-
生态风险是指由外界自然变化及人为活动而产生的压力源对生态系统及其组分的可持续性和稳定性所产生负面影响的可能及其损失[1]。重视景观生态风险评价,防范化解生态环境领域重大风险,警惕预测潜在生态风险危害,成为生态文明建设的迫切要求[2]。土地自身就是地表景观的宏观表征方式[3],基于土地覆被的景观生态风险评价能够反映人类活动干扰对生态环境与景观格局交互作用产生的负面影响,是景观生态风险评价的重要分支。随着城镇化进程的快速推进,中小城镇建设用地需求扩大,人地关系紧张,资源环境矛盾突出,生态系统脆弱性增强[4],给城镇生态安全带来了极大的挑战。因此,揭示快速发展的中小城镇景观生态风险时空演变特征,模拟预测不同情景下景观生态风险的动态变化趋势,提出中小城镇土地利用结构优化方式,对促进未来中小城镇区域经济社会高质量发展显得尤为重要。景观生态风险评价是国内外相关研究领域的热点。LANDIS等[5]利用相对风险模型(RRM)评估土地利用生态风险;KAPUSTKA等[6]基于景观生态理论提出土地利用生态环境管控流程;RENETZEDER等[7]分析了奥地利景观格局变化特征及对生态可持续性的影响。国内对景观生态风险评价的研究主要集中于流域[8]、生态重要地区[2]、湿地[9]、城市[10],并运用景观格局指数、暴露-响应等多种方法构建生态风险评价模型[11-12],研究景观生态风险的时空分布、多尺度变化、影响因素等[13-14]。计算机及地理信息技术的广泛运用,土地变化动态建模研究迅速发展,有力支撑并极大推进了基于土地利用预测的生态环境评价研究进程,但现有的景观生态风险预测多运用CA-Markov[15]、FLUS[16]、CLUE-S[17]等模型展开,本研究针对云南省安宁市景观格局快速剧烈变化的特征,采用基于FLUS模型改进的斑块生成土地利用变化模拟模型(patch-generating land use simulation, PLUS)模拟未来山区城镇景观格局并评估其生态风险。该模型更关注揭示多种景观类型变化的潜在驱动因素及模拟景观类型的斑块级演变[18-19],使之更符合山区城镇景观格局复杂的实际情况。本研究基于2000、2010及2020年安宁市土地覆被数据,剖析景观类型变化特征,探究景观生态风险时空演变规律,运用PLUS模型模拟3种不同情景下的安宁市景观生态风险发展趋势,指出生态环境保护情景方案,以期为山地中小城镇建设开发和生态保护协调发展提供方法论视角和区域实践依据。
-
2000—2020年,安宁市景观类型以林地、耕地和草地为主(表1)。其中,林地是最主要的景观类型,占研究区总面积的43.46%;其次为耕地,占总面积的24.94%,与社会经济关系最为紧密的人造地表占比9.63%。全区的景观类型变化特征表现为人造地表面积持续增加,耕地、灌木地面积持续减少,林地、草地面积先增加后减少,水域面积先减少后增加。人造地表面积呈上升趋势,耕地、灌木地、草地、水域面积总体呈下降趋势,林地面积较为稳定。其中,人造地表面积增加幅度最大,共增加8 464.36 hm2,占总变化量的49.92%;耕地面积减少幅度最大,共减少5 274.19 hm2,占总变化量的31.10%。2000—2010年,各景观类型面积变化最明显的是林地,增加1 358.30 hm2,占总变化量的33.06%;2010—2020年,各景观类型面积变化最明显的是人造地表,增加8 175.00 hm2,占总变化量的48.89%。
景观类型 面积/hm2 景观变化动态度/% 2000年 2010年 2020年 2000—2010年 2010—2020年 2000—2020年 耕地 37 735.40 36 893.06 32 461.21 −0.22 −1.20 −0.67 林地 56 576.30 57 934.60 56 590.20 0.24 −0.23 0.00 草地 25 994.11 26 400.80 24 044.90 0.16 −0.89 −0.37 灌木地 4 798.30 3 939.19 3 709.99 −1.79 −0.58 −1.13 水域 1 002.43 649.53 835.89 −3.52 2.87 −0.83 人造地表 4 074.46 4 363.81 12 538.82 0.71 18.73 10.39 Table 1. Area and dynamics of landscape types, 2000−2020
2000—2020年,人造地表扩张速度变化最快,主要由耕地、草地、灌木地转入;2010—2020年土地动态度明显高于2000—2010年,其中2000—2010年减少速度较快的景观类型为灌木地和水域,灌木地主要转移为林地;水域主要转移为耕地、林地和草地;2010—2020年人造地表增加速度明显,城镇的快速扩展占用了大量的耕地、林地和草地。城镇化进程中以人造地表景观扩张为主,并由此产生山水林田湖草等生态景观面积减少,景观结构发生剧烈变化,生态系统稳定性减弱。
-
由图1可知:安宁市2000、2010和2020年景观生态风险的莫兰指数(I)分别为0.525 4、0.552 1和0.492 9,均表现出显著的空间正自相关性(P<0.01),说明景观生态风险值在空间上表现为聚集分布,且相互之间存在影响。2000—2010年,景观生态风险的I值上升,2010—2020年下降,整体呈下降趋势,表明安宁市景观生态风险值在空间分布上的依赖性减弱,空间趋同性逐渐降低,人类活动影响着生态风险指数的空间格局,并导致其空间分布由聚集向均匀过渡。
运用指数克里金插值法得到安宁市各年生态风险值,基于自然断点法将2020年研究区生态风险值分为低生态风险(IER<0.151 1)、较低生态风险(0.151 1≤IER<0.177 8)、中等生态风险(0.177 8≤IER<0.202 6)、较高生态风险(0.202 6≤IER<0.230 3)、高生态风险(IER≥0.230 3)。其他各期数据均采用2020年的分级区间,便于各期数据的比较分析,得到安宁市景观生态风险等级空间分布图(图2)。
-
由表2可知:2000—2020年安宁市景观生态风险整体以中等风险和较高风险区为主,占研究区景观生态风险等级总面积的52.95%~59.76%。结合图2来看,低生态风险区主要分布在研究区南北两端以及中西部山地地带,景观类型主要为林地、草地,人为干扰较少,景观损失度较低;研究期内面积总体上升,主要为青龙、连然、金方、太平新城等街道组成的中心城区的低生态风险面积增加。这是由于青龙街道在此期间建成国家园林城镇,林地等景观面积增加,生态环境改善;随着城镇化的推进,中心城区城镇拓展有序,人造地表景观集中成片,稳定性强,外界干预影响较少。此外,县街和草铺街道作为安宁市重要的工业基地,为打造绿色工业城市的景观风貌,建设了麒麟现代工业景观分区和职业教育景观风貌分区,景观斑块的连接度增强,景观生态风险得到有效防控,低生态风险区面积增加。较低生态风险区面积持续上升,主要分布在低生态风险区的周围。中生态风险区主要分布于八街和县街街道,以及其余各街道耕地景观周边;该区以耕地景观为主,多分布于山地丘陵地带,景观形态复杂,水网密布,林地、草地、灌木地和人造地表景观等相互交错,破碎化程度较高,生态风险加剧,但研究期内该区整体面积变化相对稳定。较高生态风险区分布较为广泛,主要分布于高生态风险区向中等生态风险区过渡区域,研究期内面积占比降低,共降低6.94%。高生态风险区主要分布于各街道城镇扩展的边缘地带,研究期内总面积呈下降趋势,各时期占比分别为15.28%、14.47%、10.64%;说明城镇快速扩张对各类景观类型干扰度较大,尤其在城市边缘地带建设用地较为分散,人文景观与自然景观交替频繁,打断了生态系统的整体,使得景观破碎度高、分离度明显上升,加大了生态风险;其中禄脿街道整体处于高生态风险等级,作为集磷矿工业、特色农业、交通枢纽、特色农业等多种功能的混合街道,景观破碎度和分离度大,高生态风险区面积较多且呈现长期稳定的高风险状态。应用转移矩阵进一步分析研究区景观生态风险各等级间的转移特征,根据表3可以看出:2000—2020年,较低生态风险区主要转移为低生态风险区,中等风险区主要转移为较低、低生态风险区,较高生态风险区主要转移为中等生态风险区,高生态风险区主要转移为较高生态风险区。各等级生态风险区均主要表现为向次级生态风险区转移的特征。由此可以看出,研究区整体生态安全保障水平有所提高,城市经济发展与环境保护逐渐向着良性发展的态势转变。
生态风险等级 2000年 2010年 2020年 面积/hm2 占比/% 面积/hm2 占比/% 面积/hm2 占比/% 低 7 668.09 5.89 9 071.57 6.97 17 098.04 13.13 较低 24 811.59 19.06 27 087.88 20.81 30 309.34 23.28 中等 37 116.44 28.51 36 556.20 28.08 37 280.93 28.64 较高 40 688.03 31.25 38 622.92 29.67 31 643.44 24.31 高 19 896.85 15.28 18 842.42 14.47 13 849.25 10.64 Table 2. Area and proportion of landscape ecological risk level in Anning, 2000−2020
生态风险等级 2020年 低/hm2 较低/hm2 中等/hm2 较高/hm2 高/hm2 总面积/hm2 2000年 低/hm2 7 560.44 107.66 0.00 0.00 0.00 7 668.09 较低/hm2 4 481.42 19 479.31 850.86 0.00 0.00 24 811.59 中等/hm2 2 461.22 5 938.77 26 779.17 1 937.28 0.00 37 116.44 较高/hm2 2 063.85 3 781.97 7 979.14 25 351.21 1 511.85 40 688.03 高/hm2 531.11 1 001.63 1 671.77 4 354.94 12337.40 19 896.85 总面积/hm2 17 098.04 30 309.34 37 280.93 31 643.44 13 849.25 130 181.00 Table 3. Transfer matrix of landscape ecological risk level in Anning, 2000−2020
-
为验证PLUS模型对景观类型模拟结果的可靠性,本研究以2010年土地覆被数据为基础,结合各景观类型发展概率,并设置相关参数,得到2020年景观类型空间格局模拟结果,并与2020年景观类型现状进行对比,精度验证计算求得总体精度为89.84%,Kappa系数为0.856,FOM值为0.247,表明模型具有较高的可信度,故基于PLUS模型对安宁市未来景观类型变化进行模拟预测。依据安宁市历史年份的景观类型变化特征,利用Markov模型构建3种不同情景下安宁市2030年景观类型。其中自然发展情景以2020年景观类型现状数据为基础,预测2030年各景观类型的面积及空间分布情况;考虑安宁市正处于快速发展的重大战略机遇期,云南石化治理、滇中新区建设等相关政策进一步推进,势必带来建设用地的快速增长,因此城镇发展情景将耕地、林地、草地、灌木地向人造地表的转移概率增加20%,人造地表向除耕地外的其他景观类型转移概率降低30%;考虑安宁市是长江上游生态安全格局的重要组成部分,为了进一步打造全国“工业城市中生态最好,生态城市中工业最强”城市,未来的景观类型变化中要进一步加强对生态用地的保护,在生态保护情景设置中,将耕地、林地向人造地表的转移概率降低30%,草地、灌木地、水域向人造地表的转换概率降低20%,人造地表向林地的转移概率增加10%,并严禁生境退化,将区域各个水库、湖泊作为约束条件,限制其任意转换。
-
综合2020年景观类型现状和各影响因子数据,运用PLUS模型模拟预测得到安宁市2030年自然发展情景、城镇发展情景和生态保护情景下景观类型空间分布格局。由图3可知:与2020年景观类型现状数据相比,安宁市2030年3种情景下各景观类型面积呈现不同程度的变化(表4),人造地表、水域的面积持续增加,耕地、林地、草地、灌木地面积持续减少。具体来看,自然发展情景下,安宁市各景观类型发展趋势发生转变,各街道城镇中心的人造地表均有一定扩张。城镇发展情景下,人造地表面积进一步增加,与自然发展情景相比,八街(农业中心)、县街(城市综合服务中心)等街道明显扩张。生态保护情景下,人造地表扩张幅度明显缩小,相比自然发展情景和城镇发展情景,人造地表分别下降2 076.06和3 704.97 hm2,耕地、林地、草地、灌木地面积减少幅度有所缓和,生态用地得到保护。
年份 情景 耕地/hm2 林地/hm2 草地/hm2 灌木地/hm2 水域/hm2 人造地表/hm2 2020 32 461.21 56590.20 24 044.90 3 709.99 835.89 12 538.82 2030 自然发展情景 28 993.52 55 320.37 22 054.37 3 519.86 869.77 19 423.11 城镇发展情景 28 137.83 55 033.97 21 600.53 3 477.91 879.36 21 051.40 生态保护情景 30 130.15 55 693.18 22 452.91 3 563.07 995.26 17 346.44 2020—2030 自然发展情景 −3 467.69 −1 269.83 −1 990.53 −190.12 33.88 6 884.29 城镇发展情景 −4 323.39 −1 556.23 −2 444.37 −232.08 43.47 8 512.58 生态保护情景 −2 331.07 −897.02 −1 591.99 −146.92 159.38 4 807.62 Table 4. Comparison of landscape types and areas under different scenarios in Anning in 2020 and 2030
-
由图4可知:2030年3种情景下安宁市景观生态风险空间分布与2020年相似,整体上仍以中等生态风险区、较高生态风险区为主,但高生态风险区和低生态风险区面积均有上升。与2020年相比,自然发展情景下的较低、中等及较高生态风险区面积有所下降,而高生态风险区的面积增长幅度较大(表5),增加了2 436.66 hm2,低生态风险区也有一定的增加,扩大了1 227.79 hm2。城镇发展情景下,较低生态风险区、较高生态风险区面积下降,较高生态风险区和高生态风险区面积均得到扩张,分别增大2 189.08和2 779.71 hm2;相比其他情景,低生态风险区面积最小,较高、高生态风险区面积最大。这是由于按照现有发展趋势,建设用地面积将会进一步提高,各景观类型均发生变化,人造地表持续外延式扩张,侵占周边耕地、林地等生态景观,各景观的连通性、稳定性下降,导致较高、高生态风险面积增加。生态保护情景下,高生态风险区面积增幅明显下降,低生态风险区显著增加,与其他情景相比,高生态风险区面积最小,景观生态风险等级面积差异显著;主要原因一方面是由于生态保护情景约束了人造地表扩张,减缓了城镇边缘地区景观破碎度、分离度的升高;另一方面该情景设置了水域限制区,保护了水域的稳定性,约束了城镇扩展,增强了新增人造地表空间结构的整合性,进而增强了景观稳定性,使得生态保护区的低生态风险区面积明显上升。
Figure 4. Spatial distribution of landscape ecological risk level in 2030 under different scenarios in Anning
年份 情景 低风险区/hm2 较低风险区/hm2 中等风险区/hm2 较高风险区/hm2 高风险区/hm2 2020 17 098.04 30 309.34 37 280.93 31 643.44 13 849.25 2030 自然发展情景 18 325.83 29 487.25 34 972.37 31 109.63 16 285.91 城镇发展情景 18 080.13 28 247.63 33 391.76 33 832.51 16 628.96 生态保护情景 18 471.05 29 213.59 35 858.72 30 954.11 15 683.54 2020—2030 自然发展情景 1 227.79 −822.08 −2 308.57 −533.80 2 436.66 城镇发展情景 982.09 −2 061.70 −3 889.17 2 189.08 2 779.71 生态保护情景 1 373.00 −1 095.75 −1 422.22 −689.33 1 834.29 Table 5. Comparison of landscape ecological risk level area under different scenarios in Anning in 2020 and 2030
利用ArcGIS空间分析中的栅格计算器进行图层运算,将生态风险等级降低的区域命名为改善区,生态风险等级提升的区域命名为恶化区,生态风险等级未发生改变的区域命名为稳定区,得到安宁市景观生态风险变化图(图5)。3种情景下,景观生态风险改善区空间分布类似,主要分布在草铺、太平新城、县街、八街街道,零散分散于其他街道。不同情景下恶化区空间分布差异较为显著,城镇发展情景下恶化区面积明显高于其他情景,主要分布于连然、温泉、草铺、县街及八街街道;生态保护情景下恶化区有明显约束,八街街道的恶化区明显少于城镇发展情景,县街街道的恶化区明显少于城镇发展情景和自然发展情景。综合来看,人类活动显著影响未来景观生态风险的变化,在城镇合理发展的同时,对城镇建设用地发展进行管控,对生态保护区有效保护,能显著改善景观生态风险。生态保护情景充分考虑了城镇经济建设与生态环境保护协同发展,有利于形成有序的国土资源空间管控局面,更符合安宁市未来生态安全格局的发展。
Dynamic simulation of landscape ecological risk in mountain towns based on PLUS model
doi: 10.11833/j.issn.2095-0756.20210237
- Received Date: 2021-03-22
- Rev Recd Date: 2021-09-06
- Available Online: 2022-02-14
- Publish Date: 2022-02-14
-
Key words:
- landscape ecological risk /
- PLUS model /
- multi-scenario simulation /
- Anning
Abstract:
Citation: | LI Chen, GAO Binpin, WU Yingmei, ZHENG Kejun, WU Yan. Dynamic simulation of landscape ecological risk in mountain towns based on PLUS model[J]. Journal of Zhejiang A&F University, 2022, 39(1): 84-94. doi: 10.11833/j.issn.2095-0756.20210237 |