu, ZHAO Guibin, XIE Jianming, et al. Effects of different nitrogen fertilizer application rates on yield, quality and fertilizer utilization rate of eggplant [J]. Acta Agric Boreali-Sin, 2016, 31(3): 205 − 211.
    [9]
    CHEN Yimin, ZHANG Jinyuan, XU Xin, et al. Effects of different irrigation and fertilization practices on nitrogen leaching in facility vegetable production in northeastern China [J]. Agric Water Manage, 2018, 210: 165 − 170.
    [10]
    MAUCERI A, BASSOLINO L, LUPINI A, et al. Genetic variation in eggplant for nitrogen use efficiency under contrasting NO3 supply [J]. J Integr Plant Biol, 2020, 62(4): 487 − 508.
    [11]
    ZHANG Ya. Comparative analysis on NPK uptake by different organs of eggplants during different growth stages [J]. Acta Agric Zhejiang, 2011, 23(6): 1134 − 1139.
    [12]
    SONG Hui, HUANG Yunping, ZANG Quanyu, et al. Variation and correlation analysis of SPAD value and chlorophyll content of leaves at different position in melon seedling [J]. Acta Agric Boreali-Sin, 2019, 34(suppl): 99 − 104.
    [13]
    SCHINDELIN J, RUEDEN C T, HINER M C, et al. The ImageJ ecosystem: an open platform for biomedical image analysis [J]. Mol Rep Dev, 2015, 82(7/8): 518 − 529.
    [14]
    WU Ruiyuan. A Study on Sugar Metabolism in Fruit and Technology for Improving Fruit Quality in ‘Cuiyu’ Pear[D]. Hangzhou: Zhejiang University, 2013.
    [15]
    NIU Shanshan, XU Changjie, ZHANG Wangshu, et al. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor [J]. Planta, 2010, 231(4): 887 − 899.
    [16]
    TONG Lanyan, YU Wenqin, ZHU Lingling, et al. Determination of vitamin C in vegetables and fruits and its stability [J]. Food Ind, 2020, 41(5): 87 − 89.
    [18]
    GAUDIN Z, CERVEAU D, MARNET N, et al. Robust method for investigating nitrogen metabolism of 15N labeled amino acids using AccQ·Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry: application to a parasitic plant-plant interaction [J]. Anal Chem, 2014, 86(2): 1138 − 1145.
    [19]
    YUAN Jianmin, HE Lu, YANG Xiaoqiong, et al. Simultaneous determination of 11 trace elements in Cymbopogon citratus by ICP-OES with microwave digestion [J]. Chin Agric Sci Bullet, 2020, 36(14): 69 − 73.
    [20]
    VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biol Biochem, 1987, 19(6): 703 − 707.
    [21]
    BROOKES P C, LANDMAN A, PRUDEN G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method for measuring microbial biomass nitrogen in soil [J]. Soil Biol Biochem, 1985, 17(6): 837 − 842.
    [22]
    XUE Peipei, WANG Bing, NIU Xiang. Grey relation analysis of soil fertility of moso bamboo forests at different altitudes in Dagang Mountain [J]. Acta Agric Zhejiang, 2013, 25(6): 1354 − 1359.
    [23]
    CARREÑO J, MARTÍNEZ A, ALIMELA L, et al. Measuring the color of table grapes [J]. Color Res Appl, 1996, 21(1): 50 − 54.
    [24]
    LU Caiyu, HUANG Chunhui, ZHENG Xiaoyan, et al. Effects of root restriction on visual quality, pigments and inner quality of Jumeigui grape berries [J]. J Fruit Sci, 2009, 26(5): 719 − 724.
    [25]
    HUANG Ting, XUN Weibing, ZHANG Ruifu. Soil organic matter and crop yield with long-term fertilization schemes for an upland crop rotation in northern China [J]. J Zhejiang A&F Univ, 2017, 34(2): 253 − 260.
    [26]
    YU Pujia, FAN Gaohua, HAN Kexin, et al. Soil quality assessment based on soil microbial biomass carbon and soil enzyme activities [J]. Res Agric Modernization, 2018, 39(1): 163 − 169.
    [27]
    ZENG Quanchao, LI Xin, DONG Yanghong, et al. Soil microbial biomass nitrogen and carbon, water soluble nitrogen and carbon under different arbors forests on the Loess Plateau [J]. Acta Ecol Sin, 2015, 35(11): 3598 − 3605.
    [28]
    ZHANG Chengxia, NAN Zhibiao. Research progress of soil microbial biomass in China [J]. Pratacul Sci, 2010, 27(6): 50 − 57.
    [29]
    CHEN Kun, YU Hua, SHANGGUAN Yuxian, et al. Impacts of organic-inorganic fertilizer application on yield of rice and soil properties in the waterlogged paddy field [J]. China Rice, 2020, 26(2): 32 − 35, 40.
    [30]
    WU Xingkui, JIANG Zhencui, LU Zhixin, et al. Effects of the partial replacement of chemical fertilizer with manure on the yield and nitrogen emissions in leafy vegetable production [J]. Chin J Eco-Agric, 2020, 28(3): 349 − 356.
    [31]
    LI Shuyi, DENG Xuwen, CHEN Fa, et al. EFfects of the quantity and proportion of organic and mineral fertlizers on vegetable yield and quality and soil heavy metal contents [J]. Ecol Environ, 2007, 16(4): 1125 − 1134.
    [32]
    GAIZ A, KUNDUR A R, COLSON N, et al. Assessment of in vitro effects of anthocyanins on platelet function [J]. Alternative Ther Health Med, 2020, 26(1): 12 − 17.
    [33]
    LÜ Lingling, FENG Xuefeng, LI Wei, et al. Research progress of anthocyanin in eggplant [J]. Mol Plant Breeding, 2018, 16(15): 5065 − 5071.
    [34]
    MORI T, SAKURAI M, SASUTA M. Effects of conditioned medium on activities of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa [J]. Plant Sci, 2001, 160(2): 355 − 360.
    [35]
    HARDISSON A, RUBIO C, BAEZ A, et al. Mineral composition of the banana (Musa acuminata) from the island of Tenerife [J]. Food Chem, 2001, 73(2): 153 − 161.
    [36]
    LYSIAK G. The influence of harvest maturity and basic macroelement content in fruit on the incidence of diseases and disorders after storage of the ‘Ligol’ apple cultivar [J]. Folia Hortic, 2013, 25(1): 31 − 39.
    [37]
    DU Zhenyu, SHI Yanxi, WANG Qinghua. Effects of selenium application on the selenium absorption and transformation of eggplant and its qualities [J]. Plant Nutr Fert Sci, 2004, 10(3): 298 − 301.
    [38]
    POSSNER D R E, KLIEWER W M. The localization of acids, sugars, potassium and calcium in developing grape berries [J]. Vitis, 1985, 24: 229 − 240.
    [39]
    LI Dawei, ZHOU Jiashun, PAN Genxing, et al. Effect of biochar-based compound fertilizer on the yield, fruit quality and N use efficiency of vegetables [J]. J Nanjing Agric Univ, 2016, 39(3): 433 − 440.
    [40]
    WEI Xiaorong. Effects of Long-Term Experiment on the Chemical Characteristics of Soil Zinc, Copper, Manganese, Iron in Dry Land[D]. Yangling: Northwest A&F University, 2004.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(9)

Article views(751) PDF downloads(40) Cited by()

Related
Proportional views

Effects of partial substitution of chemical fertilizer with organic fertilizer on growth and quality of Solanum melongena in open field

doi: 10.11833/j.issn.2095-0756.20200767

Abstract:   Objective  This study aims to explore the effects of partial replacement of chemical fertilizer with organic fertilizer in the production of Solanum melongena.  Method  Taking chemical fertilizer as control (ck), 50% substitution of base nitrogen fertilizer with organic fertilizer (T1) and 100% substitution of base nitrogen fertilizer with organic fertilizer (T2) were set up as two treatments. The effects of different treatments on S.melongena yield, quality and soil fertility were studied in open field.  Result  Compared with ck, soil pH, soil available potassium, organic matter, microbial biomass carbon and nitrogen content increased significantly in both treatments (P<0.05). The fruit weight and fruit number per plant increased significantly (P<0.05), which led to the increase in yield by 13.8%−22.3%, and the yield of T1 was highest, which was 70099.5 kg·hm−2. The anthocyanin mass fraction of S.melongena pericarp increased significantly in both treatments(P<0.05), and thus deepened the fruit color. The mass fraction of magnesium and sulfur in fruits increased significantly (P<0.05), and that of soluble sugars, soluble protein and vitamin C and the molar concentration of amino acid increased in varying degrees, and the comprehensive effect of T1 was better.  Conclusion  Replacing 50% of the base fertilizer with organic fertilizer can effectively improve S. melongena yield, quality and soil fertility. [Ch, 9 tab. 40 ref.]

WU Jindong, HE Yong, ZHU Zhujun. Effects of partial substitution of chemical fertilizer with organic fertilizer on growth and quality of Solanum melongena in open field[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1195-1202. doi: 10.11833/j.issn.2095-0756.20200767
Citation: WU Jindong, HE Yong, ZHU Zhujun. Effects of partial substitution of chemical fertilizer with organic fertilizer on growth and quality of Solanum melongena in open field[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1195-1202. doi: 10.11833/j.issn.2095-0756.20200767
  • 化肥减量增效对农业可持续发展具有重要意义。2015年,农业农村部制定《到2020年化肥使用量零增长行动方案》[1],随后于2017年出台《开展果菜茶有机肥替代化肥的行动方案》[2],提出“精、调、改、替”4种技术策略以实现化肥使用量零增长,其中“替”就是用有机肥替代化肥从而减少化肥用量[3]。已有研究[4]表明:施用有机肥时,减少化学肥料用量并不会降低蔬菜产量。有机肥肥效周期长,能够促进土壤微生物活动,改良土壤结构;化肥养分释放周期短,营养供应速度快;将有机肥和化肥配合施用,不仅能弥补单施肥料的不足,还能充分发挥两者的优点,满足作物在生育期内对养分的持续需求,同时兼顾作物在生长和发育关键时期对养分的特殊需求[56]。茄Solanum melongena是中国南方露地栽培的主要蔬菜之一[7],目前关于茄栽培中肥料施用的研究,普遍侧重于减少养分流失、提高养分利用率等方面[810],而有关有机肥替代化肥对茄产量和品质影响的研究较少。本研究分析了不同比例有机肥替代化肥处理对茄花青素、氨基酸和营养元素等品质及产量的影响,同时分析土壤肥力的变化,以期为茄生产中化肥减量增效提供参考。

  • 试验地位于浙江省龙泉市屏南镇百步村,该地属亚热带季风气候,年平均气温为17~18 ℃。供试土壤为红壤,基本理化性质:pH 4.81,碱解氮198.2 mg·kg−1,有效磷16.2 mg·kg−1,速效钾91.1 mg·kg−1,有机质22.4 g·kg−1,微生物碳282.8 mg·kg−1,微生物氮20.2 mg·kg−1,微生物碳氮比为14。

  • 供试茄品种为‘杭茄2010’ S. melongena ‘Hangqie 2010’,由浙江省杭州市农业科学研究院提供;无机复合肥(氮16%,五氧化二磷6%,氧化钾23%,以质量分数计)购自深圳市芭田生态工程股份有限公司,有机肥(pH 7.6,氮2%,五氧化二磷4%,氧化钾2%,有机质83%,以质量分数计)购自浙江省龙泉市惠农生物科技有限公司。

  • 本试验为大田试验。根据前人研究结果[11],按每生产1 000 kg茄子需要3.0 kg氮,以75 000 kg·hm−2为预期产量,设置施氮量240 kg·hm−2为施肥量基准。

    以单施化肥(100%化肥)为对照(ck),设置T1处理为有机肥替代基肥中50%的化肥氮,T2处理为有机肥替代基肥中100%的化肥氮。设置3次重复,随机区组排列,田间常规管理完全相同。施肥方案见表1

    处理施基肥/(kg·hm−2)6月1日追
    施复合肥/
    (kg·hm−2)
    7月16日追
    施复合肥/
    (kg·hm−2)
    有机肥复合肥硼砂
    ck 0 1 200 45 150 150
    T1 4 245 600 45 150 150
    T2 8 490 0 45 150 150

    Table 1.  Fertilization scheme

    移栽前(2019年4月8日),按处理方案一次性施入全部基肥。选用长势一致、“三叶一心”的茄子幼苗进行移植,畦栽栽培,并用薄膜覆盖。5月11日定植,行距0.5 m,株距0.6 m。于挂果初期(2019年6月1日)和盛果期(2019年7月16日)追肥,施肥方法为水肥一体化,肥料随水灌入。

  • 收获期内,各处理随机选取30株茄植株,统计并记录叶片数;采摘下最大功能叶,测定叶绿素相对含量(SPAD)[12],并用平台扫描仪结合Image J软件测定叶长、叶宽、叶面积[13]。果实采收时,各小区随机采摘10个果实,测量果实长度、直径、质量,总产量以实际称量结果计算。测定果实外观色差和模拟感官硬度[14];采用pH示差法测定果皮花青素质量分数[15];采用HPLC法测定果实维生素C质量分数[16];采用考马斯亮蓝G-250法测定可溶性蛋白质质量分数,采用蒽酮法测定果实可溶性糖质量分数[17];用Waters Acc Q-Tag法测定果实氨基酸质量摩尔浓度[18];果实氮质量分数采用凯氏定氮法测定,其他元素质量分数采用ICP-OES法测定[19]

    分别于种植施肥前和茄子收获后,按五点采样法用土壤螺旋钻于各处理小区随机取0~20 cm表层土壤样品;各处理土壤样品彻底混合后,四分法留样,过2 mm筛,鲜样测土壤微生物碳、氮(氯仿熏蒸浸提、TOC法测定)[2021];剩余土壤风干后过1 mm筛,用重铬酸钾容量法测定土壤有机质,用碱解扩散法测土壤碱解氮,用碳酸氢钠浸提-钼锑抗比色法测土壤有效磷,用醋酸铵浸提-火焰光度计法测土壤速效钾,用电位法测土壤pH [22]

  • 采用Excel 2010处理数据和绘图,采用Data Processing System (DPS V14.10)分析数据,采用Duncan新复极差法进行差异显著性检验(P<0.05)。

  • 表2可知:相比ck,处理组土壤pH显著升高(P<0.05),土壤速效钾、有机质、微生物碳和微生物氮质量分数均显著增加(P<0.05),其中T1分别增加了87.6%、33.7%、61.5%和156.1%,效果最显著(P<0.05)。由表3可知:与T2和ck相比,T1土壤碱解氮质量分数显著增加,同时微生物碳氮比显著降低(P<0.05)。上述结果表明,相较于ck与T2,T1对土壤肥力的改善效果最佳。

    处理pH碱解氮/(mg·kg−1)有效磷 /(mg·kg−1)速效钾/(mg·kg−1)有机质/(g·kg−1)微生物碳/(mg·kg−1)微生物氮/(mg·kg−1)微生物碳氮比
    ck4.3±0.1 b188.2±6.5 b21.1±1.9 a201.8±4.1 c41.6±1.2 c389.0±2.5 c47.8±0.9 c8.1±0.2 a
    T15.1±0.1 a385.7±6.7 a22.1±3.9 a378.5±1.8 a55.6±3.6 a628.3±1.4 a122.4±2.1 a5.1±0.1 b
    T25.0±0.1 a182.6±13.2 b22.0±1.5 a255.7±3.8 b45.4±2.4 b509.8±1.1 b60.6±1.0 b8.4±0.1 a
      说明:同列不同小写字母表示处理间差异显著(P<0.05)

    Table 2.  Effects of different fertilization treatments on soil properties

    处理△pH△碱解氮/
    (mg·kg−1)
    △有效磷/
    (mg·kg−1)
    △速效钾/
    (mg·kg−1)
    △有机质/
    (g·kg−1)
    △微生物碳/
    (mg·kg−1)
    △微生物氮/
    (mg·kg−1)
    △微生物碳
    氮比
    ck−0.5−80.04.9110.719.2106.227.6−5.9
    T10.3187.55.9287.433.2345.5102.2−8.9
    T20.2−15.65.8164.623.0227.040.4−5.6
      说明:△表示增量

    Table 3.  Effects of different fertilization treatments on soil properties before and after eggplant planting

  • 表4可知:相比ck,处理组茄植株茎粗显著增加(P<0.05),茄果实长度、果实直径显著增加(P<0.05),单果质量和单株结果数显著增加,产量大幅提升(P<0.05)。其中T1产量最高,为70 099.5 kg·hm−2,相比T2增产7.5%,相比ck增产22.3%。

    处理株高/cm茎粗/mm果长/cm果直径/cm单果质量/g单株结果数/个产量/(kg·hm−2)
    ck106.8±6.3 a21.3±1.1 c25.7±1.6 b2.3±0.1 b60.0±7.0 b8.4±2.5 c57 300.0±1 501.5 c
    T1105.2±5.8 a26.8±1.3 a27.6±1.5 a2.5±0.1 a72.2±3.4 a16.2±3.8 a70 099.5±1 552.5 a
    T2105.1±5.3 a24.4±1.3 b27.3±1.7 a2.4±0.2 a71.7±11.8 a12.3±2.3 b65 200.5±1 819.5 b
      说明:同列不同小写字母表示处理间差异显著(P<0.05)

    Table 4.  Effects of different fertilization treatments on growth indexes of eggplant

  • 表5可知:相比ck,处理组叶片叶面积显著增加(P<0.05),其中T1叶面积最大,为226.5 cm2,较ck增加15.2%;SPAD由高到低依次为T1、T2、ck,其中T1叶片SPAD较T2增加了7.5%,较ck增加了14.1%。

    处理叶面积/cm2叶片数SPAD
    ck196.6±3.6 c94.2±29.6 a74.6±3.9 a
    T1226.5±6.3 a100.1±16.8 a69.4±2.9 b
    T2215.6±9.3 b99.2±8.7 a65.4±4.8 c
      说明:同列不同小写字母表示处理间差异显著(P<0.05)

    Table 5.  Effects of different fertilization treatments on leaf area and leaf number and SPAD value of eggplant

  • 表6可知:相比ck,T1果皮硬度显著降低(P<0.05);3个处理茄果皮红绿色度(a*)均大于零,黄蓝色度(b*)均小于零,即颜色均在红蓝色区域;T1的红色葡萄果实颜色指数(CIRG)最大,为6.2,属于蓝黑,而T2和ck均属于深红色。相比ck,处理组果皮花青素质量分数显著增加(P<0.05),其中T1花青素高达13.3 mg·g−1,比ck增加了41.5%,比T2增加了16.7%。

    处理a*b*L*C果皮硬度/N花青素/(mg·g−1)
    ck16.1±1.3 a−6.2±0.3 c18.2±0.2 a5.1±0.1 c6.6±0.7 b9.4±0.8 c
    T111.3±0.5 c−4.5±0.4 a16.7±1.4 a6.2±0.2 a7.7±0.8 b13.3±1.5 a
    T212.7±0.7 b−5.5±0.2 b17.7±0.8 a5.7±0.2 b7.9±0.8 a11.4±0.2 b
      说明:a*表示果皮红绿色度,a*<0显示绿色,a*>0显示红色,数值越大果皮越红;b*表示果皮黄蓝色度,b*<0显示蓝色,      b*>0显示黄色,数值越大果皮越黄;L*表示果皮亮度,L*=0显示黑色,L*=100显示白色,数值越大,果皮越亮。C为红色     葡萄果实颜色指数(CIRG),是间接反映花青苷质量分数及着色的重要值[23],与花青素质量分数达到了0.835的线性相关[24],     C<2显示黄绿,2<C<4显示粉红,4<C<5显示红色,5<C<6显示深红,C>6显示蓝黑。同列不同小写字母表示处理间     差异显著(P<0.05)

    Table 6.  Effects of different fertilization treatments on hardness and color of eggplant peel

  • 表7可知:相比ck,T1果肉硬度显著降低(P<0.05);处理组可溶性糖、可溶性蛋白质和维生素C质量分数分别增加了34.6%~56.8%、28.0%~33.3%和41.8%~122.2%。除可溶性蛋白质外,其他营养物质T1显著优于T2(P<0.05)。

    处理果肉硬度/N可溶性糖/(mg·g−1)可溶性蛋白质/(mg·g−1)维生素C/(mg·g−1)
    ck3.32±0.55 a101.29±9.10 c7.51±0.53 b0.15±0.04 c
    T12.83±0.42 b158.81±10.13 a10.00±1.34 a0.34±0.01 a
    T23.29±0.37 a136.32±8.20 b9.57±0.71 a0.22±0.04 b
      说明:同列不同小写字母表示处理间差异显著(P<0.05)

    Table 7.  Effects of different treatments on hardness, soluble sugar, soluble protein and vitamin C content of eggplant fruit

  • 表8可知:相比ck,处理组蛋氨酸、苯丙氨酸、天冬氨酸、丝氨酸、甘氨酸和半胱氨酸质量摩尔浓度显著增加(P<0.05),其中除甘氨酸外,T1提升效果显著高于T2 (P<0.05);同时T1的缬氨酸、赖氨酸、异亮氨酸、亮氨酸、组氨酸和酪氨酸质量摩尔浓度显著高于ck (P<0.05),T2处理下苏氨酸、精氨酸、丙氨酸和脯氨酸质量摩尔浓度显著高于ck (P<0.05)。就必需氨基酸而言,T1达99.31 μmol·g−1,是ck的2.5倍,是T2的1.9倍,差异显著(P<0.05)。不同处理下茄非必需氨基酸总质量摩尔浓度由高到低依次为T2、T1、ck;相比ck,处理组氨基酸总量显著提高了80.8%~85.8% (P<0.05)。

    处理苏氨酸/
    (μmol·g−1)
    缬氨酸/
    (μmol·g−1)
    蛋氨酸/
    (μmol·g−1)
    赖氨酸/
    (μmol·g−1)
    异亮氨酸/
    (μmol·g−1)
    亮氨酸/
    (μmol·g−1)
    苯丙氨酸/
    (μmol·g−1)
    ck4.52±1.01 b9.90±2.76 b0.32±0.08 c7.03±1.63 b4.37±0.93 b5.02±0.37 b8.33±0.82 c
    T14.16±0.92 b22.72±1.26 a1.45±0.15 a32.61±2.23 a17.03±1.64 a10.46±2.17 a10.88±0.34 a
    T211.55±2.94 a11.42±1.08 b0.97±0.13 b9.45±1.52 b5.82±1.60 b4.89±0.76 b9.25±0.42 b
    处理天冬氨酸/
    (μmol·g−1)
    丝氨酸/
    (μmol·g−1)
    谷氨酸/
    (μmol·g−1)
    甘氨酸/
    (μmol·g−1)
    组氨酸/
    (μmol·g−1)
    精氨酸/
    (μmol·g−1)
    丙氨酸/
    (μmol·g−1)
    ck11.22±2.99 c25.03±3.11 c1.29±0.96 a1.39±0.34 b99.17±8.97 b5.51±1.88 b3.48±0.83 b
    T135.76±2.73 a124.19±1.96 a1.82±0.76 a1.96±0.31 a135.56±15.31 a6.25±2.13 b3.70±1.42 b
    T214.63±1.38 b44.78±7.97 b1.35±0.17 a1.89±0.35 a106.89±6.87 b10.48±2.97 a13.38±3.06 a
    处理脯氨酸/
    (μmol·g−1)
    半胱氨酸/
    (μmol·g−1)
    酪氨酸/
    (μmol·g−1)
    必需氨基酸/
    (μmol·g−1)
    非必需氨基酸/
    (μmol·g−1)
    总氨基酸/
    (μmol·g−1)
    ck112.04±25.88 b1.34±0.10 c0.28±0.06 b39.49±7.6 c260.75±45.12 c300.24±52.72 b
    T1129.52±9.83 b3.45±0.33 a1.23±0.20 a99.31±8.71 a443.44±34.94 b542.75±43.65 a
    T2308.39±17.72 a2.40±0.29 b0.37±0.13 b53.35±8.45 b504.56±40.95 a557.91±49.4 a
      说明:同列不同小写字母表示处理间差异显著(P<0.05)

    Table 8.  Effects of different fertilization treatments on the content of free amino acids in eggplant fruit

  • 表9可知:相比ck,处理组镁和硫质量分数显著增加,其中T1的果实硫质量分数较T2增加了10%,较ck增加了22.2%;T1的果实氮、磷、钾、钙、锰、锌和铁质量分数均显著增加(P<0.05),较ck分别增加了13.5%、26.5%、6.4%、18.8%、11.6%、21.0%和13.3%。

    处理氮/(mg·g−1)磷/(mg·g−1)钾/(mg·g−1)钙/(mg·g−1)镁/(mg·g−1)硫/(mg·g−1)
    ck19.23±0.77 b3.42±0.20 b31.38±1.60 b1.59±0.14 b1.09±0.10 c0.18±0.02 c
    T121.78±0.41 a4.31±0.13 a33.41±1.42 a1.90±0.07 a1.37±0.11 b0.22±0.03 a
    T219.52±0.20 b3.61±0.29 b31.03±1.74 b1.86±0.16 b1.79±0.10 a0.20±0.03 b
    处理锰/(μg·g−1)锌/(μg·g−1)铜/(μg·g−1)铁/(μg·g−1)硼/(μg·g−1)
    ck24.21±1.39 b19.50±1.29 b9.64±0.65 a27.11±1.54 b13.44±0.90 a
    T127.02±2.21 a23.57±1.68 a9.32±0.44 a30.67±1.59 a13.91±1.52 a
    T224.14±1.61 b19.18±1.77 b9.34±0.80 a26.21±1.50 b14.18±1.38 a
      说明:同列不同小写字母表示处理间差异显著(P<0.05)

    Table 9.  Effects of different fertilization treatments on the content of nutrients in eggplant fruit

  • 黄婷等[25]研究发现:有机肥替代化肥可增加土壤有机质含量。本研究发现:有机肥替代处理组(T1与T2)土壤有机质质量分数均显著上升,但有机肥全部替代化肥(T2)土壤有机质少于有机肥替代50%化肥(T1)。这可能是因为土壤微生物碳氮与土壤活性有机质正相关[26-28],T2处理土壤微生物碳氮质量分数显著低于T1,说明有机肥投入过多并不能增加额外的有机质[29]。土壤微生物碳氮比可以反映土壤氮素的供应能力,碳氮比越小说明土壤氮素生物有效性较高。

  • 武星魁等[30]在叶菜蔬菜有机肥替代化肥的研究中发现:有机肥替代化肥可以提高叶菜产量与品质,但并不是有机肥替代化肥的比例越高效果越好,而是存在着最佳的比例。本研究发现:相比单施化肥,在提高茄维生素C质量分数等品质和产量方面,有机肥替代50%化肥处理优于有机肥完全替代化肥,这与李淑仪等[31]结果相似。

    花青素是一类影响茄果实品质的类黄酮化合物[32]。已有研究[33]发现:光照和环境温度对花青素合成与积累有影响。本研究发现:有机肥部分替代化肥能显著增加果皮中花青素质量分数,使茄果皮颜色加深,外观品质更好。推测原因可能是有机肥增加了类黄酮物质生物合成前提的苯丙氨酸的含量[34],提高了花青素质量分数,具体生理机制有待进一步研究。

    有机肥部分替代化肥对茄果实营养元素的影响鲜见报道。矿物质元素是维持人体生长发育所需的营养物质,也是品质因子的成分之一[35-36];硫元素能够组成蛋氨酸和半胱氨酸[37],钾元素参与果实中糖的形成与积累[38]。本研究发现:有机肥施入处理后茄硫元素质量分数显著提升,这可能是茄中蛋氨酸和半胱氨酸增加的原因;有机肥替代50%化肥处理后茄钾元素质量分数最高,这可能是T1中可溶性糖质量分数高的原因。配施有机肥显著提高某些元素含量一方面在于有机肥本身可为植物提供多种元素,如李大伟等[39]发现有机肥本身含有一定数量的铁,对提升白菜铁含量有利;另一方面,有机肥中的某些物质可能与矿物质元素具有协同吸收作用,如魏孝荣[40]发现:土壤有效态锌与土壤有机质呈正相关,配施有机肥处理通过提高锌的生物有效性从而提高了茄中锌的质量分数。

    综上所述,有机肥替代基肥中50%的化肥可以提高露地茄的产量和品质,并改善土壤肥力。

Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return